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Dependence of nuclear binding on hadronic mass variation
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We examine how the binding of light (A� 8) nuclei depends on possible variations of hadronic masses,
including meson, nucleon, and nucleon-resonance masses. Small variations in hadronic masses may have occurred
over time; the present results can help evaluate the consequences for big bang nucleosynthesis. Larger variations
may be relevant to current attempts to extrapolate properties of nucleon-nucleon interactions from lattice QCD
calculations. Results are presented as derivatives of the energy with respect to the different masses so they can
be combined with different predictions of the hadronic mass-dependence on the underlying current-quark mass
mq . As an example, we employ a particular set of relations obtained from a study of hadron masses and sigma
terms based on Dyson-Schwinger equations and a Poincaré-covariant Faddeev equation for confined quarks and
diquarks. We find that nuclear binding decreases moderately rapidly as the quark mass increases, with the deuteron
becoming unbound when the pion mass is increased by ∼60% (corresponding to an increase in Xq = mq/�QCD of
2.5). In the other direction, the dineutron becomes bound if the pion mass is decreased by ∼15% (corresponding
to a reduction of Xq by ∼30%). If we interpret the disagreement between big bang nucleosynthesis calculations
and measurements to be the result of variation in Xq , we obtain an estimate δXq/Xq = K · (0.013 ± 0.002)
where K ∼ 1 (the expected accuracy in K is about a factor of 2). The result is dominated by 7Li data.
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I. INTRODUCTION

There are several reasons to search for a variation of the
fundamental “constants” of nature in space and time. First,
the Universe is evolving; several phase transitions happened
in the early Universe accompanied by dramatic changes in
vacuum energy, fundamental masses, fundamental interac-
tions (electromagnetic, weak, and strong) and properties of
elementary particles (e.g., confinement of quarks). At later
stages the equation of state of the Universe continued to
evolve, from radiation domination (pressure p = ε/3 where
ε is the energy density), to cold-matter domination (p � ε),
and “recently”, about five billion years ago, to dark-energy
domination (p ≈ −ε). In view of these dramatic changes it
seems natural to check if there is any evolution in the values
of the fundamental constants during this process.

A second reason is that spatial variation can explain a
fine-tuning of the fundamental constants which allows humans
(and any life) to appear. Indeed, it is well-known that if the
values of some fundamental constants (e.g., related to the
strong interaction) would differ by even 1% we could not
appear. If we assume that the fundamental constants vary in
space, this problem of fine-tuning may be resolved in a most
natural way: we appeared in the area of the Universe where
the values of the fundamental constants are consistent with our
existence.

A third reason comes from theories unifying gravity and
other interactions. Some theories suggest the possibility of
spatial and temporal variation of physical “constants” in the
Universe (see, e.g., [1–8]). Moreover, there exists a mechanism
for making all coupling constants and masses of elementary
particles both space- and time-dependent, and influenced by
local circumstances. The variation of coupling constants can
be nonmonotonic (e.g., damped oscillations).

We can only measure the variation of dimensionless param-
eters which do not depend on the units we use. In the Standard
Model the two most important dimensionless parameters
are the fine structure constant α = e2/h̄c and the ratio of
the electroweak unification scale (determined by the Higgs
vacuum expectation value) to the quantum chromodynamics
(QCD) scale �QCD [defined as the position of the Landau
pole in the logarithm for the running strong coupling constant,
αs(r) ∼ const/ ln (�QCDr/h̄c)]. The variation of the Higgs
vacuum expectation value (VEV) leads to the variation of the
electron mass me and quark mass mq which are proportional to
the Higgs VEV. The present work considers effects produced
by the variation of Xq = mq/�QCD where mq = (mu + md )/2
is the average current-quark mass.

Up to now a majority of publications about temporal and
spatial variation of the fundamental constants have considered
effects of variation of α. However, the hypothetical unification
of all interactions implies that the variation of the strong
interaction parameter Xq = mq/�QCD may be larger than the
variation of the electromagnetic α. For example, the grand
unification theories (GUTs) discussed in Ref. [1] predict

δXq

Xq

∼ 35
δα

α
. (1)

The coefficient here is model-dependent but large values are
generic for grand unification models in which variations come
from high energy scales; they appear because the running
strong-coupling constant and Higgs constants (related to mass)
run faster than α. Indeed, the electroweak (i = 1,2) and
strong (i = 3) inverse coupling constants have the following
dependence on the scale ν and normalization point ν0:

α−1
i (ν) = α−1

i (ν0) + bi ln(ν/ν0). (2)
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In the Standard Model, 2πbi=1,2,3 = 41/10,−19/6,−7; the
electromagnetic α−1 = (5/3)α−1

1 + α−1
2 and the strong αs =

α3. In GUTs all coupling constants are equal at the unification
scale, αi(ν0) ≡ αGUT. We may consider two possibilities: if we
assume that only αGUT varies, then Eq. (2) gives us the same
shifts for all inverse couplings:

δα−1
1 = δα−1

2 = δα−1
3 = δα−1

GUT. (3)

We see that the variation of the strong interaction con-
stant α3(ν) at low energy ν is much larger than the vari-
ation of the electromagnetic constant α, since δα3/α3 =
(α3/α1,2)δα1,2/α1,2 and α3 � α1,2.

The second possibility is the variation of the GUT scale
[ν/ν0 in Eq. (2)]. This gives

δα−1
1

/
b1 = δα−1

2

/
b2 = δα−1

3

/
b3. (4)

Note that in this case the variations have different signs since
b1 and b2,3 have different signs. However, we expect an
even larger enhancement of the variation of α3 (δα3/α3 =
(b3α3/b1,2α1,2)δα1,2/α1,2).

The variation of m/�QCD can be estimated from the
definition of �QCD. The running of αs near the electroweak
scale is given by

αs(ν)−1 ≈ bs ln(ν/�QCD). (5)

Let us take ν = mz where mz is the Z-boson mass. The
variation of Eq. (5) and relations above give

δ(mz/�QCD)

(mz/�QCD)
= − 1

bsαs(mz)

δαs(mz)

αs(mz)
∼ C

α(mz)

δα(mz)

α(mz)
. (6)

The value of the constant C here depends on the model used.
However, the enhancement 1/α ∼ 100 should make the factor
C/α large. Note that mz (as well as me,q) is proportional to the
Higgs VEV.

