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Three-body model of light nuclei with microscopic nonlocal interactions
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A three-body cluster model involving microscopic nonlocal interactions is developed and compared with a fully
microscopic cluster model. The energy-independent nonlocal interactions are obtained from a renormalization of
the energy-dependent kernels of the resonating-group method. Such interactions are derived for the αα and αn

systems. The role and importance of nonlocality are discussed. These interactions are employed in three-body
studies of the αnn, ααn, and 3α descriptions of the 6He, 9Be, and 12C nuclei. A comparison with fully microscopic
calculations provides a measure of the importance of three-cluster exchanges in those states. The differences
between both cluster-model calculations are in general small, except in the densities at short distances.
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I. INTRODUCTION

The microscopic cluster model provides a consistent de-
scription of the spectroscopy and reactions of light nuclei
[1–3]. In this model, the nucleons are grouped into sub-
structures known as clusters. The merit of this microscopic
model is that it starts from two-nucleon potentials and takes
an exact account of antisymmetrization and of good quantum
numbers. Its main limitations are the use of effective forces
and simplified descriptions of the internal structure of the
clusters. In spite of the progresses of ab initio calculations [4],
the microscopic cluster model remains very useful because
it provides tractable wave functions both for bound and
continuum states that can be employed in various reaction
and decay studies. Of course, the cluster approximation makes
it necessary to use effective nucleon-nucleon interactions.

Some nuclei display a three-cluster structure such as 9Be
or the halo nucleus 6He. Other such as 12C clearly display this
structure in some excited states but its presence in the ground
state has raised questions. Nevertheless the microscopic cluster
model is able to reproduce the main properties of the 6He, 9Be,
and 12C nuclei without adjustable parameters except for the
choice of the effective nucleon-nucleon interaction.

The description of three-cluster systems by fully micro-
scopic calculations can however be very heavy and require
large amounts of computer time. Simpler three-cluster models
involving phenomenological local cluster-cluster interactions
are therefore often used to analyze their decays and reactions.

These phenomenological cluster models are however less
well established and sometimes controversial. The 12C case is
a typical example. The microscopic cluster model provides a
satisfactory qualitative description of several states of 12C [5–
7]. Macroscopic 3α models based on phenomenological local
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αα interactions, though physically appealing, fail to reproduce
even qualitatively the properties of the 12C ground state [8–
11]. Any local potential which reproduces the αα phase shifts
yields very poor results, in disagreement with experiment and
with microscopic models.

That the αα potential can not be local for describing
12C is not surprising. The interaction between composite
particles is intrinsically nonlocal because of the exchange
symmetry of identical constituents. Such interactions between
two clusters can be derived microscopically from effective
nucleon-nucleon forces within the resonating-group method
(RGM) [1–3]. A first attempt to use energy-dependent nonlocal
αα RGM kernels has been developed in Refs. [12,13] in a study
of 12C. The energy dependence of the αα nonlocal interaction
raises a difficulty. This energy is well defined in a two-body
system but not in a three-body system. Using some average
energy provides fair results for 12C [14] but not for other
three-cluster systems [15]. Hence the energy dependence must
be eliminated from the RGM equation. The principle of this
elimination is known for a long time [2,16–18]. Recently, we
have shown that this procedure leads to a consistent description
of the 0+ states of 12C case, in semiquantitative agreement with
fully microscopic calculations [19].

The purpose of the present study is to pursue the analysis of
the three-body model with energy-independent RGM forces.
To this end, we extend the model to 9Be (as ααn) and 6He (as
αnn) in order to improve our understanding of the importance
of nonlocality which is based until now on the sole 12C case.
This model is called semimicroscopic hereafter. We consider
several effective nucleon-nucleon forces. We also analyze the
nonlocality of the αα and αn forces and try to derive simpler
approximations.

In Sec. II, we summarize the two-cluster RGM theory
and the derivation of the renormalized RGM potential. In
Sec. III, we discuss the role and importance of nonlocality
and propose an approximation. The semimicroscopic and
microscopic three-cluster models are described in Sec. IV. In
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Sec. V, semimicroscopic and microscopic results are presented
and compared for the 12C, 9Be, and 6He nuclei. Section VI is
devoted to concluding remarks.

II. RENORMALIZED RGM FOR
TWO-CLUSTER SYSTEMS

A. RGM equation

The RGM wave function of the two-cluster (A + B) system
with the relative motion function χ is expressed as

� = AφAφBχ (x) =
∫

χ (r)�(r)d r, (1)

with the basis function

�(r) = AφAφBδ(x − r), (2)

where φA and φB are the cluster internal wave functions and
A is an antisymmetrizer. Here x is the relative coordinate
between the clusters, while r is a parameter or generator
coordinate corresponding to x. The cluster internal wave
functions φA and φB are assumed to be described with
harmonic-oscillator (HO) functions with a common size
parameter.

