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We present microscopic calculations of cross sections for scattering of identical and nonidentical nucleons in
symmetric nuclear matter at various densities, using the Brueckner-Hartree-Fock approximation scheme with the
Argonne v14 potential including the contribution of microscopic three-body forces. We investigate separately the
effects of three-body forces on the effective mass and on the scattering amplitude. In the present calculation,
the rearrangement contribution of the three-body force is considered, which reduces the neutron and proton
effective mass and suppresses the magnitude of the cross section. The presence of “Z diagrams” in the three-body
force enables us to make a comparison with the medium effects on the nucleon-nucleon cross sections obtained
with the Dirac-Brueckner-Hartree-Fock approximation.
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I. INTRODUCTION

Heavy-ion collisions (HICs) are theoretically described
by transport-model simulations whose input data are the
in-medium cross sections and the nuclear mean field [1].
Being intimately related to each other through the nuclear
matter equation of state (EOS), they must be consistently
determined. Microscopic approaches to the EOS, which are
based on the bare nucleon-nucleon (NN ) force, exhibit the
unique advantage of deriving both inputs on the same footing
and thus allow for consistency in the approximations adopted at
each level. Concerning in-medium NN cross sections, which
is the focal point of this study, several calculations exist in the
literature based on Brueckner theory [2,3], Dirac-Brueckner
(DB) theory [4,5], and variational approaches [6].

In Brueckner theory, the G matrix plays the role of the
in-medium scattering amplitude, with medium effects being
introduced through the mean field and Pauli blocking. In the
zero density limit, the G matrix reduces to the T matrix,
and the Brueckner-Bethe-Goldstone (BBG) equation to the
Lippmann-Schwinger equation.

During the impact phase between two heavy ions from
high-energy central collisions, the nucleon density can reach
values up to twice the saturation density. Under these con-
ditions, although dispersion and Pauli blocking effects play
a significant role, medium modifications induced by virtual
excitations of NN̄ states and nucleon resonances [�(1232)
or Roper N∗(1440)] are expected to become increasingly
important. It is well known that these effects can be described
in terms of three-body forces (3BFs) [7–9].

Beyond the scattering amplitude, NN collisions in nuclear
matter are also driven by kinematic degrees of freedom, i.e.,
entrance flow and density of states in the exit channel. Both are
related to the nucleon effective mass, which, in turn, is related
to the self-energy. The latter is modified by a 3BF, which
also generates quite large rearrangement terms [10], leading,
in turn, to a large reduction of the effective mass. Thus one

can expect that 3BFs might have a strong influence on the
in-medium cross sections, as they depend quadratically on the
effective mass.

Among the three-body forces included in the calculations
are the so-called Z diagrams, corresponding to virtual nucleon-
antinucleon excitations. Already, earlier studies [11,12] have
argued that these provide the main relativistic effect missing
from conventional Brueckner theory. Moreover, it is claimed
that the relativistic Dirac-Brueckner-Hartree-Fock (DBHF)
approach takes those Z graphs into account [11]. The main
argument is that a Dirac spinor containing an effective mass can
be expanded in a complete set of free-space spinors and thus
effectively includes antiparticle contributions. On the other
hand, an in-depth quantitative analysis of this “equivalence”
has not been done, to the best of our knowledge. It is our
plan to perform such an analysis and shed more light on
the relation between the two methods. With that in mind,
following a systematic presentation of new in-medium cross
section results (obtained with the 3BF), we will compare them
with those from recent DBHF calculations.

In Sec. II, we review the BHF approximation with the 3BF
and the relation with the DBHF approximation; the formalism
of the in-medium cross section in the two approximations is
developed in Sec. III. In Sec. IV, results are discussed for
scattering between identical nucleons as well as neutrons and
protons. Special attention is devoted to the comparison of
the BHF and DBHF predictions for the cross section. Our
conclusions are drawn in Sec. V.

II. FORMALISM

A. Review of nonrelativistic Brueckner theory with 3BF

In the context of Brueckner theory, the role of the ampli-
tude for scattering of two nucleons embedded in a nuclear
environment is played by the G matrix, which satisfies the
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FIG. 1. Real and imaginary parts of the 1S0

components of the G matrix at different densities
with (solid lines) and without (dotted lines) the
contribution of 3BFs to the mean field.