If this estimate is correct, the variation in me,q/�QCD may
be easier to detect than the variation in α. The cosmological
variation of mq/�QCD can be extracted from the big bang
nucleosynthesis (BBN), quasar absorption spectra and Oklo
natural nuclear reactor data [9]. For example, the factor of three
disagreement between the calculations and measurements of
the BBN abundance of 7Li may, in principle, be explained by
the variation of mq/�QCD at the level of ∼10−3–10−2 [10]
(see also recent work [11–13]). The claim of the variation
of the fundamental constants based on the Oklo data in Ref.
[14] is not confirmed by recent studies [15] which give a
stringent limit on the possible variation of the resonance in
150Sm during the last two billion years. The search for the
variation of me/�QCD using the quasar absorption spectra gave
a nonzero result in Ref. [16] but zero results in Refs. [17,18].
The present time variation of me,q/�QCD can be extracted
from comparison of different atomic [19] and nuclear [20,21]
clocks. The review of the recent results on the variation of
α,me/�QCD and mq/�QCD can be found in Ref. [22].

As we mentioned above, one can measure the variation of
the dimensionless parameter Xq = mq/�QCD. Note that mq ≈
4 MeV � �QCD ≈ 220 MeV. As a result, nuclear parameters
(nucleon mass, reaction cross sections, etc.) are determined
mainly by �QCD. Therefore, in all calculations it is convenient
to assume that �QCD is constant and calculate the dependence

on the small parameter mq . In other words, we measure all
masses in units of �QCD and will simply restore �QCD in the
final results. For example, the relation between the variation
of the proton mass and quark mass δmp/mp = 0.064δmq/mq

should be understood as δXp/Xp = 0.064δXq/Xq where
Xp = mp/�QCD and Xq = mq/�QCD. This approach was
formulated in Ref. [9].

Predictions for the relations between the variations of
quark and hadron masses may come from a variety of
approaches, such as chiral perturbation theory [23–26] or
Dyson-Schwinger equations (DSE) [27,28]. Nuclear binding
energies and spectra would vary as a consequence of the hadron
mass variation, affecting a number of physical processes, such
as BBN and the Oklo phenomenon. Large enough changes
might alter the stability of some nuclei, e.g., unbind the
deuteron, bind the dineutron, or even make A = 5, 8 nuclei
particle-stable [29]. In this work we estimate the changes in
binding for A = 2–8 nuclei that result from small changes
in hadronic masses. We also evaluate the effect of much
larger changes on the two-nucleon systems, which may be
relevant to present attempts to extrapolate results from lattice
QCD calculations [30]. We first consider how changes in
meson, nucleon, and nucleon-resonance masses would alter
some representative nucleon-nucleon (NN ) Hamiltonians. We
then solve for the energy of the two-body systems exactly
and calculate variational Monte Carlo (VMC) estimates for
the larger nuclei with these forces. We report our results as
derivatives of the energies with respect to the different hadron
mass changes, so that the results can be utilized with different
predictions of the coordinated changes between quark and
hadron masses. Finally, we utilize the DSE predictions for
hadron mass-dependence on the quark mass as an example to
explore the effects on nuclear spectra and BBN.

II. NUCLEAR HAMILTONIAN

We examine several Hamiltonians of the form

H =
∑

i

Ki +
∑
i<j

vij +
∑

i<j<k

Vijk. (7)

Here Ki is a nonrelativistic kinetic energy operator, vij is a
two-nucleon potential, and Vijk is a possible three-nucleon
potential. We consider three different Argonne models for vij :
Argonne v14 (AV14) and Argonne v28 (AV28) from 1984 [31],
and Argonne v18 (AV18) from 1995 [32]. In conjunction with
AV18, we will use the Urbana model IX (UIX) Vijk from
1995 [33].

The AV14 and AV18 models are conventional NN poten-
tials, while the AV28 model has additional explicit �(1232)
degrees of freedom. The AV14 and AV28 were constructed
together and fit to the same np phase-shift solution WI81
of Arndt and Roper [34] so they are phase equivalent. The
intention was to use them in parallel many-body calculations
to study the effect of including explicit �’s in the nuclear
Hamiltonian. In practice, AV28 has proven difficult to use,
so beyond the two-nucleon system, only some triton [35] and
nuclear matter [36] calculations have been reported. However,
AV14 has been widely used in a variety of few-body [37,38]
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and dense nucleon matter [39] calculations. The AV18 is an
updated version of AV14 containing charge-independence-
breaking (CIB) terms and a complete electromagnetic inter-
action. AV18 was fit directly to 4301 pp and np data in
the 1993 Nijmegen partial-wave analysis [40], and AV18 and
AV18+UIX have become standard Hamiltonians for ab initio
calculations of light nuclei [41] and dense matter [42].

All three of the Argonne potentials contain electromag-
netic (EM) interaction, long-range one-pion-exchange (OPE),
intermediate-range attraction, and short-range repulsion, writ-
ten as a sum of operator components:

vij = vγ (rij ) +
∑

p

[
vp

π (rij ) + v
p

I (rij ) + v
p

S (rij )
]
O

p

ij . (8)

The number of operators O
p

ij is 14, 28, or 18, as indicated by
the AVxx designation. The different operators are discussed in
detail below; here we summarize the differences between the
models. The AV14 and AV28 potentials both use an average
nucleon mass, while AV18 keeps separate proton and neutron
masses, which introduces a small charge-symmetry-breaking
(CSB) term into Ki . The Ki for AV28 also depends explicitly
on the � mass. In AV14 and AV28, vγ is just the Coulomb
interaction between protons (with a form factor); in AV18 the
magnetic moment interaction, vacuum polarization, and other
small EM terms are added.

