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General relativistic effects on the conversion of nuclear to two-flavor quark matter in compact stars

Abhijit Bhattacharyya*

Department of Physics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India

Sanjay K. Ghosh,† Ritam Mallick,‡ and Sibaji Raha§

Centre for Astroparticle Physics & Space Science and Department of Physics, Bose Institute, 93/1, A.P.C Road, Kolkata 700009, India
(Received 25 July 2007; published 19 November 2007)

We investigate the general relativistic (GR) effects on the conversion from nuclear to two-flavor quark matter
in compact stars, both static as well as rotating. We find that GR effects lead to qualitative differences in rotating
stars, indicating the inadequacy of nonrelativistic or even special relativistic treatments for these cases.
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Strange quark matter (SQM), consisting of approximately
equal numbers of up (u), down (d), and strange (s) quarks,
is the putative true ground state of the strong interaction
[1], a conjecture supported by model calculations for certain
ranges of values for strange quark mass and strong coupling
constant [2]. There have been concerted efforts at confirming
the existence of quark-gluon plasma (QGP) and SQM, though
transiently, in ultrarelativistic collisions. However, QGP and
SQM could naturally occur in the cores of compact stars, where
central densities of about an order of magnitude higher than the
nuclear matter saturation density are expected. Given the very
low strangeness fraction in normal nuclear matter (NM), it is
almost inevitable that a transition from nuclear (hadronic) to
quark matter should proceed through a conversion to an initial
stage of (metastable) two-flavor quark matter, which should
decay to the stable SQM. Thus, neutron stars with sufficiently
high central densities ought to get converted to strange, or
at least hybrid, stars. These transitions could have observable
signatures in the form of a jump in the breaking index and
γ -ray bursts [3,4]. However, a full quark star may explain the
phenomena of observed quasiperiodic oscillations [5].

There are several plausible scenarios where neutron stars
could convert to quark stars, through a “seed” of external
SQM [6] or triggered by the rise in the central density resulting
from a sudden spin-down in older neutron stars [7]. Several
authors have studied the conversion of nuclear matter to strange
matter under different assumptions [8–18]. These studies have
been summarized in a recent work of ours [19] and we do
not repeat them here, except to mention that Tokareva et al.
[15] have lately modeled the hadron to SQM conversion as
a single-step process, arguing that the mode of conversion
would vary with the temperature as well as the value of the
bag constant. Berezhiani et al. [16], Bombaci et al. [17], and
Drago et al. [18] suggested that the formation of SQM may
be delayed, if the deconfinement process takes place through
a first-order transition [20] so that the purely hadronic star can
spend some time as a metastable object.
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In our recent work [19], we have argued that the conversion
process is a two-step process. The first process involves the
deconfinement of nuclear to two-flavor quark matter, and
the conversion process takes some milliseconds to occur.
The second process deals with the conversion of excess
down quarks to strange quarks, which occurs via the weak
interaction, forming a stable SQM, and the time taken for
this process to occur is of the order of 100 s. This work was
restricted to the case of a static neutron star and only a special
relativistic (SR) treatment. To the best of our knowledge,
general relativistic (GR) effects in such processes have not yet
been addressed in the literature. In this article, we consider GR
effects in both static and rotating stars and find qualitatively
new results.

As in Ref. [19], we use the nonlinear Walecka model for
the nuclear matter equation of state (EOS). For the sake of
brevity, we do not repeat the details here. Suffice it to say, the
star is assumed to be composed of only nucleons. The metric
describing the structure of the star is given by [21]

ds2 = −eγ+ρdt2 + e2α(dr2 + r2dθ2)

+ eγ−ρr2 sin2 θ (dφ − ωdt)2. (1)

The four gravitational potentials α, γ, ρ, and ω are functions
of θ and r only. Once these potentials are known, one
can calculate the observed properties of the star. We solve
Einstein’s equations for the three potentials γ, ρ, and ω,
using the Green’s function technique [3,22], and determine
the fourth potential α from the other three potentials. The
solution of the star is obtained from the RNS code [23], which
requires the EOS and a central density as inputs and returns
various gravitational potentials and hydrodynamic parameters
as outputs. We solve this code for a static as well as for rotating
stars with different velocities, up to the mass-shedding limit or
the Keplerian velocity. The results are, of course, as expected;
rotation induces a change in the star to an oblate-spheroid
shape.

To study the GR effects on the conversion of nuclear to two-
flavor quark matter, we heuristically assume the existence of a
combustive phase transition front of infinitesimal thickness,
and we study the outward propagation of the front, using
GR hydrodynamical equations of motion. First we consider a
nonrotating neutron star, where the geometry of the problem is
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one dimensional, and then extend our calculation to a rotating
neutron star, where an extra dimension is needed. Let us
assume that the conversion front is generated at the center of the
star, and it propagates outward through the star with a certain
velocity, dictated by the initial conditions and hydrodynamical
equations, converting the nuclear matter to two-flavor quark
matter. Employing the conservation conditions [24,25] and
further employing the entropy condition [26], we determine
the flow velocity of matter in the two phases, given by

v2
1 = (p2 − p1) (ε2 + p1)

(ε2 − ε1) (ε1 + p2)
(2)

and

v2
2 = (p2 − p1) (ε1 + p2)

(ε2 − ε1) (ε2 + p1)
. (3)

It is possible to classify the various conversion mechanisms
by comparing the velocities of the respective phases with the
corresponding velocities of sound, denoted by csi , in these
phases. For the conversion to be physically possible, velocities
should satisfy an additional condition, namely, 0 � v2

i � 1;
here we have used natural units h̄ = c = K = 1. If we plot
different velocities against baryon number, we get curves from
which we could calculate the initial velocity of the front at
the center of the star [19]. Starting with this initial velocity,
we investigate the evolution of the front with time under the
GR effect; to this end, we first have to derive the appropriate
continuity and Euler’s equations for the metric [Eq. (1)]. If
we treat both nuclear and strange matters as ideal fluids, the
system is governed, together with the metric and the EOS, by
Einstein’s equation Ri

k − 1
2δi

kR = κTi
k and the equation of

motion T k
i;k = 0 [27].