Brueckner-Bethe-Goldstone (BBG) equation [13,14]:

G(ρ, ω) = vNN + vNN

∑
k1k2

|k1k2〉Q〈k1k2|
ω − ε(k1) − ε(k2)

G(ρ, ω), (1)

where ω is the starting energy, and Q is the Pauli operator,
which prevents the two nucleons from being scattered into
occupied states. ε(k) is the single-particle energy given
by ε(k) = h̄2k2/(2m) + U (k), with U (k) the single-particle
potential. For the latter, we adopt the so-called continuous
choice [13,14]; i.e., for momenta k below and above the Fermi
surface, we define

U (k) = Re
∑

k′ � kF

〈kk′|G[ρ; e(k) + e(k′)]|kk′〉a, (2)

where the subscript a denotes antisymmetrization of the matrix
element. Because of the occurrence of U (k) in Eqs. (1)
and (2), the latter forms a coupled system of equations that
must be solved in a self-consistent way. In the limit of
zero density, the BBG equation reduces to the Lippmann-
Schwinger equation, and the G matrix to the T matrix.

For scattering between two particles in the presence of a
medium, in addition to the two-body bare interaction, 3BFs
must be considered to take into account virtual excitations
of nucleon resonances and NN̄ pairs [7]. The 3BF adopted in
the present calculation is based on the meson-exchange current
model, and it is described in full detail in Ref. [9]. To be applied
to the Brueckner approach, the 3BF has been converted into
an effective two-body force by averaging out the third particle
weighted on the two-body correlation function, i.e.,

〈�r1�r2|V τ1τ2
3 |�r ′

1�r ′
2〉 = 1

4

∑
τ3

∑
σ3

∑
n

∫
d�r3d�r ′

3φ
∗
n

× (τ3�r ′
3)(1 − ητ1,τ3 (r ′

13))(1 − ητ2,τ3 (r ′
23))

×W3(�r ′
1�r ′

2�r ′
3|�r1�r2�r3)φn(τ3r3)

×(1 − ητ1,τ3 (r13))(1 − ητ2,τ3 (r23)). (3)

The function ητ1τ2 (r) is the spin and momentum average of
the defect function, of which only the most important partial
wave components have been included, i.e., the 1S0 and 3S1 −
3D1 partial waves.

The transformation of the 3BF to an effective 2BF entails a
self-consistent coupling between the 3BF and Brueckner pro-
cedures for solving the Brueckner-Bethe-Goldstone equations.
One begins by calculating the correlation function with the
2BF only and then builds up the effective 3BF, which, in turn, is
added to the 2BF. The correlation function is recalculated, and
the whole procedure is repeated until convergence is reached.
Terms up to lmax = 6 have been retained in the partial wave
expansion of the full interaction.

In Fig. 1, the G matrix in the 1S0 channel is plotted. While
3BFs are negligible at low density, they start to be noticeable
at saturation density and become more and more effective as
density increases. We see that the real part of the G matrix
is reduced due to Pauli blocking and dispersive effects. The
imaginary part, which is related to the particle-hole excitations,
becomes larger because of the 3BF enhancement of the ground
state correlations. As is well known, the G matrix shows a
spurious singular behavior around the Fermi energy due to
the missing pairing correlations from the BHF approximation.
In fact, when the latter are included in the calculations, the
singularity disappears [15]. Since the singularity in the real
part of the G matrix is very narrow, it was easily eliminated
by hand. The same was done for the imaginary part at high
density.

In addition to the in-medium scattering amplitude, the NN

cross section also depends on the density of states, which is
given by the inverse derivative of the single-particle energy
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FIG. 2. Self-energy diagrams: BHF term (left), correlation term
(middle), and Z diagram (right). The latter is one of the 3BF
contributions included in the calculations.

with respect to momentum. In vacuum, it is determined by
the kinetic energy, and it turns out to be proportional to the
bare mass m. In the medium, the additional contribution from
the self-energy can be reasonably approximated by replacing
the bare mass with the effective mass, which is given by

m∗(k)

m
= k

m

(
dε(k)

dk

)−1

. (4)

In the BHF approximation with the 3BF, the self-energy
contains three terms,

	(k) = 	BHF(k) + 	corr(k) + 	3BF(k), (5)

where the first term is the mean field with inert core, the
second term accounts for the core polarization, and the third
term corresponds to the rearrangement contribution associated
with the density dependence of the effective 3BF [10]. The
corresponding diagrams are displayed in Fig. 2.