The NN part of OPE is the same in AV14 and AV28, and
an average pion mass is used. In AV18 there is a weaker OPE
coupling strength, a slightly different form factor, and the small
charge-dependent (CD) terms owing to the difference between
neutral and charged pion masses are kept. The intermediate-
range attraction is due primarily to two-pion-exchange (TPE)
processes; in AV14 and AV18 this feature is approximated
by using the square of the OPE tensor function T (mπr) as a
phenomenological radial shape for v

p

I and adjusting strength
parameters of the 14 or 18 operators to fit data. In AV28,
14 operators with explicit NN–N�–�� couplings are added
to those of AV14; twelve of these have OPE range and two
have intermediate and short range. These produce much of
the intermediate-range attraction explicitly through coupled-
channel effects. The coefficients of the first 14 NN operators
are refit to the data but are smaller in magnitude than in AV14.

The short-range repulsion may be attributed to the exchange
of heavier ρ and ω mesons with suitable form factors for
finite-size effects, but in all the Argonne models it is treated
phenomenologically. AV14 and AV28 use a Woods-Saxon
radial shape with 14 strength parameters while AV18 has a
slightly more general shape with 26 parameters.

A. Potentials

The OPE potential between nucleons can be written as

vπ (rij ) = f 2
πNN [Xij τi · τj + X̃ij Tij ]. (9)

Here Tij = 3τziτzj − τi · τj is the CD isotensor operator which
contributes when the difference between neutral and charged
pion masses is retained, and

Xij = 1

3

(
X0

ij + 2X±
ij

)
, (10)

X̃ij = 1

3

(
X0

ij − X±
ij

)
, (11)

Xm
ij =

(
m

ms

)2 1

3
mc2[Y (mrij )σi · σj + T (mrij )Sij ]. (12)

The Sij = 3σi · r̂ij σj · r̂ij − σi · σj is the usual tensor operator
and Y (mr) and T (mr) are the normal Yukawa and tensor
functions

Y (mr) = e−µr

µr
ξ (r), (13)

T (mr) =
(

1 + 3

µr
+ 3

(µr)2

)
Y (mr)ξ (r), (14)

where µ = mc/h̄ and a short-range form factor ξ (r) has been
incorporated that makes both Y (mr) and T (mr) vanish linearly
at the origin. In AV18, the X0,± are calculated with explicit
mπ0 and mπ± masses and the scaling mass ms ≡ mπ± . In AV14
and AV28 an average mπ = 1

3 (mπ0 + 2mπ± ) is used, so that
X̃ij vanishes, and the scaling mass ms ≡ mπ . The coupling
f 2

πNN = 0.081 in AV14 and AV28, and 0.075 in the more
modern AV18.

The intermediate-range and short-range terms in the poten-
tials are given by

v
p

I (rij ) = IpT 2(mπr), (15)

v
p

S (rij ) = (Sp + Qpr + Rpr2)W (r), (16)

where W (r) is a Woods-Saxon function. For AV14 and AV28,
Qp = Rp = 0, while in AV18, there are boundary conditions
on vp such that no more than two of the three Sp,Qp, and Rp

are independent and free to be fitted for any given operator.
The associated operators O

p

ij include 14 charge-independent
(CI) operators that are common to all the models:

O
p=1,14
ij = [1, σi · σj , Sij , L · S, L2, L2(σi · σj ), (L · S)2]

⊗ [1, τi · τj ]. (17)

Here L is the relative orbital angular momentum and S is the
total spin of the pair. The AV18 model has four additional CD
and CSB terms:

O
p=15,18
ij = [1, σi · σj , Sij ] ⊗ Tij , (τzi + τzj ). (18)

These latter terms are small, but important for fitting the
differences between current pp and np scattering data.

There are fourteen additional operators in AV28 that involve
explicit � degrees of freedom. The first two are

O
p=15
ij = (σi · Sj )(τi · Tj ) + (Si · σj )(Ti · τj ) + H.c., (19)

O
p=16
ij = SII

ij (τi · Tj ) + SII
ji (Ti · τj ) + H.c., (20)

where Si (Ti) is the transition spin (isospin) operator for
particle i that changes a spin (isospin) 1

2 state to a 3
2 state. The

generalized tensor operator is SII
ij = 3σi · r̂ij Sj · r̂ij − σi · Sj

and H.c. denotes the Hermitian conjugate. These operators are
part of a generalized OPE contribution

vII
π (rij ) = fπNNfπN�

(
m

ms

)2 1

3
mc2

[
Y (mrij )O15

ij

+ T (mrij )O16
ij

]
(21)
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that produces NN–N� transitions. The πN� vertex coupling
is taken as fπN� = 2fπNN . Other operators provide OPE con-
tributions to NN–��,N�–�N,N�–N�,N�–��, and
��–�� transitions, with an additional coupling fπ�� =
1
5fπNN being introduced. Intermediate- and short-range in-
teraction is also added in the diagonal N�–N� and ��–��

channels. The full set of operators is detailed in Ref. [31].
The Urbana model of three-nucleon interaction (TNI) is

written as a sum of two-pion-exchange P-wave and remaining
shorter-range phenomenological terms,

Vijk = V
2π,P
ijk + V R

ijk. (22)

The structure of the TPE P-wave term is expressed simply as

V
2π,P
ijk =

∑
cyc

(
AP

2π

{
Xm

ij ,X
m
jk

}{τi · τj , τj · τk}

+CP
2π

[
Xm

ij ,X
m
jk

]
[τi · τj , τj · τk]

)
, (23)

where Xm
ij is the same spin-space function of Eq. (12) evaluated

with the average pion mass,
∑

cyc is a sum over the three cyclic

exchanges of nucleons i, j , and k, and CP
2π = 1

4AP
2π . The AP

2π

and the strength of the V R
ijk term are determined by fitting the

binding energy of 3H [33] and the saturation density of nuclear
matter [42] in the presence of a given vij ; the parameters of
UIX were selected in conjunction with AV18.

B. Dependence on hadron masses

We consider changes in the Hamiltonian that would be
induced by small changes in the hadron masses. However,
we do not consider changes in the coupling constants that
might occur due to mass-dependent loop corrections [23,24].
Variations of the nucleon and nucleon-resonance masses alter
the kinetic energy operator:

Ki = − h̄2

2mi

∇2
i + (mi − mN )c2, (24)

where mi is the average nucleon mass mN = 1
2 (mp + mn) for

AV14, but may be m� part of the time for AV28. For AV18
the kinetic energy operator has no m� component, but does
include a small CSB piece:

Ki = − h̄2

2mN

∇2
i − h̄2

2mN

(
mn − mp

mn + mp

)
τzi∇2

i , (25)

where mN = 2mpmn/(mp + mn). There is also a small depen-
dence on the nucleon mass in the magnetic moment parts of
the EM interaction in AV18.

