
PHYSICAL REVIEW C 76, 054004 (2007)

Quasifree �,�0, and �− electroproduction from 1,2H, 3,4He, and carbon

F. Dohrmann,1,2,* A. Ahmidouch,3,4 C. S. Armstrong,5,6 J. Arrington,2 R. Asaturyan,7 S. Avery,3 K. Bailey,2 H. Bitao,3

H. Breuer,8 D. S. Brown,8 R. Carlini,5 J. Cha,3 N. Chant,8 E. Christy,3 A. Cochran,3 L. Cole,3 J. Crowder,9 S. Danagoulian,5,10

M. Elaasar,11 R. Ent,5 H. Fenker,5 Y. Fujii,12 L. Gan,3 K. Garrow,5 D. F. Geesaman,2 P. Gueye,3 K. Hafidi,2 W. Hinton,3

H. Juengst,13 C. Keppel,3 Y. Liang,3 J. H. Liu,13 A. Lung,5 D. Mack,5 P. Markowitz,5,14 J. Mitchell,5 T. Miyoshi,12

H. Mkrtchyan,7 S. K. Mtingwa,10 B. Mueller,2 G. Niculescu,3,15 I. Niculescu,3,16 D. Potterveld,2 B. A. Raue,5,14 P. E. Reimer,2

J. Reinhold,5,14 J. Roche,6 M. Sarsour,17 Y. Sato,12 R. E. Segel,18 A. Semenov,4 S. Stepanyan,7 V. Tadevosyan,7 S. Tajima,19

L. Tang,3 A. Uzzle,3 S. Wood,5 H. Yamaguchi,12 C. Yan,4 L. Yuan,3 B. Zeidman,2 M. Zeier,20 and B. Zihlmann20

1Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany
2Argonne National Laboratory, Argonne, Illinois 60439, USA

3Hampton University, Hampton, Virginia 23668, USA
4Kent State University, Kent, Ohio 44242, USA

5Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
6College of William and Mary, Williamsburg, Virginia 23187, USA

7Yerevan Physics Institute, Yerevan, Armenia
8University of Maryland, College Park, Maryland 20742, USA

9Juniata College, Huntingdon, Pennsylvania 16652, USA
10North Carolina A&T State University, Greensboro, North Carolina 27411, USA

11Southern University at New Orleans, New Orleans, Louisiana 70126, USA
12Tohoku University, Sendai, 980-8577 Japan

13University of Minnesota, Minneapolis, Minnesota 55455, USA
14Florida International University, Miami, Florida 33199, USA

15Ohio University, Athens, Ohio 45701, USA
16The George Washington University, Washington DC 20052, USA

17University of Houston, Houston, Texas 77204, USA
18Northwestern University, Evanston, Illinois 60201, USA

19Duke University and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
20University of Virginia, Charlottesville, Virginia 22901, USA

(Received 14 August 2007; published 29 November 2207)

Kaon electroproduction from light nuclei and hydrogen, using 1H, 2H, 3He, 4He, and carbon targets has been
measured at the Thomas Jefferson National Accelerator Facility. The quasifree angular distributions of � and
� hyperons were determined at Q2 = 0.35 (GeV/c)2 and W = 1.91 GeV. Electroproduction on hydrogen was
measured at the same kinematics for reference.
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I. INTRODUCTION

Flavor degrees of freedom provide an invaluable tool for
understanding hadron structure. Electromagnetic production
of strangeness uses the well-understood photon as a probe of
a nucleon or nuclear target, thereby creating an ss̄ quark pair
which is not part of the valence structure of the target. Thus
electromagnetically induced strangeness is believed to influ-
ence the reaction dynamics such that a better understanding of
the underlying dynamics of hadrons emerges.

Strangeness electro- and photoproduction on nuclei has
the potential to deliver information on the hyperon-nucleon
interaction in the nuclear medium, as well as on the final state
interaction between nucleons and strange particles and the
creation of coherent, bound hypernuclear states.

A comprehensive study of kaon electroproduction on light
nuclei has been conducted in Hall C of the Thomas Jefferson
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National Accelerator Facility (Jefferson Lab or JLab). Data
were obtained using electron beams of 3.245 GeV impinging
on special high density cryogenic targets of 1,2H and 3,4He, as
well as on a solid carbon target.

Comparing photo- and electroproduction, the main differ-
ence is that for photoproduction, we are at one kinematic
point, Q2 = 0, i.e., the photon is real. For electroproduction,
Q2 �= 0, i.e., the kinematics moves away from the photon
point. Because energy as well as three-momentum of the
photon can be varied independently, virtual photons may probe
the structure (form factors) of the hadrons involved in the
reaction.

Until recently, the data base of cross sections of electro-
and photoproduction of strangeness was sparse. In the case of
photoproduction, considerable amounts of new high quality
data for the proton have been published from experiments
at JLab, the Electron Stretcher and Accelerator (ELSA),
Physics Institute, Bonn University, Germany, the super photon
ring-8 GeV (SPring-8) facility in Japan, the Grenoble Anneau
Accelerateur Laser (GRAAL) in France, and the Laboratory
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of Nuclear Science (LNS) at Tohoku University, Sendai, Japan
(cf. Ref. [1] for a list of references). These data include cross
sections, polarization asymmetries, tensor polarizations, and
decay angle distributions. However, the data base for photo-
production on nuclei and thus implicitly the neutron remains
sparse (cf. Refs. [2,3]). Only a few older measurements have
been reported on deuterium [4,5] and carbon [6] targets.

Traditionally, 2H and 3He targets have been considered to
be a good approximation for a free neutron target. In the
present work, as in the majority of kaon electroproduction
experiments, a positive kaon is detected in coincidence with
the scattered electron. On the proton, this leads to two possible
final states with either a � or �0 hyperon, which are easily
separable by a missing mass analysis. On the neutron, a �− is
produced as the final state. Due to the small mass difference of
�− and �0 of 4.8 MeV/c2 and the initial nucleon momentum
distribution, the � contributions from the proton and neutron
cannot be separated by missing mass. With increasing target
mass, the separation between � and � distributions also gets
worse because of the increasing Fermi momentum. Thus, 2H
and 3He targets offer the best access to the neutron cross
sections. Since a missing mass analysis, strictly speaking, can
only determine the total � strength, the different N/Z ratio for
the 2H and 3He targets should assist in further disentangling
the �0 and �− contributions.