The RGM equation for χ reads [1–3]

(T + V + εK)χ = εχ, (3)

with

V = VD + V EX. (4)

Here T is the intercluster kinetic energy, VD is a local
term called the direct potential, and the nonlocal potential
V EX comprises the exchange nonlocal kernels for the kinetic
and potential energies (including the Coulomb term). The
energy dependence arises from exchange effects in the overlap
between basis functions. Indeed, the norm kernel can be
written as

N (r, r ′) = 〈�(r)|�(r ′)〉 = δ(r − r ′) − K(r, r ′). (5)

The energy ε is defined with respect to the A+B threshold.
By introducing a renormalized relative motion function

g =
√
Nχ, (6)

Eq. (3) can be converted into an equation involving an energy-
independent potential

(T + V RGM)g = εg. (7)

The nonlocal potential reads

V RGM = N−1/2(T + V )N−1/2 − T = V + W. (8)

Operator N−1/2 is defined over the Pauli allowed space (see
Sec. II B). The additional operator W is the difference between
the renormalized RGM potential V RGM and the bare RGM
potential V of Eq. (4),

W = N−1/2(T + V )N−1/2 − (T + V ). (9)

It involves thus contributions from both the kinetic and
potential energies.

In practice, the RGM equation must be projected on the total
angular momentum of the system. In the following, we do not
show the cluster spins and only display the dependence on the
orbital angular momentum �. In our calculations, however, all
angular momenta and their couplings are taken into account.

B. Pauli forbidden states

For partial wave �, a particular function χf � is called a Pauli
forbidden states (PFS) if it satisfies the equation

N�χf � = 0, (10)

i.e.,

K�χf � = χf �. (11)

By using Eq. (3), this leads to

(T� + V�)χf � = 0. (12)

The eigenvalue problem

K�ψn�m = κn�ψn�m (13)

can be solved analytically. The eigenfunctions are HO func-
tions ψn�m [20]. The PFS are nothing but eigenfunctions of K�

with eigenvalue κn� = 1. Operator N−1/2 in Eq. (9) is defined
on the Pauli allowed space as

N�
−1/2 =

∑
n

′
(1 − κn�)−1/2Pn�, (14)

where Pn� is the projector on the HO subspace corresponding
to n and � and where the prime indicates that the PFS are
excluded from the sum. By using Eqs. (9) and (12), this leads
to

W�χf � = 0. (15)

The PFS are thus trivial solutions of the RGM equation(
T� + V RGM

�

)
χf � = 0. (16)

A solution g� of Eq. (7) is orthogonal to the PFS when ε �= 0.
Two simple cases for the solution of Eq. (13) needed in the

present study are

κn� = (−1/4)2n+� (17)

for α + N , and

κn� = 4(1/2)2n+� − 3δ2n+�,0 (18)

with � even for α + α. Therefore only one PFS, ψ000, exists
for α + N . For α + α, states with � = odd are all PFS. For �

even, Eq. (18) provides three PFS, ψ000, ψ100, and ψ02m.

C. Nonlocal potential W

With Eq. (14), the nonlocal kernel W� can be expressed
as [19]

W�(r, r ′) = rr ′∑′
nn′Wnn′�Rn�(r)Rn′�(r ′), (19)
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where Rn�(r) is the radial part of ψn�m. The coefficients Wnn′�
are given by

Wnn′� =
[

1√
(1−κn�)(1−κn′�)

− 1

]
〈ψn�m|T + V |ψn′�m〉.

(20)

Here V is assumed to be rotation-invariant, which makes its
matrix elements independent of m. Use can be made of a
recursion formula to calculate the HO functions with large n

values.
Equations (19) and (20) indicate that the calculation of the

matrix elements 〈ψn�m|T + V |ψn′�m〉 is needed to obtain the
kernel W�. This calculation is facilitated by the use of the
generating function of the HO wave functions, as shown in
Appendix A.

The nonlocality pattern is very different between V EX
� and

W�, as shown for α + α in Ref. [19]. The potentials for �=0
and 2 show a rapidly oscillating behavior, which is related to
the existence of the PFS. The absolute value of W� is smaller
than that of V EX

� by about one order of magnitude.

III. INTERPRETATION AND APPROXIMATIONS

A. Potential function

A local potential is useful to give an intuitive picture for
the potential between the clusters. Though there are some
sophisticated techniques to make local a nonlocal potential,
we here adopt one of the simplest methods used in Ref. [16]
which introduces a potential function. The function is not a
phase-equivalent potential to the original nonlocal potential,
and our purpose is just to look at its different components. The
potential function is defined by

URGM
� (r) =

∫ 2r

−2r

V RGM
�

(
r + s

2
, r − s

2

)
ds

= VD(r) + UNL
� (r), (21)

which has a form similar to the Wigner transform at zero
momentum. Equations (4) and (8) show that the nonlocality of
the renormalized potential shows up in two terms: One is the
V EX term which originates from the RGM kernels, and the
other is the W term which comes from the elimination of the
energy-dependence. The potential function URGM

� serves as a
measure of the extent to which the antisymmetrization and the
removal of the energy dependence modify VD .

Figure 1 displays the potential function URGM
� for the αα

system. The curves representing URGM
� oscillate around VD

and their amplitude is significant even near the tail. The S,D,
and I phase shifts calculated with the potential functions are
in reasonable agreement with the RGM phase shifts, but the
G phase shift deviates from the latter. The contributions of the
kinetic, nuclear and Coulomb terms to the UNL

� (r) potentials
are displayed in Fig. 2. The major contributor to UNL

� is the
kinetic energy term, and its contribution is reduced by the
nuclear potential energy term.
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FIG. 1. The potential function URGM
� (r) and the direct potential

VD for the αα system (the MN interaction is used).