Changes in mN and m� also affect the energy expectation
value for AV28 through effects of the NN–N�–�� coupled
channels. This can be visualized in a simple closure approxi-
mation (see Eq. (33) of Ref. [31] and the accompanying dis-
cussion) for the TPE diagrams where one or two intermediate
�’s are excited, propagate, and then deexcited by the transition

potentials:

Veff ≈ 2VNN−N�

−1

Ē1 + (m� − mN )
VN�−NN

+VNN−��

−1

Ē2 + 2(m� − mN )
V��−NN. (26)

The two mean-energy denominators Ē1 and Ē2 would vary, in
part, as the kinetic energies of the intermediate states:

Ē1 ≈ h̄2k̄2

2mN

+ h̄2k̄2

2m�

, (27)

Ē2 ≈ 2
h̄2k̄2

2m�

, (28)

with k̄ an average intermediate momentum. This physical
effect can be approximated in the AV14 and AV18 potentials
by multiplying the intermediate-range strength coefficients
Ip of Eq. (15) by factors (1 + δN ) and (1 + δ�). The above
equations represent only some of the terms contributing to the
mN and m� dependence introduced by the coupled channels,
so we will fix the δN and δ� terms for AV14 by requiring that
calculated two-body energies have the same mass dependence
as AV28 without these factors. We will take the same factors
as approximately correct modifications for AV18 also.

The dependence on the pion mass (which vanishes in
the chiral limit mq = 0) can be obtained from the original
pion-exchange interaction which is proportional to the second
derivative of the exponential potential, ∇i∇j [exp (−µr)/r]—
see, e.g., Ref. [9]. As a result, the variation of the pion mass
affects the strength of the OPE through the m3 dependence
of Xm

ij in Eq. (12) and through the range of the Yukawa
functions Y (mr) and T (mr), Eqs. (13) and (14). Note that
the scaling mass ms is not allowed to vary (this is only a
coefficient which does not vanish in the chiral limit mq = 0).
The dependence of OPE terms on pion mass is thus the same
as given in Eq. (10) of Ref. [23]. Neglecting the small effect of
our short-range form factor ξ (r), the function m3Y (mr) has a
constant volume integral. If m is increased, m3Y (mr) will be
larger inside r = 2/µ and smaller outside. However, m3T (mr)
will be smaller at all values of r > 0.

The generalized OPE of AV28 that couples to intermediate
N� and �� states effectively incorporates considerable mul-
tipion exchange effects. We can approximate this real physical
effect in AV14 and AV18 by assuming the intermediate-range
potential has the mass-dependence v

p

I (r) ∝ [m3
πT (mπr)]2.

The closure approximation of Eq. (26) that justifies this
connection applies most clearly to the first six static
(L-independent) operators O

p

ij of Eq. (17) because of the
closed algebra of the spin (isospin) and transition-spin
(isospin) operators. However, the L-dependent operators can
also be affected through the coupled-channels, so we will
also consider changing these terms in the intermediate-range
potentials. We will also consider changes to the residual v

p

I (r)
terms in AV28. Thus we will study variations attributable to
the pion mass in four stages with our Hamiltonians: (1) change
in the OPE part of the potential vπ (and vII

π , etc., for AV28)
only; (2) change in both vπ and the static TPE parts v

p=1,6
I

(TPE-s); (3) these changes plus the L-dependent TPE parts
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v
p=7,14
I (TPE-L); and (4) these changes in vij plus the TPE

part of the three-nucleon potential V
2π,P
ijk (TNI).

Representing the dependence on heavier meson masses
mρ ≈ mω ≈ mV is much more problematic because the
Argonne models do not have explicit heavy-meson exchange.
However, the effect of a short-range interaction is determined
mostly by the volume integral of this interaction, e.g., the
volume integral gives us the strength constant B if we
want to approximate a short-range interaction by a zero-
range interaction Bδ(r). Therefore, we may approximate the
dependence on masses of heavier mesons by a change in the
range parameters r0 and a of the short-range Woods-Saxon
potential

W (r) = 1

1 + exp[(r − r0)/a]
(29)

used in Eq. (16). To keep the same relative variation of the
volume integral for the Woods-Saxon potential and the meson
exchange potential exp(−mV r)/r we change the parameters
at the rate

δr0

r0
= δa

a
= −2

3

δmV

mV

. (30)

In this case, as mV increases, the range of the Woods-Saxon
decreases while the value at the origin remains constant and
the volume integral varies as m−2

V .
The repulsive core of the three-nucleon potential V R

ijk may
be attributed to a combination of multi-pion and heavy-meson
exchanges, and also some relativistic effects [43]. Owing to its
complicated nature and phenomenological treatment and the
fact that it gives a small contribution to energy expectation
values, we do not attempt to determine its variation with
changes in the hadronic masses.

III. ENERGY CALCULATIONS

We calculate the energies of the 1S0(np) virtual bound state
and the deuteron for AV28, AV14, and AV18 by direct solution
of the two-body equations. The energies of 3H, 3,4,5He, 6,7Li,
and 7,8Be are calculated for AV14 and AV18+UIX using
variational Monte Carlo (VMC) methods. The VMC method is
described in detail in Ref. [41] and references therein. Briefly,
we construct suitably parametrized trial wave functions �V

and evaluate the upper bound to the ground-state energy,

EV = 〈�V |H |�V 〉
〈�V |�V 〉 � E0, (31)

using Monte Carlo techniques for the multi-dimensional
integration. The parameters in �V are varied to minimize EV ,

and the lowest value is taken as the approximate solution. We
use a variational wave function of the form

|�V 〉 =

1 +

∑
i<j<k

UT NI
ijk





S

∏
i<j

(1 + Uij )


 |�J 〉. (32)