Systematic studies of heavier nuclei will then provide
possibilities of investigating in-medium modifications of the
elementary kaon electroproduction mechanism as well as the
propagation of the outgoing K+; e.g., experimental data on
12C [6–9] show an effective proton number that disagrees with
theoretical calculations [10], thereby indicating the need for
modifications.

We present here the results of an experiment on the
electroproduction of open strangeness on light nuclei with A =

2, 3, 4, 12, which was performed in Hall C at Jefferson Lab.
Also measured was the production on a hydrogen target. This
facilitates direct comparison with the elementary p(e, e′K+)
reaction for identical kinematics. Results of this experiment
on the production of � hypernuclear states, 3

�H and 4
�H, have

been presented in Ref. [11]. In this paper, we present the
cross sections for the quasifree production of �,�0, and �−.
To the best of our knowledge, this is the first reported kaon
electroproduction measurement on helium isotopes.

II. EXPERIMENT

Experiment E91-016 had two runs, one that only used
hydrogen and deuterium targets, and a subsequent one that
also included helium and carbon targets. We present cross
sections from the second run, which included data for all four
few-body nuclei. Data were obtained using electron beams of
3.245 GeV impinging on special high density cryogenic targets
of 1,2H and 3,4He. The target thicknesses were 289 mg/cm2 for
1H at 19 K, 668 mg/cm2 for 2H at 22 K, 310 mg/cm2 for 3He
at 5.5 K, and 546 mg/cm2 for 4He at 5.5 K. The target lengths
were approximately 4 cm for each target. In addition, data was
taken on a 227 mg/cm2 carbon target.

The scattered electrons were detected in the high mo-
mentum spectrometer (HMS, momentum acceptance �p/p ≈
±10%, solid angle ≈6.7 msr) in coincidence with the elec-
troproduced kaons, detected in the short orbit spectrometer
(SOS, momentum acceptance �p/p ≈ ±20%, solid angle
≈7.5 msr). The detectors and coincidence methods have been
described in detail for similar experiments in Hall C [12–14].
The detector packages of the two spectrometers are very
similar, and a sketch of the setup of the experiment is shown
in Fig. 1. Two drift chambers near the focal plane, used
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FIG. 1. (Color online) Setup of the exper-

iment (modified from Refs. [12,15]). While
the general setup was similar to other Hall C
experiments, in this experiment an additional
acrylic Čerenkov detector was used for better
K+/p discrimination.
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FIG. 2. (Color online) Real and random events of β vs the
path-length-corrected coincidence time measured by the SOS spec-
trometer. Visible bands correspond to protons (low velocities), kaons
and pions (high velocities). The tilt of the pion and proton bands
reflects that the velocity was calculated assuming the particle was a
kaon. The effect of particle identification (PID) cuts is shown in the
bottom figure, where the fast pions were almost totally removed. The
random events are determined by averaging over a number of random
coincidence peaks as indicated by the blue dashed box and the red
dot-dashed box. These are to be subtracted from the small box around
the main coincidence peak. (An earlier version of this figure is shown
in Ref. [16]).

for reconstructing the particle trajectories, are followed by
two pairs of segmented plastic scintillators that provide the
main trigger signal as well as the time-of-flight information.
The time-of-flight resolution is ∼150 ps (σ ). For electron
identification, a lead-glass shower detector array together with
a gas threshold Čerenkov is used to distinguish between e−
and π−. For kaon identification in the SOS, a silica aerogel
detector (n = 1.034) provides K+/π+ discrimination, while
an acrylic Čerenkov counter (n = 1.49) is used for K+/p

discrimination.
Electroproduction processes involve the exchange of a vir-

tual photon γ ∗ between projectile and target. The spectrometer
setting for electron detection was kept fixed at an angle of
14.93◦ during the experiment, thereby holding the virtual
photon flux constant (cf. Ref. [16]). The initial spectrometer
angle of the kaon arm was 13.40◦. This angle was varied
to measure angular distributions with respect to the direction
of γ ∗. For γ ∗, the invariant mass was Q2 = 0.35 (GeV/c)2,
the virtual photon momentum was |�q| = 1.77 GeV/c, and
the total energy in the photon-nucleon system was W =
1.91 GeV. Electroproduction on light nuclei was studied for
three different angle settings with respect to the initial kaon
angle, 13.40◦. The corresponding angles between the virtual
photon γ ∗ and the ejected kaon K are θ lab

γ ∗K+ � 1.7◦, 6◦, 12◦.
These correspond to increasing the momentum transfer to
the hyperon [| t |� (0.12, 0.14, 0.23) GeV2]. The central
spectrometer momenta were 1.29 GeV/c for the kaon arm
and 1.57 GeV/c for the electron arm.

III. DATA ANALYSIS

The essential element of the data analysis for the present
work is a clear identification of scattered electrons coincident
with kaons against a large background of pions and protons.
Figure 2 shows the measured hadron velocity in the SOS
vs the coincidence time between the two spectrometers. The
latter has been projected back to the target by using the kaon
mass as default. It thus represents the proper coincidence time
only for kaons, the particles of interest. Clearly visible is the
2-ns RF time structure of the beam. The top panel shows the
distributions before and the bottom panel after applying an
analysis cut on the aerogel Čerenkov detector. In-time (e,K+)
coincidences are selected by a cut on β and coincidence time.
Real (e, π ) coincidences are visible about 2 ns below the
kaon peak, whereas real (e, p) coincidences appear at about
6 ns above the kaon peak. The background from uncorrelated
(e,K+) pairs was subtracted using distributions from out-of-
time coincidences, a standard procedure for Jefferson Lab Hall
C experiments [13,15]. Defining the out-of-time window such
that it does not include any in-time coincidences of (e, π )
and (e, p), this procedure also corrects for any remaining
pion and proton background in the in-time kaon window. The
contamination of the kaon sample after the aerogel cut is on
the order of 2–4%. After subtracting random coincidences, cf.
Fig. 2, the kaon sample is very clean with a contamination well
below 1%. The efficiency for kaon identification is 82%.