In Fig. 3, the effective mass is shown as a function of the
momentum at three densities. The effective mass becomes
substantially smaller with the inclusion of the 3BF, an effect
which will impact the in-medium cross sections through the
level densities in the entrance and exit channels, along with the
3BF enhancement of the repulsive components in the effective
interaction.

FIG. 4. Z diagram (left) and its contribution to the nuclear matter
energy (right). Upward/downward lines represent positive/negative
energy states.

B. BHF with 3BF vs DBHF approach

The relationship between nonrelativistic Brueckner theory
and the relativistic DBHF theory was discussed already over
two decades ago [11,12]. The single-particle spectrum in
the DBHF theory includes states of positive and negative
energy (Dirac sea) which are coupled by the interaction. The
latter can be incorporated in the nonrelativistic Brueckner
theory by introducing a 3BF, where three particles interact
via nucleon-antinucleon virtual excitations, as shown in
Fig. 4. Their contribution to the BHF energy turns out to
be strongly density dependent and provides a very efficient
saturation mechanism.

Here, we concentrate on reviewing some of the basic
concepts leading to the conclusion that relativistic effects
(to lowest order) tie in with the virtual excitation of pair
terms at the level of the nucleon self-energy. Relativistic
Brueckner-Hartree-Fock calculations such as those reported
in Refs. [16–18] include explicit negative energy states in
the intermediate two-particle propagator as well, whereas we
apply the Thompson reduction to our in-medium two-particle
propagator, consistent with the free-space equation used with
the relativistic Bonn potential [19].

One starts with the free Dirac wave function, which has the
form

u+(p, λ) =
√

Ep + m

2m

(
χλ

σ ·p
Ep+m

χλ

)
(6)

FIG. 3. Momentum dependence of the nucleon effective mass m∗/m in symmetric nuclear matter at three densities, in the presence and
absence of the 3BF effect.
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for positive energy, and

u−(p, λ) =
√

Ep + m

2m

( −σ ·p
Ep+m

φλ

φλ

)
(7)

for negative energy. In these equations, χ and φ are Pauli
spinors, and Ep =

√
m2 + p2.

In nuclear matter, the familiar one-body equation in the
mean field approximation is written as

[α · p + β(m + US) − (εp − UV )]u(p, λ) = 0, (8)

where αk = γ 0γ k, β = γ 0, and US/V are the scalar/vector
components of the nucleon Dirac self-energy. It is then easy
to see that the inclusion of US and UV simply amounts to
replacing m with m̃ = m + US in the free Dirac solutions.
Positive and negative energy states can now be connected
through the scalar field, which therefore can be identified
as the source of the leading relativistic correction to the
propagation of positive energy states. The latter is then
essentially equivalent to a medium effect and can be interpreted
as a three-body force. This is depicted in the left-hand side of
Fig. 4, the well-known Z diagram.

From the correction to the positive energy solution, one can
estimate the corresponding contribution to the nuclear matter
energy (depicted in the right-hand side of Fig. 4). To lowest
order in p/m, the relativistic correction to the energy can be
approximated by the formula

�E

A
≈ 4MeV

[
ρB

ρ0

]8/3

, (9)

as shown in Refs. [11,12]. A close estimate was derived in
Ref. [7], where the role of the scalar US field is played by the
scalar σ meson. [To avoid confusion, we stress that Eq. (9) is
just a crude estimate from earlier works. All models considered
here obtain the energy per particle fully self-consistently
within their respective frameworks.]