B. Approximation of W

Though the evaluation of W (r, r ′) or W�(r, r ′) can be
performed in the HO expansion as shown in Sec. II C, it may
be useful to calculate W (r, r ′) approximately but more simply
without using the expansion. We consider this possibility by
expanding N−1/2 = (1−K)−1/2 in powers of K . It is possible
to obtain the following series:

W =
∞∑
i=1

W (i), (22)

where

W (i) =
i∑

j=0

(2j − 1)!! (2i − 2j − 1)!!

2ij !(i − j )!
Ki−j (T + V )Kj . (23)

In particular the first term is given by

W (1) = 1
2 [K(T + V ) + (T + V )K]. (24)

When testing the convergence of expansion (22), we find
that for a given � all W

(i)
� (r, r ′) have a shape similar to each

other and that the ratio W
(i)
� /W

(i−1)
� is about 1/4 for the αα

case. Thus the W potential can fairly well be approximated by
λW (1) with a suitable constant λ. We find that the quadratic
difference between dense samplings of λW

(1)
� and W� displays

a minimum around λ ≈ 1.30 for α + α and λ ≈ 1.05 for α +
N . The approximation is better in the α + N case than in the
α + α case. We will test these approximations by replacing W

with the simpler nonlocal term λW (1) in V RGM in the different
three-body systems.

IV. SEMIMICROSCOPIC AND MICROSCOPIC
THREE-CLUSTER MODELS

The calculations have been performed with various numer-
ical techniques. Most results are checked in two completely
independent calculations.
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FIG. 2. Decomposition of the αα UNL
� (r) potential into the kinetic energy, the nuclear potential and the Coulomb potential contributions

(the MN interaction is used).

A. Semimicroscopic models

We describe two techniques of resolution of a three-body
problem with nonlocal forces. The Hamiltonian of the system
is given by

H = T1 + T2 + T3 − Tc.m. + V12 + V13 + V23, (25)

where Ti is the kinetic energy of cluster i, Tc.m. is the kinetic
energy of the center of mass, and Vij a nucleus-nucleus
interaction which, in the present case may be nonlocal.

In the hyperspherical-harmonics approach, calculations are
performed in configuration space [23,24]. The wave function
with quantum numbers JMπ is expanded as a function of
standard hyperspherical harmonics YJM

γK (�5) depending on
five variables represented as �5, i.e., the angular part of the
Jacobi coordinates and the hyperangle which measures the
ratio of these coordinates,

�JMπ (ρ,�5) = ρ−5/2
∑
γK

χJπ
γK (ρ)YJM

γK (�5). (26)

Index K is the hypermomentum and index γ stands for
different orbital momenta and spins. The functions χJπ

γK of the
hyperradius ρ are solutions of a system of coupled equations.
They are expanded in Lagrange functions [25] as

χJπ
γK (ρ) =

N∑
i=1

cJπ
γKifi(ρ). (27)

With a Lagrange basis, the calculation of matrix elements is
simplified by an approximation based on a consistent Gauss
quadrature. For example, matrix elements of a local function
v(ρ) become

〈fi(ρ)|v(ρ)|fj (ρ)〉 ≈ v(ρi)δij , (28)

where ρi is a mesh point associated with Lagrange function
fi . Thanks to this approximation, the integration over ρ in the
potential matrix elements only requires values of the (local or
nonlocal) potentials at mesh points associated with the basis.
Hence the Coulomb potential does not cause any difficulty.
Energies of the three-body system are eigenvalues of a large
matrix. The corresponding eigenvectors provide analytical
approximations of the wave functions. Strikingly, the use of
a Gauss quadrature does not reduce significantly the accuracy
with respect to a variational calculation using the same
basis, i.e., energies obtained with the exact left-hand side of
Eq. (28) are very close to those obtained with the approximate
right-hand side [23]. The elimination of PFS is explained in
Ref. [24].

To provide a meaningful comparison with the microscopic
model, we redefine the total wave function of the system as

�̃JMπ = φ1φ2φ3�
JMπ (ρ,�5), (29)

where φi is the translation-invariant internal wave function of
cluster i. This new definition allows us to calculate observables
where internal properties contribute, such as rms matter radii,
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or form factors. It is also consistent with the microscopic
definition of these observables.

In the Faddeev method, the calculations are performed in
the momentum representation [12,13]. The nonlocality of the
original two-body interaction has no obstacles, since the T -
matrix used in the Faddeev calculation is nonlocal anyway.
On the other hand, the Coulomb force can be treated only
in an approximate way, by introducing a cut-off radius RC

(say RC = 10 fm) that should be large enough to avoid the
influence of the nuclear interaction. For three-cluster systems,
it is essential to deal appropriately with the possible existence
of PFS between two clusters. This can be achieved by using a
new type of two-body T -matrix, T̃ (ω) or T̃ (ω, ε) [12], which
satisfies some kind of orthogonality conditions

〈χf |[1 + G
(+)
0 (ω) T̃ (ω, ε)] = 0,

(30)
[1 + T̃ (ω, ε) G

(+)
0 (ω)]|χf 〉 = 0.

Here, G(+)
0 (ω) is the free Green function with the energy ω, and

ε shows the energy-dependence of the two-cluster RGM kernel
V + εK in the Pauli allowed space. In the present approach
eliminating the energy dependence by introducing W , the T̃ -
matrix does not have this energy dependence on ε [26]. By
using T̃ (ω) in the Faddeev equations, one can eliminate the
Pauli forbidden components in the relative motion of any pair
of clusters. Care should be taken for a possible existence of
trivial solutions of the Faddeev equation due to the relationship
in Eq. (30).