Following Refs. [17,18], the notation of strangeness elec-
troproduction may be introduced by

p(pµ) + e
(
qµ

e

) → e′(qµ

e′
) + K

(
p

µ

K

) + Y
(
p

µ

Y

)
, (1)

with the four-momenta q
µ
e = (Ee, �qe), qµ

e′ = (Ee′ , �qe′ ) of the
incoming and outgoing electron, qµ = (ω, �q) of the vir-
tual photon, p

µ
p = (Ep,−�q), pµ

K = (EK, �pK ), and p
µ

Y =
(EY ,− �pK ). The virtual photon is defined by the difference
of the four-vectors of the incoming and outgoing electron,
qµ = q

µ
e − q

µ

e′ . The kinematics are shown in Fig. 3, where
the lepton and hadron planes are defined. The virtual photon
connects both planes kinematically.

After proper electron and kaon identification, the measured
momenta (magnitude and direction with respect to the incom-
ing beam) allow for a full reconstruction of the missing energy
and missing momentum of the recoiling system.

The missing energy and missing momentum of the recoiling
nucleons are calculated, viz.,

EX = Ee − Ee′ + Mtarg − EK = ω + Mtarg − EK, (2)

�PX = �q − �pK, (3)

where MX =
√

(E2
X − | �PX|2) is the missing mass, and Mtarg

denotes the target mass. The four-momentum transfer to the
nucleons is given by the Mandelstam variable t ,

t = (
qµ − p

µ

K

)2 = (ω − EK )2 − |�q|2
− | �PK |2 + 2|�q|| �PK | cos θpK. (4)

Final states of the A(e, e′K)X reaction for A = 1, 2, 3, 4, 12
are visible in Fig. 4. The missing mass MX is calculated
from the four-momenta qµ of the virtual photon and the
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FIG. 3. Kinematics of kaon electroproduction: the reaction
(hadron) and scattering (lepton) planes are connected by the virtual
photon which lies in both planes. The electron scattering angle is
denoted by θe, the kaon scattering angle between the kaon and the
direction of the virtual photon is denoted by θγK . Typically for
electroproduction experiments in Hall C of JLab, the ejected K+

is detected by the SOS spectrometer in coincidence with the scattered
e′ detected by the HMS spectrometer (from Ref. [12]).

four-momentum p
µ

K of the detected kaon, viz.,

M2
X = (

qµ + P
µ
targ − p

µ

K

)2
, (5)

where P
µ
targ = (Mtarg, 0, 0, 0) is the target four-momentum.

Missing mass distributions have been created for the in-
time (e,K) coincidences as well as a sample of the out-of-
time coincidences; the latter then were subtracted with the
appropriate weight. For the cryogenic targets, the background
from the target cell walls was determined by a measurement
from an empty cell replica. Data from this replica were
subjected to the same analysis. As an example, for 3He, Fig. 5
shows the typical sizes of the various background contributions
compared to the raw data. Background contributions are
subtracted from the raw distribution in the following way:
MX = Mreal − Mrandom − (Mcell

real − Mcell
random).

Figure 4 shows background-subtracted missing mass distri-
butions for all four targets. For the hydrogen target, the missing
mass distributions allow for an unambiguous identification
of the electroproduced hyperon, either a � or a �0. The
well-known masses of these two hyperons also serve as an
absolute mass calibration with an accuracy of better than
2 MeV.

On the deuterium target, the two distributions are sig-
nificantly broadened because of the presence of a nucleon
spectator and the Fermi motion of the target nucleons.
Furthermore, the � distribution now is comprised of two
possible final states, either a �0n or a �−p, the latter from
the reaction with a neutron inside the target. Since the mass
difference between �0 and �− is small compared to the
width of the distributions, these two final states are completely
unresolved. In Fig. 4 it is also obvious that the radiative tail
from the � distribution contributes significantly to the strength
observed in the � mass region. For increasing A, the peaks
associated with � and � hyperons further broaden. Whereas
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for 3He a small shoulder associated with � is still visible, only
an indistinct broad distribution remains for the 4He target.

This challenges any extraction of the underlying three
reaction channels γ ∗ + p → � + K+, γ ∗ + p → �0 + K+,
and γ ∗ + n → �− + K+. The following section will describe
an attempt to disentangle the three reaction channels by means
of a Monte Carlo simulation that models the spectrometer
acceptances as well as the reaction mechanism.

The electroproduction cross section may be written as

d5σ

dEe′d
e′d
K

= �
d2σ

d
K

, (6)

where � denotes the virtual photon flux factor

� = α

2π2

Ee′

Ee

1

Q2

W 2 − M2

M

1

1 − ε
, (7)

where α is the fine structure constant, and ε is the longitudinal
polarization of the virtual photon,

ε =
(

1 + 2
|�q|2
Q2

tan2(θe/2)

)−1

. (8)

The total energy in the virtual-photon–target center of mass
is given by W 2 = s = (qµ + p

µ
target)

2 and can be expressed
in the laboratory reference frame by W 2 = M2 + 2Mω − Q2.
To facilitate comparison with the scattering on the proton, both
for calculating W as well as in Eq. (7), M is taken to be the
nucleon mass for all targets discussed here.

The 1H(e, e′K+)X data were used to provide consistent
normalization data as well as to test available isobar models
and to develop a global model that would describe the data.
While reasonable agreement was found with the Saclay-Lyon
model [19], the best description of the data within the kine-
matic range of this experiment was achieved by a dedicated
simple model. This model had already been developed for
the first experimental run on A = 1, 2 targets [20]. Unlike
the Saclay-Lyon model, it is not based on separated response
functions. Instead, the unpolarized twofold center of mass
cross section is modeled and taken as input for the simulations,
which then provides a fivefold laboratory cross section as
output.