To summarize, in this brief subsection we have reviewed
the main arguments linking relativistic corrections with (some)
many-body effects. Of course, it must be kept in mind that
important differences do exist between the DBHF approxima-
tion and the BHF approach with a full 3BF. In the former,
relativistic corrections effectively take into account virtual
antinucleon excitations in the nucleon self-energy, whereas in
the latter other contributions due to virtual nucleon excitations
[� and N∗(1440) resonances] are also included. The difference
between the two approaches can be appreciated by comparing
the energy per particle as obtained in the two cases, see Table I.
The saturation density and energy are very close to each other,
but the EOS from DBHF is much stiffer (K = 259 MeV) than
the one from BHF+3BF (K = 206 MeV). It is most interesting
to observe how the values shown in the last column (where the
effect of Z diagrams has been extracted from the full 3BF),
are in much better agreement with the DBHF predictions than
those from BHF+3BF, especially at the higher densities, where
the predictions with 3BF are considerably more attractive.
This supports the argument that Z-diagram correlations can
be reasonably described in the DBHF approximation. The
comparison still deserves additional investigation.

TABLE I. Energy per particle (in MeV) from DBHF [20], BHF
with the full 3BF [9], and BHF with just the Z-diagram correlation.

kF (fm−1) ρ (fm−3) E/ADBHF E/ABHF+3BF E/ABHF+Z

0.80 0.0346 −7.178 −5.413 −5.057
0.90 0.0492 −8.883 −7.352 −6.732
1.00 0.0675 −10.68 −9.133 −8.226
1.10 0.0899 −12.51 −10.73 −9.657
1.20 0.1167 −14.21 −13.04 −10.32
1.30 0.1484 −15.55 −14.64 −13.12
1.35 0.1662 −15.97 −15.17 −14.75
1.40 0.1854 −16.14 −15.78 −14.21
1.45 0.2059 −16.00 −16.06 −14.64
1.50 0.2280 −15.43 −16.02 −14.19
1.60 0.2767 −12.43 −14.82 −11.34
1.70 0.3319 −5.424 −11.34 −4.773
1.80 0.3939 7.283 −4.866 5.778
1.90 0.4633 26.50 5.256 22.97
1.95 0.5009 38.56 11.66 32.42
2.00 0.5404 52.16 20.36 49.52
2.05 0.5819 67.24 29.59 63.52

III. IN-MEDIUM CROSS SECTIONS

In the c.m. frame, the nonrelativistic elastic differential
cross section for neutron-proton (np) scattering from unpolar-
ized beams is given by

σnp(θ ) = m∗2

4π2h̄4

∑
SSzS ′

z

∣∣GS
SzS ′

z
(θ )

∣∣2
. (10)

In the case of collisions between identical particles, i.e.,
neutron-neutron or proton-proton collisions (hereafter denoted
as NN collisions), antisymmetrization requires us to sum up
the two scattering amplitudes G(θ ) and G(π − θ ) before taking
the modulus square:

σNN (θ ) = m∗2

16π2h̄4

∑
SSzS ′

z

∣∣GS
SzS ′

z
(θ ) + (−1)SGS

SzS ′
z
(π − θ )

∣∣2
.

(11)

The Coulomb force is neglected in this investigation. The
G matrix is the on-shell in-medium scattering amplitude,
including Pauli blocking and the dispersive effect from the
mean field, as shown in the BBG equation (1). The prefactor
is the density of states of nuclear matter in the entrance and
exit channels. The effective mass comes from the momentum
dependence of the mean field (Schrödinger mass) and thus has
a different physical origin than the effective mass related to
the renormalization of the self-energy due to the scalar field
(Dirac mass) [5,21].

The spin components of the G matrix are obtained by
summing up angular states as

GS
SzS ′

z
(θ ) =

∑
LL′J

Y
S ′

z−Sz

L′ (θ, 0)〈L0, SS ′
z|JS ′

z〉

×〈L′S ′
z − Sz,SSz|JS ′

z〉〈k;L′SJ |G|k;LSJ 〉, (12)

where the brackets are the Clebsch-Gordan coefficients
and YM

L are the spherical harmonics. Employing the latter
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expression, the differential cross section can be explicitly
integrated over the solid angle to give the total cross section
valid for both like and unlike particles,

σtot(E) = m∗2

16π2h̄4

∑
SJ

∑
L′L

× [1 − (−1)S+L+T ]2 2J + 1

4π

∣∣GSJ
L′L

∣∣2
. (13)

When operating within a relativistic framework, one uses
the expression for the relativistic elastic differential cross
section. In units consistent with Eqs. (10)–(13), it reads