The elimination of such redundant Faddeev components
can easily be handled by introducing a subsidiary term, which
is spelled out in Refs. [13,27] for the example of the 3α system.

Both methods give results agreeing within a few keV for
the different systems considered here.

B. Microscopic models

In a microscopic description, the Hamiltonian of a A-body
system is given by

H =
A∑

i=1

Ti − Tc.m. +
A∑

i>j=1

Vij , (31)

where Ti is the kinetic energy of nucleon i and Vij an
effective nucleon-nucleon interaction. Here also, two methods
are available to derive three-cluster wave functions.

Let us first describe the microscopic three-cluster model
based on the generator coordinate method [7]. The relative
motions between the three clusters can be described by
using two Jacobi coordinates between the cluster centers of
mass. A variant of this model following the spirit of the
hyperspherical method makes use of the hyper-radius and of
the hypermomentum quantum number [28]. The microscopic
wave functions read

�JMπ =
∑
γK

Aφ1φ2φ3ρ
−5/2χJπ

γK (ρ)YJM
γK (�5), (32)

where ρ and �5 now refer to the relative motion of the centers
of mass of the clusters.

Let R1 and R2 be two generator coordinates corresponding
to the Jacobi coordinates x1, x2. They can be replaced by a

generator coordinate R associated with the hyper-radius and
five hyperangular generator coordinates �5R corresponding
to the hyperangular variables �5 in Eq. (32). Wave function
�JMπ can be expressed as a combination of basis states

�JMπ
γK (R) =

∫
d�5RYJM

γK (�5R) �(R1, R2), (33)

where �(R1, R2) is a linear combination of Slater determi-
nants. The configuration space is thus spanned by a single
generator coordinate R. The calculation of matrix elements
is performed with three-center Slater determinants with 0s

harmonic-oscillator states. Projection on the relative orbital
momenta γ and on the hypermomentum K are then obtained
by a numerical integration over the angles �5R corresponding
to the orientations of the Jacobi generator coordinates and
over the generator hyperangle for fixed values of the generator
hyper-radius. Practical calculations involve seven-dimensional
numerical integrals. The obtained projected matrix elements
calculated for different choices of the generator hyper-radius
R allow a variational study of the system with a rather large
basis involving up to thousand basis functions.

In the correlated-Gaussian expansion method [18,29,30],
the wave function for the state in the microscopic model is
assumed to be obtained in the form

�F =
K∑

i=1

CiAφ1φ2φ3G(Ai, x). (34)

The relative motion between the three clusters is described as
the explicitly correlated Gaussian

G(A, x) = exp

−1

2

2∑
i,j=1

Aij xi · xj

 (35)

containing three variational parameters A11, A12(=A21), A22

which are the elements of the 2 × 2 matrix A. Here x stands
for appropriate Jacobi coordinates x1, x2. The overlap and
Hamiltonian matrix elements are evaluated with the aid of an
integral transformation which relates the correlated Gaussian
to a product of single-particle Gaussian wave packets with
equal width parameter. The latter representation makes it
possible to calculate the matrix elements analytically (see
Ref. [31] for detail). The trial wave function �F contains
3K nonlinear parameters in matrices Ai as well as K linear
parameters Ci . To determine Ai the optimization algorithm
of the stochastic variational method [29,30] is efficiently used.
The basis dimension of aboutK = 50 is good enough to obtain
converged solutions for both the 0+

1 and 0+
2 states of 12C, as

shown by Fig. 1 of Ref. [31].

V. RESULTS

A. Conditions of the calculations

We analyze three systems where a three-cluster structure
is well established, i.e., 12C, 9Be, and 6He. In each case, we
perform a comparison of microscopic and semimicroscopic
calculations with two effective forces: the Minnesota inter-
action (MN) [32] and the Volkov interaction V2 [33]. The
Coulomb interaction is always included.
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standard potentials (a) and the dotted lines with u = 0.9122 and
M = 0.5820 (thin curves: MN, thick curves: V2). The data are taken
from Ref. [34].

For the microscopic description of 12C, we have used
the hyperspherical-harmonics method [28], and the stochastic
variational method in a Gaussian basis [30]. For 9Be and 6He,
only the hyperspherical-harmonics method has been used. The
semimicroscopic results have been obtained, either with the
Lagrange basis [15], or within the Faddeev approach [12].
When two methods are available, all displayed digits agree
within both approaches.

For the physical constants, we use h̄2/mN = 41.472 MeV
fm2 and the harmonic-oscillator parameter for the α cluster
b = 1.36 fm (ν = 1/2b2 = 0.270 fm−2). The αα interaction
is fitted on the phase shifts. We use u = 0.94687 for MN and
M = 0.605 for V2 as standard values [14].

For the αn potential used in 6He and 9Be we adopt the MN
interaction given in Ref. [15] (u = 0.9474), and the V2 force
with the previous M value. A zero-range spin-orbit interaction
is introduced, and is adjusted on the experimental p3/2 −
p1/2 αn phase shifts. This gives S0 = 37 MeV fm5 for MN
and S0 = 49 MeV fm5 for V2. The phase shifts are shown in
Figs. 3 and 4 for αα and αn, respectively. With the standard
interaction, the agreement with experiment is quite good, as
expected. As these interactions do not precisely reproduce
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FIG. 4. αn phase shifts. The solid lines are obtained with the
standard potentials (a) and the dotted lines with u = 1.0045 and
M = 0.6573 (thin curves: MN, thick curves: V2). The data are taken
from Ref. [35].

the three-body binding energies, the interaction parameters
will be slightly readjusted in the following. Typical values are
illustrated in Figs. 3 and 4 as dotted lines. Even if the general
trend is still valid, differences are significant, especially with
the V2 force.