The model describes the unpolarized differential cross
section for 1H(e, e′K+)� by a factorization ansatz of four
kinematic variables:

d2σ

d


∣∣∣∣
�

(Q2,W, t, φ) = f (Q2) × N · g(W )h(t)i(φ), (9)

with a normalization constant N = 5.4724 and the four
functions

f (Q2) = constant = c
f

1 , (10)

g(W ) = c
g

1

P cm
K(

W 2 − M2
p

)
W

+ c
g

2

W 2

c
g

3W 2 + (W 2 − 1.722)2
, (11)

h(tmin − t) = exp
(
ch

1 (tmin − t)
)
, (12)

i(φ) = ci
1 + ci

2 cos(φ) + ci
3 cos(2φ). (13)

TABLE I. Fit parameters for the model cross section for
1H(e, e′K+)� from Ref. [20].

c1 c2 c3

f (Q2) 0.430 µb/sr
g(W ) 4.470 MeV2 0.00089 MeV2 0.0062 MeV2

h(�t) −2.14
i(φ) 0.438 −0.048 0.008

The c
f,g,h,i

1,2,3 are parameters which were determined through a
fit to the data taken during the first experimental run [20,21].
These parameters are given in Table I.

The functional form of the t dependence in Eq. (12) has been
taken from an earlier work by Brauel et al. [22], while the φ

dependence was studied during the first run of the experiment
[20]. Equation (11) shows that the dependence on the total
photon energy W is composed of a phase space factor and a
Breit-Wigner resonance. The observed Q2 dependence is very
weak, and it is set to a constant.

For the electroproduction of �0 hyperons, 1H(e, e′K+)�0,
only a single, energy-dependent phase space factor is used.
Following [23] we obtain

d2σ

d


∣∣∣∣
�

(W ) = c1
P c.m.

K(
W 2 − M2

p

)
W

c1 = 1.32 GeV2µb/sr, (14)

where the constant c1 was determined by Koltenuk [24].
Unlike hydrogen, the missing mass distributions for deu-

terium and the other nuclear targets do not show two clearly
separable peaks, cf. Fig. 4, as discussed above. To extract
information on the quasifree �0 as well as �− production,
one has to rely on assumptions about the nuclear dependence
of the �0. In this analysis, we determine the ratio of � to �

production for hydrogen and then keep this ratio fixed in the
proton model that enters into the simulation for the nuclear
cross section. Nuclear effects thus contribute to the systematic
uncertainties (cf. Refs. [2,25]). If such an assumption is not
made, only a combined � contribution may be deduced, as in
Refs. [5,26].

The data shown in Fig. 4 were compared with a dedicated
Monte Carlo simulation that modeled the spectrometer optics
and acceptance, kaon decay, small angle scattering, energy
loss, and radiative corrections [12,27]. The process of ex-
tracting the respective cross sections described in detail in
Refs. [13,15] relies upon a ratio of the measured yield from
experiment, Yexp, normalized to a simulated yield from the
above-mentioned Monte Carlo simulation, YMC, which is used
as a scale factor for the model cross section used in the Monte
Carlo, viz.,

d2σ

d

= Yexp

YMC

d2σ

d


∣∣∣∣
model

. (15)

This approach is also known as the method of correction
factors, cf. Ref. [28]. For A = 2, 3, 4, 12, the A(e, e′K+)X
process was modeled as quasifree scattering on target nucleons
inside the target. Since to the best of our knowledge, no
dedicated models are available for the electroproduction
on these nuclei, the elementary cross section models in
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Eqs. (9)–(13) for � and Eq. (14) for � are used. The respective
cross sections are multiplied by the number of protons Z or
neutrons N . Since no separate model for production on the
neutron is available, we use the model (14) for both �0 and
�−. The model is convolved with spectral functions [29] for
the respective target nucleus.

The spectral functions provide the four-momenta of the
target nucleons inside the target. For the A = 2 case, deuteron
momentum distributions taken from either the Bonn potential
[30] or the Av18 potential [31] gave essentially identical
results. Obviously neither of these models incorporate any
possible in-medium behavior of the nucleons inside the target
nor final state interaction, as will be discussed below. For the
nuclear targets, final state interactions in the vicinity of the
respective quasifree thresholds are taken into account using an
effective range approximation [32].

The final state interaction of the hyperon with the remaining
target nucleon has to be taken into account, whereas the kaon
nucleon final state interaction is small; the �N total cross
section is more than two orders of magnitude larger than
the K+N total cross section.1 We use an effective range
approximation (ERA), by which the modeled cross section
is modified by an enhancement factor I (cf. Watson and
Migdal [33,34]), that is,

σYN FSI
K = IσK = 1

|Jl(krel)|2 σK, (16)

in terms of the complex Jost function Jl for the lth partial
wave. krel is the relative momentum between the hyperon and
the nucleon (see also Chapters 12 and 14 of Ref. [35]). A
hyperon-nucleon (YN ) potential V is used to describe the
final state interaction, for which only the s-wave part is taken
into account. The s-wave Jost function may then be written as

J (krel) = krel − iβ

krel − iα
, (17)

where α and β are determined from the scattering length a and
effective range re of the hyperon-nucleon potential, viz.,

1
2 re(α − β) = 1, 1

2 reαβ = − 1
a
. (18)

In this ansatz, there are no free parameters; the magnitude of
the enhancement factor is fully determined by the effective
range re and the corresponding scattering length a, both
being parameters of the hyperon-nucleon potential chosen.
For the A = 2 targets, the full Jost function ansatz gave a less
satisfactory description of the data than for the helium targets.
An even simpler approach for an ERA, studied in Ref. [20]
and following a prescription described in Ref. [36], was used.
The s-wave phase shift δ0 is calculated via the Bethe formula,
and the enhancement factor is given by

krel cot δ0 = −1

a
+ 0.5rek

2
rel, I =

(
sin(δ0 + krelr)

sin krelr

)2

.

(19)

For the helium targets, however, the full Jost function
ansatz gave much better results. For the data sets presented

1http://pdg.lbl.gov/2006/hadronic-xsections/hadron.html.

TABLE II. Final state interaction enhancement factors. The
factor is the ratio of the integrated yield of missing mass spectra
before (Yno FSI) and after (YFSI) applying the final state contribution
for the respective kinematic setting and target. The integration is
carried out over the kinematic range for the respective targets, cf.
Figs. 4 and 7.