σ (θ ) = m̃4

4π2h̄4s̃
|Ĝ(θ )|2, (14)

where m̃ = m + US , with US the scalar component of the
nucleon self-energy, see Eq. (8), and s̃ = 4(m̃2 + �q2) = 4Ẽ2.
The relativistic and nonrelativistic amplitudes are related by
Ĝ = Ẽ

m̃
G, which provides the connection between Eqs. (11)

and (14).
Notice that the crucial point in the relativistic Dirac-

Brueckner-Hartree-Fock scheme is the presence of m̃ in the
nucleon Dirac wave function, which is precisely the effect
discussed in Sec. II B.

IV. RESULTS AND DISCUSSION

In-medium NN cross sections have been calculated with
various methods and discussed in several papers [3–5,22–26].
Concerning BHF (strictly two-body) approaches, one must
keep in mind that the applicability of these predictions is
restricted to low density, and therefore the corresponding
in-medium cross sections cannot describe the entire evolution
of a HIC and other phenomena where high baryon density is
involved. Extension of the BHF approximation to include 3BFs
permits us to widen its range of applicability up to very high
density. Therefore, in-medium cross sections are now revisited
through new calculations, emphasizing the role of 3BFs. Since
one important component of a 3BF is closely related to NN̄

excitations (see comments in Sec. II B), a comparison with
Dirac-Brueckner predictions is both appropriate and timely.

Apart from the sizable 3BF enhancement of the repulsive
component of the effective interaction (G matrix in Brueckner
theory), the strong variation of the effective mass [9] is
expected to impact the in-medium cross section via the level
densities in the entrance and exit channels.

The potential used in our calculations is the Argonne v14

[27], which is modeled on the experimental phase shifts. The
more general charge dependent Argonne v18 does not give
appreciable variations.

Therefore the theoretical NN cross sections in free space
are in excellent agreement with the experimental data, as
shown in Fig. 5. There, we also show that the total cross
sections, σNN and σpn, converge rapidly to the corresponding
experimental values [28–31] with increasing number of partial
waves. (Notice that in the DBHF predictions shown for
comparison in Sec. IV C, the Bonn B potential is used [19].
This will be discussed below.)

FIG. 5. Free-space pn and NN cross sections for increasing
values of the maximum angular momentum and as a function of the
incident laboratory energy, E. The squares represent the experimental
data.

A. Identical particles

We examine three typical situations, i.e., low density (ρ =
0.08 fm−3), saturation density (ρ = 0.16) and high density
(ρ = 0.35). In Fig. 6, the in-medium cross sections from BHF
calculations are displayed with and without three-body forces.
The free cross section is also plotted for comparison. Up to
the saturation density, the effect of the 3BF is small, and the
medium suppression is mainly controlled by the reduction of
density of states due to Pauli blocking. The asymptotic value
is the same with and without the 3BF. At the higher density,
the 3BF produces a larger reduction of the cross section, which
persists up to high energy. The latter is mainly due to the strong
3BF renormalization of the effective mass shown in Fig. 2. In
all calculations, the momentum dependence of the effective
mass is taken into account, but the results do not change
significantly if m∗(k, kF ) is replaced by m∗(kF ). The scattering
amplitude is also affected by the 3BF, as shown in Fig. 1 for the
1S0 partial wave, but it is difficult to disentangle the reduction
of attractive two-body channels from the enhancement of the
repulsive ones.

In Fig. 7, two sets of differential cross sections are dis-
played: E = 100 and E = 240 MeV. The curves are symmetric
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FIG. 6. Total cross sections for scattering of identical nucleons with and without the effect of 3BFs. The free-space cross section is shown
for comparison.

around 90◦ (as they must be on fundamental principles), and
bend up at forward and backward angles. The reduction of
the cross section (present at all angles) is more sizable in
the forward and backward directions, since low momentum
transfers are strongly suppressed by the Pauli principle [5], as
shown in Fig. 1. This effect leads to distributions that are almost
flat at high density. This feature justifies the frequent practice
of adopting isotropic cross sections in HIC simulations.