In the following we present rms radii and densities as tests
of the wave functions. In all cases, the α radius and form factor
are taken into account.

B. 12C

We have already presented some results about 12C in
Ref. [19]. Here we make a more detailed comparison involving
several potentials. The results are displayed in Table I.

First we discuss interaction (a) which reproduces the
αα phase shifts. While the MN interaction overbinds 12C,
the Volkov interaction V2 underbinds it. This confirms that
a simultaneous description of the 2α and 3α systems is
not possible with a high accuracy. The gaps between the
microscopic and semimicroscopic models are rather similar
(about 2.2 MeV) in spite of those differences. The 2+ excitation
energy is underestimated in all cluster calculations. This is
a well-known drawback of the three-α model, where the
spin-orbit force is absent.

In many cluster-model studies, the interaction is adjusted
on the ground-state energy. This is necessary to provide a
meaningful comparison of spectroscopic properties between
different models. For example, the rms radius is known to be
sensitive to the binding energy. We have used two different
procedures: either we fit the interaction on the microscopic
model (b) or on the semimicroscopic model (c). When the
ground-state energies are fitted in case (b), the errors due to the

TABLE I. Comparison of 12C energies (in MeV) from the 3α

threshold and rms matter radii (in fm) with different potentials
in the microscopic and semimicroscopic 3α models. Experimental
energies are −7.27, 0.38, and −2.83 MeV for the 0+

1 , 0+
2 , and 2+

states, respectively. In case (a), the forces reproduce αα scattering
while in cases (b)/(c) they reproduce the experimental 0+

1 energy
within the microscopic/semimicroscopic models.

J π Potential Microscopic Semimicroscopic

E
√

〈r2〉 E
√

〈r2〉
(a)

0+
1 MN (u = 0.94687) −11.61 2.18 −9.42 2.17

V2 (M = 0.605) −4.53 2.50 −2.33 2.68
0+

2 MN (u = 0.94687) 0.71 0.52
V2 (M = 0.605) 1.64 1.23

2+ MN (u = 0.94687) −9.22 2.16 −7.12 2.15
V2 (M = 0.605) −1.88 2.46 0.38 2.65

(b)
0+

1 MN (u = 0.9122) −7.27 2.25 −4.90 2.27
V2 (M = 0.5929) −7.27 2.41 −4.73 2.52

(c)
0+

1 MN (u = 0.93105) −9.57 2.21 −7.27 2.21
V2 (M = 0.5820) −9.99 2.35 −7.27 2.42
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FIG. 5. Charge densities of 12C with the MN and V2 potentials
in the microscopic (solid lines) and semimicroscopic (dashed lines)
models. The dotted line corresponds to the MN calculation (a). The
inset represents the densities in a logarithmic scale.

semimicroscopic approximation become very similar. When
the interaction is fitted on the ground-state energy, both models
provide quite similar radii.

In Fig. 5, we present the monopole charge density ρ(r)
(denoted as ρ0(r) in Appendix B) for the 12C ground state. In
each case, the interaction reproduces the experimental binding
energy [case (b) for the microscopic model, and case (c)
for the semimicroscopic approximation]. The densities are
normalized in such a way that∫ ∞

0
ρ(r)r2dr = Z/

√
4π, (36)

with Z = 6. The microscopic densities are determined as ex-
plained in Ref. [36]. For the semimicroscopic approximation,
we first determine the form factor, which is then converted to
the density through a Fourier transform (some technical details
are given in Appendix B).

Figure 5 confirms that the rms radii are larger with the
V2 force than with the MN force. At small distances, the
densities are lower with V2, and are therefore enhanced at
large r values. Beyond 2 fm, the semimicroscopic model is
a fair approximation. However, the short-distance behavior
is different: whereas the microscopic approach provides a
maximum near 1 fm and then decreases, the semimicroscopic
density steadily increases when r tends to zero. This difference
is probably due to three-body antisymmetrization effects, not
included in the semimicroscopic approximation. To illustrate
the sensitivity with respect to the binding energy, we also
present the MN density in case (a), i.e., with an energy of
−11.61 MeV (dotted line). The general trend is not affected,
but the long-range part decreases more rapidly, which leads to
an increase at short distances.

C. 9Be

The results for 9Be (3/2− ground state and 5/2− first
excited state) are displayed in Table II. We first consider in
case (a) interactions agreeing with the phase shifts. With the

TABLE II. Comparison of 9Be energies (in MeV) from the ααn

threshold and rms matter radii (in fm). Experimental energies are
−1.57 and +0.85 MeV for the 3/2−, and 5/2− states, respectively.
See caption to Table I.