Target Angle (deg) YFSI/Yno FSI

� �0 �−

2H 1.7 4% 3% 2%
3He 1.7 15% 8% 10%
3He 6 12% 7% 9%
3He 12 9% 5% 7%
4He 1.7 13% 7% 11%
4He 6 12% 6% 9%
4He 12 7% 4% 10%
12C 1.7 10% 5% 8%

in this paper, we use the Nijmegen 97f YN potential [37],
with scattering lengths a taken from Ref. [37] and effective
ranges of re taken from the Nijmegen 89 [38], since Ref. [37]
does not provide these parameters. In all cases and for every
hyperon-nucleon potential tested, the singlet values for a and
re gave more satisfactory results than triplet values. For the �

hyperons, the Nijmegen 97f and the Jülich A also provide a and
re for the �N interaction. Using these values, an enhancement
factor due to the �N final state interaction was introduced.
However, the fits to the data were more strongly influenced by
the �N final state interaction. In Fig. 6, we show the effect of
applying the final state interaction in an ERA to our model in
the low-mass � region.

In Table II, we show the influence of the FSI on the
simulated missing mass yields. The simulated missing mass
is weighted by the respective model cross section. If the cross
section is multiplied by an enhancement factor, the missing
mass spectra are influenced. Table II gives the ratio of the
integrated yields YFSI/Yno FSI for missing mass distributions
(cf. Figs. 4 and 7) with or without FSI for the model (9)
discussed above. Choosing a different cross section model
would change these values only by 1%–3%. Also, different
final state interaction models (e.g., Nijmegen 97f, Jülich A) do
not change the yield ratio by more than 3%.

For the helium-3 and helium-4 target nuclei (and also for
carbon), the analysis was performed analogously to the A = 2
case. However, the electroproduction of strangeness on helium
targets (and on carbon, though with rather poor statistics)
triggers two investigations: the quasifree production of open
strangeness on the light nuclear target as well as the production
of bound hypernuclear states. The missing mass distributions
for these targets are shown in Figs. 4 and 7. It is obvious from
both figures that the investigation of the quasifree reactions
on the one hand and structures near the respective thresholds
for quasifree production on the other hand do not completely
decouple because of the limited mass resolution of the missing
mass distributions. Therefore the quasifree distribution and the
coherent distribution overlap.
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FIG. 6. (Color online) Effects of including FSI for the fits to the
data on 2H (upper panel) and 3He (lower panel) in the low-mass �

region. The fitted � contribution without FSI is given by the dark
color, dash-dotted line. � contributions including FSI are given by
the light-blue, dashed line. For 3He, the 3

�H bound state is shown in
red. The total fit (sum of all contributions) is given by the dotted line.
Vertical dot-dashed lines are as in Fig. 4.

The following describes the extraction of the cross section.
For the 1H(e, e′K+) data, we fit the missing mass spectra Mdata

with the ansatz

Mdata(H) = fH,�Mmodel
� (H) + fH,�0Mmodel

�0 (H), (20)

with two free fit parameters fH,� and fH,�0 for the simulated
missing mass distributions Mmodel

�,�0 . Once these two parameters
are obtained, the cross section in the laboratory may be ob-
tained by evaluating the model cross section for the simulation
at the specific kinematic conditions of the experiment, as stated
above. These two model cross sections are then multiplied by
the respective fit parameters obtained in Eq. (20). Moreover,
we define the important ratio of the fit parameters

R��0 = fH,�

fH,�0
. (21)

For targets with A � 2, Eq. (20) has to be modified to
incorporate the possible conversion of a target neutron into
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FIG. 7. (Color online) Reconstructed missing mass spectra for six
targets at one kinematic setting (〈1.7

◦ 〉). Simulated quasifree reactions
A(e, e′K+)Y are indicated by colors: Y = � (light blue), Y = �0

(blue), Y = �− (green), bound states 3
�H, 4

�H, 12
� B (red), and sum of

all simulated contributions (yellow). Vertical dot-dashed lines are as
in Fig. 4.

a �− hyperon as follows:

Mdata(A) = fA,�Mmodel
� (A) + fA,�0Mmodel

�0 (A)

+ fA,�−Mmodel
�− (A). (22)

Here the simulated missing mass distributions Mmodel
Y (A), Y =

�,�0, �− include both the respective model cross section and
the respective enhancement factors IY (A) due to the final state
interaction. The respective cross sections are given by

σY (A) = fA,Y IY (A)σ model
Y (A). (23)

In the following, if not explicitly stated otherwise, it is assumed
that the model cross section σ model

Y (A) themselves do not
include the final state interaction. Enhancements of the model
cross sections due to the final state interaction are described
by enhancement factors IY (A).

Equation (22) poses a fitting problem with three free fit
parameters fY (A) for which this experiment is not able to
distinguish directly the contributions of either � hyperon. Thus
for targets with A � 2, it is assumed that this ratio (21) is the
same for the bound protons in the respective nucleus, i.e.,

R��0 = fH,�

fH,�0
= fA,�

fA,�0
, fA,�0 = fA,�

R��0 (H)
. (24)
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TABLE III. Differential cross sections for electroproduction of K+�, K+�0,− final states on A = 1, 2, 3, 4, 12 targets. A prescription
for separating the �0, �− cross sections is discussed in the text. Independently, a combined K+� cross section is given. σlab denotes the
fivefold laboratory differential cross section d5σ/d
e dEe d
K (in nb/GeV sr2). σc.m. denotes the twofold differential cross section d2σ/d


(in µb/sr) in the virtual-photon–nucleus center of mass system. Uncertainties given include the combined statistical and fitting uncertainties.
Uncertainties from Table IV have to be added to these values. The first row shows data for 1.7◦ averaged over the azimuth. A 9% systematic
error has to be added to the cross sections given, see text and Table IV. Note that values are not given per contributing nucleon, cf. text.