The Uij and UT NI
ijk are noncommuting two- and three-nucleon

correlation operators, reflecting the spatial and operator depen-
dence of vij and Vijk , and S is a symmetrization operator. The
form of the antisymmetric Jastrow wave function �J depends
on the nuclear state under investigation. For the s-shell nuclei
the simple form

|�J 〉 =
∏
i<j

fc(rij )|�A(JMT T3)〉 (33)

is used. Here the fc(rij ) are central (spin-isospin independent)
two-body correlation functions and �A is an antisymmetrized
spin-isospin state, e.g.,

|�4(0000)〉 = A| ↑ p ↓ p ↑ n ↓ n〉, (34)

with A the antisymmetrization operator. The �J for p-shell
nuclei is more complicated; details are given in Ref. [41]. The
two-body correlation operator Uij is a sum of spin, isospin,
and tensor terms:

Uij =
∑

p=2,6

up(rij )Op

ij , (35)

where the O
p

ij are the static operators of Eq. (17). The
central fc(r) and noncentral up(r) pair correlation functions
are generated by a set of six coupled, Schrödinger-like,
differential equations which include the vij and a number
of embedded variational parameters. These parameters are
optimized in the energy minimization and then kept fixed as
the hadronic masses are varied. The correlations are adjusted,
however, because the altered interaction is used to regenerate
the correlations in each case.

The energies we obtain are shown in Table I and compared
to experiment. The VMC method is reasonably accurate for
s-shell nuclei, giving energies ∼2–3% less bound than exact
methods like Faddeev or Green’s function Monte Carlo for a
given Hamiltonian [41]. It is not as good for p-shell binding
energies, but many other features such as density distributions
and electromagnetic moments are in good agreement. We
anticipate that small changes in the binding energies induced
by small changes in hadron masses will be accurately tracked
with the VMC calculations. The comparison between AV14
and AV18+UIX models indicates the importance of including
a three-nucleon interaction to approach the experimental
energies.

TABLE I. Ground state energies of light nuclei in MeV for the different Hamiltonians used in this work compared to experiment.

1S0(np) 2H 3H 3He 4He 5He 6Li 7Li 7Be 8Be

AV28 0.0661 −2.2250
AV14 0.0663 −2.2250 −7.50 −6.88 −23.60 −21.26 −24.31 −28.31 −26.85 −40.26
AV18+UIX 0.0665 −2.2246 −8.25 −7.49 −27.50 −25.26 −28.22 −33.33 −31.74 −48.63
Expt. −2.2246 −8.48 −7.72 −28.30 −27.41 −31.99 −39.24 −37.60 −56.50
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TABLE II. Dimensionless derivatives �E(mH ) = δE/E

δmH /mH
of the energy for the 1S0(np)

virtual bound state εv and the deuteron Q for all three Hamiltonians.

mH �εv �Q

AV28 AV14 AV18 AV28 AV14 AV18

mN −88.1 −32.6 −33.4 13.06 8.63 8.90
mN + δN −91.2 −121.2 13.03 17.82
m� 63.9 −5.15
δ� 68.1 102.2 −5.12 −10.36
mπ (OPE) 9.5 −4.1 −3.8 −2.23 −1.55 −1.40
mπ (+TPE-s) 24.4 35.5 53.0 −3.63 −4.02 −6.70
mπ (+TPE-L) −4.02 −4.31 −6.74
mV −153.7 −245.0 −381.9 20.88 22.92 41.74

We evaluate the mass-dependence of the energies of the
two- and multinucleon systems by changing the hadron masses
mH one at a time, increasing the value by 0.1% and calculating
the resulting energy, and then decreasing by 0.1% and
repeating the energy calculation. The VMC calculations follow
the same random walk stored from the initial energy evaluation
to reduce the contribution of statistical noise. Results given in
the following three tables are the dimensionless derivatives of
the energy with respect to changes in the hadron masses

�E(mH ) = δE/E

δmH/mH

. (36)

These results can then be combined with any given model
for how the different hadron masses are correlated with
the underlying quark masses to give a total binding energy
prediction:

E(mq) = E(mq0 )

[
1 +

∑
mH

�E(mH )
δmH (mq)

mH

]
, (37)

where mq0 is the physical current-quark mass. A specific
example will be given below.

A. Two-nucleon energies

The two-nucleon results for �E(mH ) are given in
Table II for all three Hamiltonians. A simple approximate
relation between changes in the deuteron binding energy Q

and virtual bound state energy εv is given by [10]

�εv(mH )

�Q(mH )
≈ −

√
Q√
εv

. (38)

Despite the wide range of values for �E(mH ) in Table II,
this relation is valid within a factor of ∼2 for fifteen out of
seventeen pairs of results. The two exceptions are for the OPE
components of �εv(mπ ) for AV14 and AV18, where the sign
is incorrect. This discrepancy will be discussed below.

Changing the nucleon mass in AV14 and AV18 primarily
changes just the kinetic energy component and is very similar
for the two models: a larger mN translates to smaller 〈K〉 and
more binding and thus a positive derivative �Q(mN ) for the
deuteron. For the virtual bound state, the effect is the same but

greater attraction corresponds to a reduction in the magnitude
of εv and a negative �εv(mN ).

Changing mN in AV28 produces a larger change in the
energies due to the additional coupled-channel effects of
Eqs. (26)–(27) discussed above. The change is more dramatic
for εv than for Q, probably because the 1S0 NN channel can
couple to both N� and �� intermediate states, while the
deuteron can have only NN and �� components due to isospin
conservation. To approximately incorporate this physical
effect into the phase-equivalent AV14 model, we can multiply
its intermediate-range strength parameters Ip of Eq. (15) by
a factor (1 + δN ). We choose a value δN = 0.49δmN/mN that
matches the mass dependence in the deuteron as shown by
the line in Table II labeled “mN + δN”. This same factor
approximately fixes the virtual bound state also. Using the
same δN factor in AV18 produces a change about one third
larger. This difference is probably due to the fact that AV18
is fit to a more recent data set, with a weaker OPE coupling
accompanied by more-attractive intermediate-range terms and
correspondingly more-repulsive short-range terms.

Increasing the � mass in AV28 reduces the binding energy
both through the one-body term of Eq. (24) and through the
coupled-channel effects of Eq. (26). Thus �E(m�) has a sign
opposite to �E(mN ). To approximate this affect for AV14, we
can again multiply its intermediate-range strength parameters
Ip by a factor (1 + δ�). We take δ� = −0.57δm�/m� which
gives a fair reproduction of the behavior of AV28 for both the
deuteron and the virtual bound state as shown by the line in
Table II labeled “δ�”. Using the same factor in AV18 again
produces a larger rate of change.