B. Nonidentical particles

In scattering of distinguishable nucleons, the T = 0 com-
ponent of the interaction is also included. As a consequence,
the free cross section for unlike particles is larger than the one
for like particles, a property which remains true in the medium.
The 3BF effect on the cross section is shown in Fig. 8. It is
worth mentioning that the low-energy uprise of the in-medium
σpn is a remnant of the pairing anomaly, which cannot be
removed by hand at low density. The differential cross section
σpn(θ ) is strongly asymmetric. The in-medium values exhibit
similar asymmetry although less pronounced (see Fig. 9).

TABLE II. NN total effective cross sections (in mb) in symmet-
ric matter calculated with various many-body models. The results
shown in column 3 are obtained with Bonn B and the DBHF model.

kF (fm−1) q0 (MeV) σ DBHF
NN σ 2BF+3BF

NN σ 2BF
NN

1.1 250 18.00 18.15 22.98
1.1 300 16.41 17.47 19.48
1.1 350 17.08 18.55 19.51
1.4 250 15.72 13.74 19.76
1.4 300 13.70 14.43 17.23
1.4 350 16.31 16.89 19.46
1.7 250 18.05 7.87 13.36
1.7 300 17.93 9.98 13.98
1.7 350 13.96 11.48 16.43

C. Comparison with DBHF predictions

In this subsection, we compare the in-medium cross
sections obtained with BHF+3BF as described above and the
predictions of a recent DBHF calculation [25]. First, some
technical remarks should be made. The effect of Pauli-blocking
the final states (in addition to the intermediate states) was
incorporated in the cross sections of Ref. [25]. That effect
has been removed so as to make the predictions comparable
with those presented in the previous subsections. Furthermore,
unlike what was done in Ref. [25], all cross sections shown in
this paper are calculated with the assumption that the nuclear
matter rest frame and the center-of-mass frame of the two
nucleons coincide.

In Tables II and III, q0 is the momentum of either nucleon
in its c.m. system, and the entries in the third column are
the DBHF predictions for NN and np total cross sections,
respectively. Our focal point is on the comparison between
σ 2BF+3BF

NN/np and σ DBHF
NN/np.

First, we notice a generally fair agreement. For the np case,
energy and density dependence appear quite consistent among
the two sets of results, although σ 2BF+3BF

np is somewhat larger
than σ DBHF

np across the board. The σ DBHF
NN values are in good

TABLE III. Same as Table II, but for nonidentical particles.

kF (fm−1) q0 (MeV) σ DBHF
np σ 2BF+3BF

np σ 2BF
np

1.1 250 34.38 44.65 51.74
1.1 300 23.14 29.01 31.85
1.1 350 20.63 23.56 25.62
1.4 250 26.74 31.25 39.82
1.4 300 17.26 25.28 30.96
1.4 350 16.77 21.17 25.23
1.7 250 17.20 19.03 29.12
1.7 300 15.06 17.59 25.02
1.7 350 12.33 13.99 21.04
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FIG. 7. Center-of-mass differential cross
section for scattering of identical nucleons
with and without the effect of 3BFs at E =
100 and 240 MeV. The free-space cross
section is also shown for comparison.

agreement with σ 2BF+3BF
NN , with the exception of the highest

density.
The differences and/or similarities apparent from Table I

can help shed light on the cross section comparison. The
agreement is reasonable at low to moderate densities but
deteriorates at kF = 1.7 fm−1, consistent with the large
differences present at high density between the DBHF and
the BHF+3BF predictions of the EOS. Examination of the
last column in Table I clearly suggests that 3BFs other than
Z diagrams are the main cause of the discrepancies between
the DBHF and the BHF+3BF predictions of the EOS and,
consequently, of the respective cross sections.