J π Potential Microscopic Semimicroscopic

E
√

〈r2〉 E
√

〈r2〉
(a)

3/2− MN (u = 0.9474) −2.61 2.36 −2.16 2.41
V2 (M = 0.605) −1.36 2.60 −1.12 2.68

5/2− MN (u = 0.9474) −0.09 2.39 0.2
V2 (M = 0.605) ≈1 ≈1

(b)
3/2− MN (u = 0.9250) −1.57 2.43 −1.18 2.49

V2 (M = 0.6024) −1.57 2.58 −1.32 2.66

(c)
3/2− MN (u = 0.9340) −1.97 2.40 −1.57 2.46

V2 (M = 0.5997) −1.81 2.56 −1.57 2.63

MN interaction, the 9Be ground state is overbound by about
1 MeV in the microscopic model. With V2 it is underbound by
0.2 MeV. As in 12C, the semimicroscopic model provides
smaller binding energies than the microscopic approach
(0.45 MeV with MN and 0.24 MeV with V2). This means that
three-body effects, missing in the semimicroscopic approxi-
mation, are expected to be attractive. With the MN potential,
both models underbind the 5/2− resonance, but the excitation
energy is in all cases in fair agreement with experiment
(2.42 MeV). For the 5/2− resonance, the energies with V2
are positive, and should be considered as approximate values.

When the interactions are fitted to the experimental ground-
state energies, the radii are close to each other. In Fig. 6, we
present the neutron density ρ(r) for the 9Be ground state.
In each case, the force parameters are taken to reproduce
the experimental binding energy. Contrarily to 12C, the
microscopic calculation does not provide a hole in the density.
Below 3 fm, the semimicroscopic model gives a rather uniform
density, while the microscopic density is more peaked near the
origin.
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FIG. 6. Neutron densities of 9Be with the MN and V2 potentials
in the microscopic (solid lines) and semimicroscopic (dashed lines)
models. The inset represents the densities in a logarithmic scale.

054003-7



M. THEETEN et al. PHYSICAL REVIEW C 76, 054003 (2007)

TABLE III. Comparison of 6He energies (in MeV) from the
α + 2n threshold and rms matter radii (in fm) obtained with different
potentials in the microscopic and semimicroscopic αnn models. The
experimental energy is −0.974 MeV See caption to Table I.

J π Potential Microscopic Semimicroscopic

E
√

〈r2〉 E
√

〈r2〉
(a)

0+ MN (u = 0.9474) −0.07 2.57 −0.08 2.93
V2 (M = 0.605) −2.43 2.46 −1.96 2.56

(b)
0+ MN (u = 1.0045) −0.98 2.38 −0.95 2.46

V2 (M = 0.6573) −0.98 2.90 −0.65 4.11

(c)
0+ MN (u = 1.0055) −1.02 2.37 −0.97 2.46

V2 (M = 0.6400) −1.43 2.74 −0.98 3.23

D. 6He
6He is the lightest nucleus considered here. Accordingly,

three-body exchanges, missing in the semimicroscopic ap-
proximation, should play a minor role, and differences between
both models should be reduced. This is confirmed by the results
presented in Table III. Although 6He is hardly bound with MN
and overbound by about 1.5 MeV with V2, the differences
between both models are small. In particular, the MN force
provides virtually identical binding energies. The different
qualitative properties of both forces appear very clearly for
this weakly bound nucleus.

Let us turn to case (b) where both forces provide the
same binding energy. The semimicroscopic model is again
very accurate with MN and underestimates the energy by
about 0.33 MeV with V2. Hence the accuracy of the semi-
microscopic model depends more on the type of force than on
the binding energy. The semimicroscopic approach provides
an unrealistically large rms radius for 6He.

In Fig. 7, we present the neutron density ρ(r) for the 6He
ground state. In each case, the force parameters are taken
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FIG. 7. Neutron densities of 6He with the MN and V2 potentials
in the microscopic (solid lines) and semimicroscopic (dashed lines)
models. The inset represents the densities in a logarithmic scale.

TABLE IV. Comparison of the approximation λW (1) with exact
calculations involving W for the Minnesota interaction.

Nucleus J π Exact W λW (1)

E
√

〈r2〉 E
√

〈r2〉
12C 0+

1 −9.42 2.17 −9.83 2.19
9Be 3/2− −2.16 2.41 −2.60 2.37
6He 0+ −0.95 2.46 −1.22 2.38

to reproduce the experimental binding energy. For the MN
interaction, both approaches are very close to each other, in
agreement with the rms radii. However, the behavior of the V2
result is somewhat different. The V2 force requires a rather
strong readjustment of the admixture parameter to reproduce
the ground-state energy. With the large M values of cases (b)
and (c), the p-wave phase shifts are too repulsive (see Fig. 4).
This is consistent with the unrealistic rms radius of Table III.

E. Validity of approximation λW (1)

The approximation proposed in Sec. III B is tested for the
three systems in Table IV. One observes that its accuracy is
quite good for αα, as shown by the 12C results. It is much better
than the intrinsic accuracy of the semimicroscopic model.

The approximation seems to be less valid for αn, since
the error is larger for the other systems. In the 9Be case,
this error accidentally cancels the error due to the use of
the semimicroscopic model. This is not true for 6He, but a
slight readjustment of the amplitude λ in the αN interaction
would allow us to compensate the difference. Anyway, the
approximation seems to be accurate enough for qualitative
considerations.

VI. CONCLUSION

We analyze a new semimicroscopic model, with two-body
interactions based on RGM kernels. The renormalized RGM
potential provides the same phase shifts as the full RGM
and is nonlocal, but energy independent. This allows us to
avoid the problem of defining two-body energies in many-body
calculations.

We have used this new interaction in a three-body model,
and compared it with a fully microscopic approach. This is
expected to evaluate the importance of antisymmetrization and
three-body effects. The model has been applied to 6He, 9Be,
and 12C, and the importance of the nucleon-nucleon interaction
has been tested by using two forces (MN and V2). The mixture
parameters involved in these forces have been determined on
the αα and αn phase shifts.