Target 1H 2H 3He 4He 12C

θ lab
γ ∗,K+ (◦) σlab σcm σlab σcm σlab σcm σlab σcm σlab σcm

�

〈1.7〉 10.6 ± 0.2 0.47 ± 0.01 9.4 ± 0.2 0.41 ± 0.01 21.7 ± 0.2 0.95 ± 0.01 19.8 ± 0.2 0.86 ± 0.01 61.6 ± 1.5 2.64 ± 0.07
1.7 9.8 ± 0.4 0.43 ± 0.03 9.4 ± 0.5 0.41 ± 0.02 20.4 ± 0.3 0.89 ± 0.02 18.2 ± 0.3 0.79 ± 0.02
6 9.9 ± 0.1 0.44 ± 0.01 19.5 ± 0.3 0.87 ± 0.02 17.7 ± 0.3 0.79 ± 0.03
12 7.6 ± 0.1 0.36 ± 0.01 15.0 ± 0.5 0.71 ± 0.04 14.2 ± 0.4 0.67 ± 0.02

�0

〈1.7〉 3.0 ± 0.2 0.12 ± 0.01 2.8 ± 0.2 0.11 ± 0.02 6.4 ± 0.2 0.25 ± 0.01 6.3 ± 0.1 0.25 ± 0.01 20.7 ± 0.5 0.81 ± 0.02
1.7 3.0 ± 0.4 0.12 ± 0.01 3.0 ± 0.2 0.12 ± 0.01 6.5 ± 0.2 0.26 ± 0.01 6.2 ± 0.2 0.25 ± 0.01
6 3.3 ± 0.1 0.14 ± 0.01 6.8 ± 0.2 0.27 ± 0.01 6.6 ± 0.2 0.24 ± 0.01
12 3.2 ± 0.1 0.14 ± 0.01 6.6 ± 0.2 0.29 ± 0.01 6.6 ± 0.2 0.29 ± 0.01

�−

〈1.7〉 1.9 ± 0.2 0.08 ± 0.01 4.6 ± 0.2 0.18 ± 0.01 4.8 ± 0.2 0.19 ± 0.01 16.5 ± 2.6 0.64 ± 0.1
1.7 1.8 ± 0.5 0.07 ± 0.02 3.9 ± 0.4 0.15 ± 0.02 4.6 ± 0.4 0.18 ± 0.02
6 3.5 ± 0.5 0.14 ± 0.02 2.3 ± 0.6 0.09 ± 0.02
12 3.3 ± 1.2 0.14 ± 0.05 0.3 ± 0.6 0.01 ± 0.02

�

〈1.7〉 4.7 ± 0.2 0.19 ± 0.02 10.5 ± 0.2 0.42 ± 0.02 11.1 ± 0.3 0.44 ± 0.02 37.0 ± 2.6 1.45 ± 0.10
1.7 4.9 ± 0.6 0.19 ± 0.02 9.9 ± 0.4 0.39 ± 0.02 10.8 ± 0.5 0.43 ± 0.02
6 9.7 ± 0.4 0.39 ± 0.02 9.0 ± 0.6 0.36 ± 0.02
12 9.3 ± 0.9 0.40 ± 0.04 7.0 ± 0.2 0.30 ± 0.02

Instead of fitting fA,�0 , this parameter is calculated from
the fitted fA,�, using the results from the previous fit to the
hydrogen data.

With fA,�0 determined via Eq. (24), then Eq. (22) reduces
to a fitting problem with only two free parameters.

For 3He, 4He, and 12C, one additional parameter that refers
to � bound states for the specific nuclear target has to be taken
into account. For 4He, a 4

�H bound state is clearly visible for
all three kinematic settings just below the 3H-� threshold of
3.925 MeV (cf. Figs. 4 and 7). For 3He, just below the 2H-�
threshold of 2.993 MeV, the 3

�H bound state is barely visible
as a weak shoulder for 1.7◦, but it is clearly present for 6◦
and 12◦ (cf. Fig. 4). For carbon, the 12

�B bound state is clearly
visible in the respective missing mass spectrum. The fits to the
respective bound states for the helium targets and carbon do
include one extra term for the bound state to be fitted. This
extra term is not shown in Eq. (22); however, it contributes
only over very narrow ranges of the fit and does not cause
ambiguities in the procedure.

In the next section we focus on the extraction of the
quasifree cross sections, angular distributions, and nuclear
dependence for the respective targets.

IV. RESULTS AND DISCUSSION

The measurement presented in this work provides data for
targets with A = 1–4 and carbon. The fivefold differential

cross sections d5σ as well as the twofold center of mass
differential cross section d2σ per nucleus are given in
Table III. Unlike in our previous paper on hypernuclear bound
states [11], these cross sections have not been normalized to
the number of contributing nucleons n (e.g., 3He: n� = n�0 =
2, n�− = 1; 4He: n� = n�0 = n�− = 2).

We chose a binned maximum likelihood method (cf.
Ref. [39]) for fitting the simulated distributions to the data.
This procedure was already successfully used in another
electroproduction experiment using the same equipment (cf.
Ref. [15]). The fits were not constrained to fit the data only in
specific regions of MX. The binning of the respective missing
mass distributions was chosen between 2 and 4 MeV and had
no noticeable effect on the cross section extraction.

The angular distributions were restricted to a common
range covered in azimuthal angle (180◦ ± 24◦). For the settings
with near parallel kinematics, 1.7◦, however, the full azimuth
was accessible. The uncertainties given in Table III reflect
statistical and fitting uncertainties. In the following, we discuss
systematic uncertainties to be added to the uncertainties in
Table III. These uncertainties are tabulated in Table IV.
Correlated systematic uncertainties due to yield corrections,
including efficiency corrections, dead times, and event losses,
are ∼3%; while uncorrelated uncertainties, including time-
of-flight determination (∼2%), particle identification (∼2%),
absorption of kaons in the spectrometer and target material
(∼3%), and kaon decay (∼3%), amount in total to ∼5%
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TABLE IV. Breakdown of systematic uncertainties.
These uncertainties have to be added to the uncertainties
given in Table III.

Type Uncertainty (%)

Experimental systematics 6%
Cross section model 6%
FSI model 3%
Total 9%

(cf. Ref. [40]), thereby yielding a combined uncertainty of
∼6% from these sources. Uncertainties due to the analysis
approach will be discussed below.