We note that if the nucleon and � masses change at about
the same rate, from whatever the underlying quark mass
dependence, then the effect on the AV28 energies could be
obtained by the sum of the mN and m� terms in Table II,
which is not very different from the mN term alone for AV14
and AV18 or from the sum of mN + δN and δ� terms. In fact,
these corresponding sums of terms agree within 10–20% for
all three models.

Increasing the pion mass reduces the regularized OPE
tensor function m3

πT (mπr) at all values of r . The binding
of the deuteron is primarily due to the tensor coupling, so
Q is reduced and �Q is negative for all the models as
shown by the line in Table II labeled “mπ (OPE)”. The
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TABLE III. �E(mH ) for the AV14 Hamiltonian.

3H 3He 4He 5He 6Li 7Li 7Be 8Be

mN 6.00 6.44 3.97 4.58 5.25 5.60 5.88 5.10
mN + δN 12.32 13.17 9.03 10.38 11.35 12.74 13.41 11.71
δ� −7.35 −7.82 −5.89 −6.74 −7.10 −8.31 −8.76 −7.69
mπ (OPE) −0.45 −0.50 −0.20 −0.24 −0.36 −0.30 −0.32 −0.23
mπ (+TPE-s) −4.35 −4.66 −3.33 −3.87 −4.19 −4.83 −5.09 −4.38
mπ (+TPE-L) −4.53 −4.85 −3.47 −4.04 −4.40 −5.06 −5.34 −4.59
mV 29.36 31.30 23.60 27.09 28.98 33.72 35.55 30.98

value for AV28 is larger because of the multi-pion-exchange
effects included through the generalized OPE potential. The
AV14 and AV18 values are smaller and close together, the
difference between them being proportional to the different
f 2

πNN coupling constants used in the two models.
Increasing mπ in the 1S0 channel, which depends only on

m3
πY (mπr), has the effect of slightly increasing the attraction

in the virtual bound state, making �(εv) negative for the
AV14 and AV18 models. However, in the AV28 model,
the generalized OPE provides significant intermediate-range
attraction ∝ [m3

πT (mπr)]2, which is enough to reverse the sign
of �(εv) to be positive. As the AV14 and AV18 cases here are
the only two out of seventeen in Table II that violate the relation
between �Q and �(εv) of Eq. (37), it appears that changing
only the OPE part of a conventional NN potential like AV14
or AV18 is an incomplete representation of the physics in the
singlet channel.

Changing mπ in the static TPE part of the interaction has
a more dramatic effect than changing just the OPE part, as
shown in Table II by the line labeled “mπ (+TPE-s).” The �Q

increases by by a factor of 2.5–4 in the deuteron for the AV14
and AV18 models compared to OPE only, while for AV28 it
increases by a smaller factor of 1.5. More dramatically, the
AV14 and AV18 values for �εv change sign and come into
agreement with Eq. (37). The further addition of the nonstatic
“mπ (+TPE-L)” terms makes no difference to the virtual
bound state, as these operators do not contribute in the 1S0

channel, and rather small changes in the deuteron.
Finally, increasing the heavy-meson mass mV reduces the

range of the Woods-Saxon repulsion and increases the binding
of the deuteron, so �Q is positive. The reduced repulsion for
the virtual bound state correspondingly makes �εv negative.

In both the full-pion and heavy-meson exchanges, the AV18
has larger �E values than AV14 or AV28. Again, this is
probably due to the weaker OPE and compensatingly larger
intermediate-range attraction and short-range repulsion.

B. Multinucleon energies

The multinucleon results for �E(mH ) are given in
Table III for AV14 and Table IV for AV18+UIX. For every
nucleus, and for every mH component, the signs are the same
as for the deuteron. The relative sizes of the terms are also
about the same as the deuteron, with the exception of the
mπ (OPE) term. Because the light nuclei have approximately
equal numbers of deuteron-like and 1S0-like pairs [44], the
�E(mH ) are expected to be averages of the two sets of trends in
Table II. The anomalous behavior of �εv in the mπ (OPE) case
discussed above causes these numbers to be much smaller in
the multinucleon systems, and thus out of proportion compared
to all the other terms. As for the deuteron, the multinucleon
terms have a more rapid dependence with AV18+UIX than
with AV14. However, the explicit mπ contribution from the
three-nucleon force is very small.

IV. DEPENDENCE OF NUCLEAR BINDING ENERGIES
AND BIG BANG NUCLEOSYNTHESIS ON QUARK

MASS

As an example of how to incorporate our nuclear binding
energy results with a specific prediction for hadronic mass
variation, we utilize the results of a Dyson-Schwinger equation
study of sigma terms in light-quark hadrons [27]. Equations
(85–86) of that work gives the rate of hadron mass variation

TABLE IV. �E(mH ) for the AV18+UIX Hamiltonian.

3H 3He 4He 5He 6Li 7Li 7Be 8Be

mN 6.07 6.54 3.99 4.51 5.12 5.24 5.49 4.81
mN + δN 16.56 17.73 11.86 13.31 14.41 15.53 16.29 14.36
δ� −12.20 −13.02 −9.16 −10.24 −10.80 −11.96 −12.56 −11.11
mπ (OPE) −0.37 −0.42 −0.19 −0.24 −0.36 −0.29 −0.30 −0.23
mπ (+TPE-s) −6.90 −7.38 −5.11 −5.82 −6.33 −6.95 −7.30 −6.34
mπ (+TPE-L) −6.87 −7.36 −5.06 −5.75 −6.24 −6.84 −7.18 −6.24
mπ (+TNI) −6.91 −7.40 −5.12 −5.82 −6.31 −6.91 −7.26 −6.31
mV 47.98 51.23 36.34 40.87 43.48 48.11 50.53 44.40
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FIG. 1. (Color online) Variation of two-
nucleon energies with current-quark mass varia-
tion from DSE calculation: full calculation (solid
lines) and with OPE modification only (dashed
lines) for three different Argonne Hamiltonians.
Virtual bound state energies are plotted as posi-
tive quantities; mq0 is the physical current-quark
mass.

as a function of the average light current-quark mass mq =
(mu + md )/2 as

δmH

mH

= σH

mH

δmq

mq

(39)

with σH /mH values of 0.498 for the pion, 0.030 for the
ρ-meson, 0.043 for the ω-meson, 0.064 for the nucleon, and
0.041 for the �. The values for the ρ and ω-mesons were
reduced to 0.021 and 0.034, respectively, in a subsequent
study [28]. We will use an average of the ρ and ω terms of
0.03 for the variation of our short-range mass parameter mV .