The use of effective interactions is necessary in cluster
theories. Introducing realistic forces would require to go
beyond the cluster approximation, i.e., to use ab initio models
[4]. These models are well adapted to the spectroscopy of light
nuclei (currently up to about A ≈ 12). However their extension
to resonances and continuum states is still very difficult. In
particular the relative simplicity of the cluster model will
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remain useful in reaction models, or for the description of
three-body continuum states.

Our work shows that neither the microscopic model nor
its approximation are able to precisely reproduce two-cluster
and three-cluster properties simultaneously. In general the
differences between both approaches are small, and decrease
with the nucleon number (2.5 MeV for 12C, 0.5 MeV for 9Be
and 6He). For 12C, the renormalized RGM provides a good
description of low-lying states. This represents a significant
improvement with respect to previous nonmicroscopic works,
where ambiguities appear [15]. The differences between the
fully microscopic and semimicroscopic approaches depend on
the NN force; they are smaller for MN than for V2. The V2
force presents some peculiarities. It is known to overestimate
clustering effects. The semimicroscopic approach provides an
unrealistically large rms radius for 6He. This confirms that the
V2 force is probably not well adapted to light systems.

With the densities, the differences between both models
are more apparent than with the rms matter radii. In general,
differences occur at short distances or, in other words, at large
momenta in the form factors. In the simplest nucleus 6He with
the MN interaction, the densities derived from the microscopic
model and from its approximation are very similar to each
other.

In all cases the binding energies are slightly underestimated
by the semimicroscopic approach. This means that three-body
effects, missing in this approximation, should be attractive.
The derivation of reliable three-cluster forces is a challenge
for future works.
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APPENDIX A: MATRIX ELEMENTS OF NONLOCAL
KERNELS IN HARMONIC-OSCILLATOR BASIS

When the NN potential has a Gaussian radial form, the
nonlocal integral kernels O(r, r ′) which appear in α + N and
α + α have the following form:

O = e− 1
2 x̃Ax, x̃Qxe− 1

2 x̃Ax, f (|̃ωx|)e− 1
2 x̃Ax . (A1)

Here we use the matrix notations to simplify expressions: x
is now a 2 × 1 matrix whose elements are r and r ′ (note that
x and A used in Sec. IV have a different meaning from that
defined here), x̃ its transpose, A and Q are 2 × 2 symmetric
matrices, and ω is a 2 × 1 matrix. The function f (s) is either
1/s or erf(µs)/s as it comes from the Coulomb potential.

To obtain the matrix element

〈ψn�m|O|ψn′�′m′ 〉, (A2)

we make use of the generating function of the harmonic-
oscillator functions [30,37]

A(k, r) =
( ν

π

)3/4
exp

(
−1

2
k2 +

√
2νk · r − 1

2
νr2

)
=

∑
n�m

ψ∗
n�m(r)Pn�m(k), (A3)

where ν is the oscillator constant and

Pn�m(k) =
√

Bn�

(2n + �)!
k2n+�Y�m(�k) (A4)

is the Bargmann transform of the HO wave function in a
spherical basis with

Bn� = 4π (2n + �)!

2nn!(2n + 2� + 1)!!
. (A5)

Let us consider the quantity

I =
∫ ∫

A(k, r)O(r, r ′)A(k′, r ′)d r d r ′. (A6)

Inserting the expansion (A3) in the above equation we obtain

I =
∑
n�m

∑
n′�′m′

〈ψn�m|O|ψn′�′m′ 〉Pn�m(k)P ∗
n′�′m′ (k′). (A7)

Thus the calculation of the matrix element proceeds as
follows. First we calculate I and then expand it in power
series of k and k′. By comparing the expansion with
Eq. (A7), we get the needed matrix element (A2).

As an illustration we carry out two cases. The first is for
O = e− 1

2 x̃Ax . Then we obtain

I =
(

4πν

det (A + C)

)3/2

epk2+p′k′2+qk·k′
, (A8)

where C is a 2 × 2 matrix with Cij = νδi,j , and

p = − 1
2 + ν{(A + C)−1}11,

p′ = − 1
2 + ν{(A + C)−1}22, (A9)

q = 2ν{(A + C)−1}12.

It is easy to obtain the following result:

〈ψn�m|e− 1
2 x̃Ax |ψn′�′m′ 〉

= δ�,�′δm,m′

(
4πν

det(A + C)

)3/2
√

(2n + �)!(2n′ + �)!

Bn�Bn′�

×
∑

k

Bk�

pn−kp′n′−kq2k+�

(n − k)!(n′ − k)!(2k + �)
. (A10)

The sum extends to k = 0, 1, . . . , min(n, n′).
Next we consider the Coulomb potential with f (s) = 1/s.

The corresponding integral is obtained in a form

I =
(

4πν

det(A + C)

)3/2
√

2γ

π
epk2+p′k′2+qk·k′

×M(
√

γ ν|ρ1k + ρ2k′|), (A11)
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where

ρ1 = (ω̃(A + C)−1)1, ρ2 = (ω̃(A + C)−1)2,
(A12)

γ = (ρ1ω1 + ρ2ω2)−1 = (ω̃(A + C)−1ω)−1,

and

M(z) =
∫ 1

0
e−z2t2

dt =
√

π

2

1

z
erfz. (A13)

The required matrix element is given as follows:

〈ψn�m| 1

|ω̃x|e− 1
2 x̃Ax |ψn′�′m′ 〉

= δ�,�′δm,m′

(
4πν

det(A + C)

)3/2
√

2γ

π

√
(2n + �)!(2n′ + �)!