There are other possible sources of differences between
the two models, which at this point we do not expect to
have a dramatic impact on the present conclusions but which
nevertheless will be explored more fully in a forthcoming
work:

(1) Free-space models applied. The BHF+3BF calculation
is presently not available with Bonn B. (Note that for a different
two-body potential, 3BFs need to be reconstructed consistently
with the parameters of that potential.) Therefore, the two sets
of predictions we are comparing do not share exactly the same
baseline. On the other hand, it is well known that the major
source of model dependence among (quantitative) potentials
is the off-shell behavior of the tensor force, which can impact
in-medium properties (since the G matrix is obviously not
constrained by two-body data). In the effort to gain some
control over this uncertainty factor, we have examined DBHF
predictions obtained with the Bonn A, B, and C potentials
(the DBHF calculation is not feasible with Argonne v14). This
test should give us a realistic idea of the typical spreading
of predictions with changing strength of the tensor force. A
representative case is shown in Table IV. There, we see that
the dependence on the potential model is moderate, although

FIG. 8. Same as Fig. 6, but for nonidentical particles.
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FIG. 9. Same as Fig. 7, but for noniden-
tical particles.

a bit more pronounced in the np channel, as to be expected.
We conclude that the choice of the free-space model (provided
it is quantitative in the description of two-body data) is not
likely to be the major source of discrepancies. Nevertheless,
in the near future, we hope to reconsider this comparison with
the 3BF calculated with the same meson parameters as used
in the DBHF calculation. This effort is in progress.

(2) Effective masses. Effective masses are essentially a
byproduct of the self-consistent nuclear matter calculation.
As such, they are the physical “link” between the calculation
of nuclear matter saturation observables and the one of
in-medium scattering properties. The value of the effective
mass is, of course, closely related to the nature of the
calculation (e.g., 2BF vs 3BF), but it also depends on various
choices and approximations, not necessarily inherent to the
issue at hand. An example is the momentum dependence.
The masses displayed in Fig. 2 are density and momentum
dependent, whereas those used in the DBHF calculations are
only density dependent, due to the particular ansatz employed
to fit the single-particle spectrum in the corresponding nuclear
matter calculation. As mentioned in Sec. IV A, the BHF+3BF
calculations were repeated using m∗(kF ) at the appropriate
density instead of m∗(k, kF ), thus eliminating the momentum
dependence, and the results were found to remain fairly stable.
Lastly, we performed sensitivity tests where we used the
same (momentum-independent) masses in both calculations

TABLE IV. Sample of potential model dependence of σ DBHF
NN

and σ DBHF
np (in mb).

kF (fm−1) q0 (MeV) Potential σ DBHF
NN σ DBHF

np

1.7 300 A 18.23 14.08
1.7 300 B 17.93 15.06
1.7 300 C 17.59 16.09

(BHF+3BF and DBHF) and observed a systematic improve-
ment in the agreement.

V. CONCLUSIONS

In this work, medium modifications on NN cross sections
have been revisited within the BHF approximation including
three-body forces. The inclusion of 3BF effects allows us to
extend the range of validity of our predictions up to two to
three times the saturation density. In this approximation, the
scattering amplitude (G matrix) embodies not only the mean
field dispersive effect and Pauli blocking but also a number of
important medium modifications due to the virtual excitation
of NN̄ pairs and nucleon resonances [7]. The 3BF induces a
stronger suppression of the total cross section for both NN and
np scatterings. The main effect is the strong reduction of the
density of states in the entrance and exit channels due to the
rearrangement term in the self-energy, which can also be traced
back to the 3BF. We have presented both total and differential
cross sections. Concerning the latter, we observed a large 3BF
suppression of the higher angular momenta leading to nearly
isotropic distributions at high density. This feature partially
supports the use of constant cross sections in the dynamical
simulations of heavy-ion collisions.

An interesting point often discussed in the literature is the
extent to which relativistic effects such as those characteristic
of the DBHF approach are equivalent to (some) three-body
forces, particularly those corresponding to virtual nucleon-
antinucleon excitations. To pursue this line of investigation,
we compared the 3BF-modified cross sections with those
from recent DBHF calculations. Generally, we found a fair
amount of agreement. We discussed similarities and differ-
ences and examined potential sources of model dependence.
The comparison displayed in Table I indicates that the DBHF
scheme is reasonably consistent with a nonrelativistic BHF
model including Z-graph contributions.
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To conclude, it has been known for a long time that a
strongly density-dependent repulsive effect on the energy per
nucleon in nuclear matter can be the result of relativistic
effects as well as many-body forces. Nevertheless, there are
still open questions which can now be investigated thoroughly
as available many-body calculations become more and more
sophisticated (with microscopic 3BFs consistently derived

from 2BFs). Thus it becomes interesting and timely to revisit
these issues.
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