In Fig. 1 we show direct calculations for the two-nucleon
states, i.e., the deuteron and 1S0(np) states, for a range of
mq values for all three Hamiltonians. The virtual bound state
energies are plotted as a positive quantity; when the 1S0 energy
is negative it indicates a true bound state. The dashed lines
show the results from changing only the pion mass in the OPE
part of the interaction, corresponding to the line mπ (OPE) in
Table II. To evaluate over this wide range of mq , we use the
Gell-Mann-Oakes-Renner (GMOR) relation m2

π ∝ mq .
The solid lines show the most complete calculation for

each Hamiltonian. For the AV28 model this is the sum of the
terms mN,m�,mπ (+TPE-L), and mV , using GMOR for the
pion and the DSE values above for the variation of all other
mH . For the AV14 and AV18 models, it is the sum of the
terms mN + δN, δ�,mπ (+TPE-L), and mV . As discussed in
Sec. III A, the δN and δ� effects are incorporated by
multiplying the intermediate-range strength parameters Ip of
Eq. (15) by a factor

(1 + δN )(1 + δ�) =
(

1 + 0.49
δmN

mN

)(
1 − 0.57

δm�

m�

)
(40)

which is ≈(1 + 0.008 δmq/mq) for the DSE values above.
At the OPE level, the AV14 and AV18 models show almost

exactly the same behavior for the 1S0 state, with a gradually
increasing attraction as mq increases, while for the deuteron
they both show a more rapid decrease in binding, consistent
with the results obtained in Refs. [23,24]. If these trends

continue, the deuteron will eventually move above the singlet
state somewhere in the range 3–4 mq0. The AV28 model has
a somewhat more rapid dependence for the deuteron but its
singlet state parallels the deuteron, becoming less attractive
for larger mq . In the other direction, the singlet state becomes
a true bound state at ≈ 0.7mq0, but it always remains above
the deuteron. This different behavior is a consequence of the
multipion exchange that is built into the AV28 model through
the generalized OPE coupling to intermediate �’s.

In all these models the deuteron is bound largely through
the tensor coupling between the 3S1 and 3D1NN states. In
the AV28 model, the singlet state gets a considerable part of
its attraction through the tensor coupling between the 1S0NN

and intermediate 5D0N� states, and thus has a sensitivity to
changes in the pion mass similar to the deuteron. This behavior
of the singlet state, i.e., that it parallels the deuteron, is different
from that predicted by chiral perturbation theory evaluated at
the next-to-leading-order (NLO) in Ref. [30], which does not
include the effect of the �. We expect that a higher-order chiral
perturbation calculation that includes � degrees of freedom
will come into qualitative agreement with our result.

For our most complete calculations, shown by the solid
lines, the mass dependence of the energies is significantly
steeper for both deuteron and singlet states, but they all are
parallel and it appears the deuteron will remain the ground state
for a very large range of mq . The AV28 curves shift relatively
little from the OPE-only values, while the AV14, which is
essentially phase equivalent with AV28, gives very similar
results. The biggest change and the most-rapid dependence is
given by the AV18 model, with the most important contribution
coming from its static two-pion-exchange terms, i.e., the line
mπ (+T PE − s) in Table II. The more rapid dependence is
a consequence of the deeper intermediate-range attraction
and stronger short-range repulsion, which in turn may be a
consequence of the improved quality of AV18, i.e., that it is a
better fit to more recent NN data.

The two-body energies can also be evaluated using
Eq. (37) to combine the DSE values for δmH/mH and the
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FIG. 2. (Color online) Variation of multinu-
cleon energies with current-quark mass variation
from DSE calculation for AV14 Hamiltonian.

dimensionless derivatives �E(mH ) of Table II. This might not
be expected to work for large changes in mq , or where a state
is barely bound or unbound. However, deuteron energies are
reproduced for changes of ±0.1 in δmq/mq to 1% or better by
Eq. (37).

The dependence of the multinucleon energies for the full
calculation with DSE values is shown in Fig. 2 for AV14
and in Fig. 3 for AV18+UIX. These results have been
calculated using Eq. (37) and the �E(mH ) of Tables III and IV,
respectively. The lines have been extended to δmq = ±0.2mq

to show the trends, although the results are not expected to be
completely linear over such a broad range. The values have
been checked in a few cases by doing direct calculations and
adjusting the variational parameters to reminimize the energy.
For example, the 4He energy can be lowered by 0.3–0.5 MeV

at either end of its line, but this change would hardly be visible
at the scale shown.

The multinucleon energies parallel the deuteron, with
generally increasing slope as the binding energy increases.
(Similar results for the triton were found in Refs. [45,46].)
The curves are steeper for AV18+UIX than for AV14. In either
case it appears that the relative stability of all the nuclei will be
preserved across a broad range of mq values, with the exception
of 8Be. Here it appears that a decrease in mq of ≈0.5%
will lead to 8Be stable against breakup into two α’s for both
Hamiltonians. A very weakly bound (∼0.1 MeV) 8Be might
not have much of an impact on primordial nucleosynthesis
because it would be easily photodisintegrated until quite late
in the BBN epoch. A moderate binding (∼1 MeV) could have
a significantly more dramatic effect on the chemical evolution
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FIG. 3. (Color online) Variation of nuclear
energies with current-quark mass variation from
DSE calculation for AV18+UIX Hamiltonian.
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TABLE V. Dimensionless derivatives K = δE/E

δmq/mq
of the energy over light quark mass mq for the different

Hamiltonians.