Bn�Bn′�

×
∑

k

Bk�

1

(n − k)!(n′ − k)!(2k + �)!

×
∫ 1

0
p1

n−kp2
n′−kp12

2k+�dt, (A14)

where

p1 = p − γ νρ2
1 t2, p2 = p′ − γ νρ2

2 t2,
(A15)

p12 = q − 2γ νρ1ρ2t
2.

The matrix element of the folded Coulomb potential
〈ψn�m| 1

|ω̃x|erf (µ|ω̃x|)e− 1
2 x̃Ax |ψn′�′m′ 〉 can simply be obtained

by replacing γ in Eqs. (A14) and (A15) with 2µ2γ /(2µ2 + γ ).

APPENDIX B: FORM FACTORS AND DENSITIES

In a microscopic model, the charge density and form factor
operators are defined as

ρ̂(r) =
A∑
i

(
1

2
− tiz

)
δ(r i − Rc.m. − r),

(B1)

F̂ (q) = 1

Z

A∑
i

(
1

2
− tiz

)
exp[iq · (r i − Rc.m.)],

where tiz, r i and Rc.m. are the isospin z-component and
coordinate of nucleon i, and the c.m. coordinate of the system,
respectively. The neutron density and form factor operators are
obtained in a similar way. The matter density is just the sum
of the proton and neutron densities. Here and in the following,
we use the notation Ô for an operator, and O for its matrix
elements. The charge density and the form factor are related
to each other through

ρ(r) = Z

(2π )3

∫
exp(iq · r)F (q)dq. (B2)

They are determined as explained in Ref. [36]. Owing to the
Gaussian orbitals used in the Generator Coordinate Method,
the densities can be easily computed, and the Fourier transform
(B2) is not necessary.

A3

A2

A1

r

R

FIG. 8. Coordinate system in the three-cluster model.

The density and the form factor are usually expanded in
multipoles as

ρ(r) =
∑

λ

ρλ(r)Yλ0(�r ),

(B3)
F (q) =

∑
λ

Fλ(q)Yλ0(�q),

where ρλ(r) and Fλ(r) are the multipolar densities and
form factors, respectively. For zero spin nuclei, such as 6He
or 12C, the density is spherically symmetric (λ = 0 only).
The relationship between ρλ(r) and Fλ(r) is obtained with
Eq. (B2) as

ρλ(r) = Z

2π2
iλ

∫
jλ(qr)Fλ(q)q2dq. (B4)

In a nonmicroscopic cluster model, the form factor operator
is defined as

F̂ (q) = 1

Z

N∑
j=1

ZjFj (q) exp[iq · (rj − Rc.m.)], (B5)

where N is the number of clusters, and Zj and Fj (q) are the
charge and form factor of cluster j . Equation (B2) is still valid
to determine the associated density. In order to be consistent
with the microscopic approach, the internal form factors are
defined in the HO shell model. For s-shell nuclei, the form
factor is given by

Fj (q) = exp

[
−q2b2 (Aj − 1)

4Aj

]
, (B6)

where Aj is the nucleon number of cluster j .
In the three-cluster model the form factor operator (B3) is

written as

F̂ (q) = 1

Z

[
Z1F1(q) exp

(
iq ·

(
A3

A
R + A2

A12
r
))

+Z2F2(q) exp

(
iq ·

(
A3

A
R − A1

A12
r
))

+Z3F3(q) exp

(
−i

A12

A
q · R

)]
, (B7)

where we have used the coordinate system of Fig. 8 (A12 =
A1 + A2). Each term is expanded in multipoles with the help
of

exp(iq · r)

= 4π
∑
λµ

iλjλ(qr)Y �
λµ(�q)Yλµ(�r ),
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jλ(|αR + βr|)Yλµ(�αR+βr )

=
∑
�1,�2

i�1+�2−λ[4π (2�1 + 1)(2�2 + 1)/(2λ + 1)]1/2

×〈�1�200|λ0〉j�1 (αR)j�2 (βr)
[
Y�1 (�R) ⊗ Y�2 (�r )

]
λµ

.

(B8)

This provides us with the multipolar form factor. In
particular, the monopole term reads

Z√
4π

F̂0(q) = Z3F3(q)j0

(
A12

A
qR

)
+ 4π

∑
L

(2L + 1)1/2

× [YL(�R) ⊗ YL(�r )]00 jL

(
A3

A
qR

)

×
[
Z1F1(q)jL

(
A2

A12
qr

)
+ (−1)LZ2F2(q)jL

(
A1

A12
qr

)]
.

(B9)

Finally, we have to determine the matrix elements of this
operator between basis functions (26), (27). First, coordinates
R and r are expressed as a function of ρ and α. The integration
over (�R,�r ) is performed analytically; for the hyperangle α,
we use a Fourier quadrature. Owing to the use of Lagrange
functions combined with the Gauss approximation, the inte-
gration over the hyper-radius reduces to a simple evaluation of
Bessel functions at the mesh points. The multipolar densities
are determined from (B4) through a numerical integration
over momentum q. In practice, values up to q ∼ 10 fm−1

are involved to get a good precision on the densities at short
distances. The summation over L in (B9) is carried out up to
L ∼ 6–8.
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