For the extraction, separate MX distributions were gener-
ated for quasifree production of �,�0, and �− hyperons,
and the sum of these spectra was fitted to the total kaon MX

spectrum using a maximum likelihood fit. The fit parameters
fA and fH [cf. Eqs. (20)–(24)] were roughly of order unity.
For A = 3 and A = 4, bound state contributions for 3,4

� H, also
included, were discussed in Ref. [11]. For carbon, however,
the 12

� B bound state is bound so deeply that omitting it
from the fits changes the respective cross sections by less
than 0.3%. We estimate the laboratory cross section for
the 12

� B to be on the order of σlab ∼ (.9 ± .2 (stat)) nb/GeV
sr2, σc.m. ∼ (17.8 ± 4.5 (stat)) nb/sr, where both cross sections
have been divided by np = 6. We note, however, that we do
not resolve ground or excited states of 12

�B, as were resolved
in other experiments [8], such that our cross section estimate
represents an integral value only.

The uncertainties of the cross section determination of �0

are tied to those of �, since the ratio of �0 to � production
is fixed to the hydrogen results. However, any deviation from
this assumption will result in large uncertainties on the �−
cross section extracted from nuclei.

Alternatively, we include a combined cross section for �0

and �−, the sum of the extracted cross sections for both
� hyperons. We extracted the combined � cross section
from a unconstrained fit of just two quasifree distributions
for � and � to the respective data for all targets. For the
combined � analysis, results agree with the main analysis
within uncertainties (�3% for �, � 10% for �).

Figures 8 and 9 display the cross sections for all three
hyperons for 3,4He in the center of mass system. For compar-
ison, the quasifree distributions from hydrogen are displayed
as open symbols. For convenience, the hydrogen values have
been scaled by a factor of 2. In general, the distributions are
similar and seem to be strongly imprinted by the underlying
kinematics. While the angular distributions for the � hyperon
drop with increasing θlab, the �0 distributions stay nearly
flat. This is also observed for 3He and 4He. Considerably
different are the �− distributions for the respective hyperons.
For 3He, the �− angular distribution does not show any strong
dependence on the angle, similar to the �0 distribution. For
4He, however, the �− distribution drops significantly with
angle. With increasing angle, the remaining strength seems
to be exhausted by � and �0 alone, so that the �− cross
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FIG. 8. Comparison of the nuclear cross section for quasifree
�, �0, and �− production on 3He targets. For comparison, the
respective quasifree distributions on the proton are shown by open
symbols. These points have been scaled by a factor of 2 for better
comparison.

section extracted for the 4He at the largest angle is very
small.

Systematic uncertainties connected with the chosen cross
section model have been checked by using different modifi-
cations of the model parameters and additionally by checking
different FSI modifications of the model. For all targets the
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FIG. 9. Same as Fig. 8, but for 4He targets. scaled by a factor of
2 for better comparison.
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TABLE V. Missing relative strength in low-mass � region,
integrated up to the lowest lying �0 threshold. These values were
obtained for the choice of our cross section model Eqs. (9)–(13) and
Nijmegen YN potential as discussed in the text.

Target 〈1.7
◦ 〉 1.7

◦
6

◦
12

◦

2H 0.3% 0.3%
3He 0.7% 2.3% 3% 8%
4He 5% 6% 7% 18%
12C 22%

values obtained with the model are very stable against small
variations in the 3–6% range. Conservatively, we estimate
model-dependent uncertainties to be within 6%.

Figures 4 and 7 show some missing strength of the fit in
the � region for A = 3, 4, 12. Integrating the data as well
as the fit in the low MX region below the � threshold up
to the �0 threshold gives an estimate of the relative missing
strength. Nevertheless, we assume that our modeling of the
pure quasifree interaction is correct and that this additional
strength is due to FSI not described properly by our ERA;
we thus assume that this additional strength will not modify
the extracted cross section for the quasifree production on
these targets. We estimated that at most 1/3 of the percentage
of missing strength tabulated in Table V should be added
to the systematic uncertainties of the cross section values of
Table III.

We checked the systematic uncertainty induced by the
choice of a particular YN interaction potential within the ERA
applied. Again, we see strong dependences on the angle for
either target. As an example, the quasifree 4He(e, e′K+)�
cross section changes by 5% to 6% if the Nijmegen 97f
or the Jülich A hyperon nucleon potential are used within
the above-mentioned effective range ansatz. This change
of the cross section then influences the extraction of the
quasifree 4He(e, e′K+)�0 cross section by +2.7% to −2.6%,
respectively. Values for � and �0 do not show a strong
angle dependence here; values for the A = 2, 3 targets are in
similar range. Introducing the final state interaction for the �−,
however, may change the cross section for � by up to 100%
of the value obtained without using the final state interaction.
However, the fits without the final state interaction are of far
lesser quality than the ones including the final state interaction.
We, therefore, do not consider them in Table III.

V. EFFECTIVE PROTON NUMBER

Following Ref [6], an effective proton number Zeff may be
obtained by comparing the nuclear with the elementary cross
section for � production:(

d2σ

d


)
A

= Zeff

(
d2σ

d


)
H

. (25)

In this ansatz, we have to correct for final state interaction
by dividing the cross sections by the respective enhancement
factors of Table II. If we restrict ourselves to normalizing

TABLE VI. Effective proton numbers derived from the cross
section in Table III and estimates of effective proton numbers, derived
from the calculated absorption taking rms charge radii from literature
and other references, cf. text. The superscript ∗ denotes a harmonic
oscillator function. Values are given for data at 1.7

◦
, averaged over

the azimuth.

Target rms (fm) b (fm) Z Z
exp
eff Zest

eff

2H 2.140 [41] (1.71∗) 1 0.85 ± 0.09 0.89 (0.93∗)
3He 1.976 [42, 43] 1.58 2 1.76 ± 0.16 1.7
4He 1.647 [42, 43] 1.32 2 1.61 ± 0.16 1.6
12C 2.483 [10] 1.64 6 5.15 ± 0.7 4.1

the respective � distribution for the nuclear targets by the
� distribution from hydrogen, i.e., Zeff � σ�(A)/σ�(1H), we
obtain for the near parallel kinematics and full φ coverage,
the effective proton numbers given in Table VI. For helium,
these numbers are in nice agreement with phenomenological
estimates of the respective effective proton numbers that are
derived with a procedure similar to that presented in Ref. [10].
The authors of Ref. [10] determine the effective proton number
in photoproduction of � hyperons on carbon via an eikonal
approximation, where the thickness function T is taken to be
a harmonic oscillator wave function. The integral [Eq. (22) of
Ref. [10]]