1S0(np) 2H 3H 3He 4He 5He 6Li 7Li 7Be 8Be

AV28 4.5 −0.75
AV14 7.3 −0.84 −0.89 −0.96 −0.69 −0.81 −0.89 −1.03 −1.09 −0.92
AV18+UIX 11.4 −1.39 −1.44 −1.55 −1.08 −1.24 −1.36 −1.50 −1.57 −1.35

of the Universe by giving rise to the production of noticeable
amounts of stable elements with A = 9, 10. If the bound state
persisted to the era of star formation, it would presumably also
have a significant effect on stellar evolution.

A summary of sensitivities of nuclear binding energies
to the quark mass mq , as given by the DSE hadronic
mass variation, is presented in Table V for the different
Hamiltonians. The total sensitivity K ,

K = δE/E

δmq/mq

, (41)

of deuterium binding energy to the light quark mass is Kd =
−1.39 for the AV18 interaction, while the pion contribution
ranges from Kπ

d = −0.70 for the OPE contribution only to
Kπ

d = −3.36 when the full TPE is counted. This may be
compared with the pion contribution 3 > Kπ

d > −18 from
Ref. [9] and Kπ

d = −2.4 from Ref. [24].
The result of Ref. [10] suggested that a reduced deuteron

binding energy of �Q = −0.019 ± 0.005 would yield a better
fit to observational data (the WMAP value of η and measured
2H, 4He, and 7Li abundances) for big bang nucleosynthesis.
This would correspond to an increase in the quark mass of
δXq/Xq = 0.014 ± 0.004 (here Xq = mq/�QCD).

Dent, Stern, and Wetterich [11] calculated the sensitivity
of BBN abundances for 2H, 4He and 7Li to the variation of
binding energies of 2,3H, 3,4He, 6,7Li, and 7Be in a linear
approximation. We use the response matrix values in their
Table I for mN to B7Be and multiply by the δmN/mN and K

values of our Table V to estimate the sensitivity of BBN yields
to variation of the quark mass. If we compare to the ratio of
observation and theoretically predicted abundances given in
their Appendix B, we obtain the following equations for 2H,
4He, and 7Li:

1 + 7.7x = 2.8 ± 0.4

2.61 ± 0.04
= 1.07 ± 0.15, (42)

1 − 0.95x = 0.249 ± 0.009

0.2478 ± 0.0002
= 1.005 ± 0.036, (43)

1 − 50x = 1.5 ± 0.5

4.5 ± 0.4
= 0.33 ± 0.11, (44)

where x = δXq/Xq . These equations yield 3 consistent values
of x: 0.009 ± 0.019,−0.005 ± 0.038, and 0.013 ± 0.002.
The statistically weighted average of δXq/Xq = 0.013 ±
0.002 is dominated by the 7Li data. A more accurate calculation
should take into account the effect of the 8Be binding energy
variation (which is not calculated in Ref. [11]), the variation of
the virtual 1S0(np) level, and nonlinear corrections in x which
are important for 7Li. Allowing for the theoretical uncertainties

we should understand this BBN result as δXq/Xq = K ·
(0.013 ± 0.002) where K ∼ 1 and the expected accuracy in
K is about a factor of 2. Note that here we neglect effects of
the strange quark mass variation. A rough estimate of these
effects on BBN due to the deuteron binding energy variation
was made in Refs. [9,10].

V. CONCLUSIONS

We have argued that there are several reasons to question
the spatial and temporal invariance of various fundamental
“constants” of nature, such as the fine structure constant α or a
comparable strong interaction parameter Xq = mq/�QCD. The
search for evidence of such variations is ongoing in areas as
diverse as quasar absorption spectra, the Oklo natural nuclear
reactor, and big bang nucleosynthesis.

In this work we have examined how nuclear binding
energies depend on hadronic masses, including mN,m�,mπ ,
and a generic heavy meson mV . We have done this by identi-
fying the mass dependence in several realistic Hamiltonians—
interactions that fit NN elastic scattering data and reproduce
light nuclei binding energies reasonably well in quantum
Monte Carlo calculations. By making small changes in
the masses and reevaluating the energy, we have obtained
the dimensionless derivatives of the energy with respect to
variations in the hadronic masses.

We have combined these results with a specific prediction
from a Dyson-Schwinger equation study of sigma terms in
the light-quark hadrons for the hadronic mass dependence on
the quark mass mq . The pion mass changes most rapidly with
changes in mq , so we find that both the one- and two-pion
exchange parts of the NN interaction are very important for
the consequent variations in nuclear binding. With our most
complete model, the 1S0 virtual bound state and deuteron vary
in concert; if Xq increases, they both become less bound, while
if Xq decreases, they both become more bound. (We note that
this result is in disagreement with chiral perturbation results
at the NLO level which have 1S0 and 3S1 scattering varying
antithetically.) The binding energies of A = 3–8 nuclei behave
in the same manner, all moving up or down together, with a
sensitivity K in the range −1 to −1.5.

Finally, we have folded these results with a study of the
sensitivity of big bang nucleosynthesis to variations in nuclear
binding. We find that a small increase in the quark mass of order
1% at the time of BBN is sufficient by itself to resolve existing
discrepancies between theoretical and measured abundances
of 2H, 4He, and 7Li.
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45 (2005); E. Reinhold, R. Buning, U. Hollenstein, A. Ivanchik,
P. Petitjean, and W. Ubachs, Phys. Rev. Lett. 96, 151101 (2006).

[17] P. Tzanavaris, J. K. Webb, M. T. Murphy, V. V. Flambaum, and
S. J. Curran, Phys. Rev. Lett. 95, 041301 (2005).

[18] V. V. Flambaum and M. G. Kozlov, Phys. Rev. Lett. 98, 240801
(2007).

[19] V. V. Flambaum and A. F. Tedesco, Phys. Rev. C 73, 055501
(2006).

[20] V. V. Flambaum, Phys. Rev. Lett. 97, 092502 (2006).
[21] E. Peik and Chr. Tamm, Europhys. Lett. 61, 181 (2003).
[22] V. V. Flambaum, arXiv:0705.3704v2 [physics.atom-ph].

[23] S. R. Beane and M. J. Savage, Nucl. Phys. A713, 148 (2003).
[24] E. Epelbaum, Ulf-G. Meißner, and W. Glöckle, Nucl. Phys.
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