Zeff = π

2

∫
dxT (x) exp

[
−σ tot

γN + σ tot
KN

2
T (x)

]
(26)

may then be calculated analytically, using σ tot
γN = 0.2 mb and

σ tot
KN = 12 mb. Using only s waves, Eq. (26) furthermore

reduces to

Zeff = a

[
1 − exp

(
−Z

a

)]
,

(27)

a = πb2

σ
, σ = σ tot

γN + σ tot
KN,

T (x) = 2Z

πb2
exp

(
− x

b2

)
. (28)

For estimating the effective proton number for our targets,
we take the following approach. For 4He, we take the rms
charge radius of 4He from the literature and fit parameter
b = 1.32 fm2. For 3He, we extrapolate the fit parameter b from
the values from 4He. For carbon, the values of Ref. [10] are
used. Note that using Eq. (27), i.e., not taking into account
p-wave contributions for carbon, would yield an effective
proton number of 4.0 instead of 4.1. Table VI summarizes our
estimates and experimentally derived values. For the deuteron,
we also estimated Zeff by using a Hulthén wave function for
the deuteron,3

ψ(r) = u(r)

r
, u(r) = N (e−αr − e−βr ), (29)

2T. S. H. Lee, private communication.
3A. Titov, private communication.
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N =
√

αβ(α + β)

2π (α − β)2
,

(30)
α = 0.2316 fm−1, β = 1.268 fm−1,

for which we obtain ZD
eff � 0.88 by numerically integrating

Eq. (26).
The overall results are in fair agreement with the estimated

values. The value for carbon seems a bit high, but this probably
reflects the rather poor statistics of carbon and the difficulty of
modeling the cross section and FSI in heavier nuclei.

VI. DEEPLY BOUND KAONIC STATES

From kaon physics many indications have been reported
that the K̄N nuclear potential is attractive [44–46]. Predictions
of the depths of such potentials vary, as does the possibility
of producing deeply bound kaonic states in nuclei. Predictions
conclude that such a system should have a drastically con-
tracted core with simple core radius roughly 1/2 of the normal
core size, i.e., without the bound K̄ . It is suggested that a
kaonic nuclear system, e.g., K−ppn would decay into �pn

via the K−pp(n) → �p(n) and a �∗(1405) doorway state.
The decay products should be visible in several reactions [47],
among which also is electroproduction on light nuclei.

Recently, several groups have searched for these states in
light nuclei. Such states, Refs. [47–51], are predicted to imply
potential depths of ∼100 MeV and more while showing small
widths of ∼10–60 MeV. Some experimental evidence was
reported from 4He(stopped K−, p) experiments at Koo Energy
Ken (KEK), the High Energy Research Accelerator Organi-
zation in Tsukuba, Japan [52,53], from in-flight 16O(K−, n)
experiments at the BNL Alternating Gradient Synchrotron
(AGS) [54], as well as from the FINUDA experiment at
DA�NE [55] in pp → �p invariant mass spectroscopy. For
a criticism of the interpretation of these data as bound kaonic
states, see Ref. [56]. Moreover, in a recent publication [57],
a width estimate, obtained by means of a Faddeev calculation
for a K−pp quasibound state, is of the order of 90–110 MeV,
a result at variance with the results of the FINUDA experiment
[55].

Experiment E91-016 may access inclusive distributions of
final states which may be decay channels of the presumed
bound states (cf. Ref. [50]) for A = 2: p + �,n + �; A =
3: p + p + �, d + �; A = 4: � + t, � + 3He. Taking the
values of the presumed states from Ref. [47] and comparing
with Figs. 4 and 7, we find that for A = 2, we are very much at
the edge of the acceptance (MppK− ∼ 2.32 GeV), whereas
for A = 3 (MpppK− ∼ MppnK− ∼ MpnnK− ∼ 3.1 GeV), the
presumed states are well within the acceptance, and for
A = 4, we also should be within the acceptance (MpppnK− ∼
MppppK− ∼ 4.13 GeV). However, while we do expect to
have sensitivity within our acceptance for the A = 3, 4
cases, the MX distributions for all nuclei are well described
by our model of quasifree kaon production from nucle-
ons distributed according to a theoretical spectral function.
Our experiment does not show evidence for deeply bound
kaonic states visible in electroproduction, as was proposed in
Ref. [50].

VII. SUMMARY

This paper presented for the first time results on the
cross section, angular distributions, and nuclear depen-
dence of kaon electroproduction from hydrogen, deuterium,
helium-3, helium-4, and carbon. As a result, we obtain
quasifree distributions for the respective �,�0, and �−
hyperons, which are reconstructed by missing mass tech-
niques. These quasifree angular distributions show a behavior
similar to the distributions obtained on the free proton. For
the extraction of the respective cross sections, the dedicated
simple model that was used gave the best description of
the data over the kinematic range of the experiment. The
extraction of cross sections relied on three decisive steps:
using a model developed for the electroproduction of open
strangeness on the free proton; employing this model for
the description of the quasifree process on nuclei; and using
spectral functions convolved with the elementary model.
Moreover, it is mandatory to include the final state interaction
in the vicinity of the respective thresholds for the production
of �, �0, and �−. Final state interactions are modeled
by an effective range approximation using hyperon nucleon
potentials. For carbon, we clearly see the 12

� B bound state,
which we do not resolve further, but for which we give a cross
section estimate.

Effective proton numbers are extracted by comparing the
nuclear cross section with the cross section on the free
proton. Correcting for the final state interaction, we see the
measured nuclear effects for A = 2, 3, 4 in accordance with
estimates using a simple eikonal approximation. For carbon,
our numbers are higher than the estimated effective proton
numbers, which might be due to the small data set at hand.

The missing mass distributions for helium do not show
any noticeable structures in the vicinity of MX ∼ 3.1 GeV
for 3He or MX ∼ 4.13 GeV for 4He such that no supportive
evidence for deeply bound kaonic states may be drawn from
these distributions. It should be pointed out again that these
measurements are inclusive and that an exclusive measurement
may still have more power in making a statement on these
postulated bound states.

Electroproduction experiments with high intensity beams
on light nuclear targets are a fascinating subject, which will
be studied further at Jefferson Laboratory [58] and the Mainz
Microtron (MAMI-C) [59].
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