For adiabatic motion, we have
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where ui signifies the four-velocity and 
 and σ are the
enthalpy and entropy, respectively. For an isentropic process,
(i.e., σ = constant), the term T ∂σ

∂xi goes to zero.
These two equations are the starting point for deriving the

appropriate continuity and Euler’s equations. If we want the
equation for ∂v

∂r
, we only need to consider the variation of the

gravitational potentials with r and the terms containing partial
derivatives with respect to θ can be neglected. For our metric,√−g turns out to be

√−g = eγ+2αr2 sin θ ; the four vectors are
also calculated from the metric. To derive the hydrodynamical
equations, we use “auxiliary” time dτ instead of ordinary time
dt , defined as dτ =

√
grr√
gtt

dt .
Calculating these values from the metric and putting them

in Eqs. (4) and (5), we get the continuity and the Euler’s
equations, given by
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where v is the r.m.s velocity and W is the inverse of the Lorentz
factor. This system of equations differs from its SR counterpart
in the appearance of the gravitational potentials, describing the
gravitational forces acting on the fluid in its own gravity field.
Once the two basic equation are set, we now proceed exactly
as in Ref. [19]. We define v as the front velocity in the nuclear
matter rest frame and n = ∂p

∂ε
is the square of the effective

sound speed in the medium. The differentials dτ and dr are
connected by the relation

dr

dτ
= vG, (8)

where G is given by

G =
√

eγ+ρ − eγ−ρr2ω2 sin2 θ

e2α
. (9)

The other parameters of the equation are defined as

A = vωr sin θ

C1
− 1, E = 2ω2r sin θ

C1
+ 2ω2eγ−ρr sin θ

A1
,

B = B1

A1
− vωr sin θ

C1
, C = 2ωeγ−ρr2 sin θ

A1
+ vr sin θ

C1
,

where

A1 = eγ+ρ − eγ−ρr2ω2 sin2 θ,

B1 = −eγ+ρ − eγ−ρr2ω2 sin2 θ,

C1 =
√

r2ω2 sin2 θ − e2ρ.

After a bit of algebra, we get a single differential equation
for v:

∂v

∂r
= W 2v[K + K1]

2[v2(1 + G)2 − n(1 + v2G)2]
, (10)

where

K = 2n(1 + v2G)

(
∂γ

∂r
+ ∂α

∂r
+ 2

r
+ cot θ

r

)
,

K1 = (1 + G)

(
A

∂γ

∂r
+ B

∂ρ

∂r
+ C

∂ω

∂r
+ E

)
.

If we set ω = 0 and sin θ = 1 in this equation we get the
equation for the static star, and if we put all potentials equal to
zero, we recover our equation for the SR case [19].

Integrating Eq. (10) over r from the center to the surface,
we obtain the propagation velocity of the front along the radial
direction. The initial condition, that is, the velocity at the center
of the star, should be zero from symmetry considerations.
However, the 1/r dependence of dv/dr in Eq. (10) suggests a
steep rise in velocity near the center of the star.

Our calculation proceeds as follows. Once we have con-
structed the density profile of the star for a fixed central density,
Eqs. (2) and (3) specify the respective flow velocities v1 and v2

of the nuclear and quark matter in the rest frame of the front,
at a radius infinitesimally close to the center of the star. This
would give us the initial velocity of the front (−v1), at that
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FIG. 1. Variation of velocity of the front along the radial direction
of the star for three different cases, namely SR, nonrotating GR, and
rotating GR.

radius, in the nuclear matter rest frame. With this, we integrate
Eq. (10) outward along the radius of the star. The solution
gives the variation of the velocity with position as a function
of the time of arrival of the front. Using this velocity profile,
we can calculate the time required to convert the whole star
using the relation dr

dτ
= vG.

For a static star, being spherically symmetric, the problem
is rather simple; for a rotating star, however, the asymmetry has
to be taken care of. For that, we would have to introduce a new
parameter χ = cos θ , along the vertical axis of the star. We start
our calculation by choosing the central density of the star to be
seven times the nuclear matter density, for which the Keplerian
velocity of the star is 0.67 × 10−4 s. For this central density, the
initial velocity of the front turns out to be 0.45. For a complete
understanding of the GR effect, comparison with respect to
the SR treatment is desirable. After solving the differential
equation for static and rotating stars, we have plotted in Fig. 1
the propagation velocity of the front along the radial direction
of the star for three cases. The unbroken curve is for the SR
case, the broken curve for the nonrotating GR case, and the
dotted curve for the rotating GR case with χ = 0 (i.e., at the
equator). As expected, for all three cases, the velocity shoots
up near the center of the star and saturates at a certain velocity
for large radii. This is due to the asymptotic behavior of the
differential equations. It can also be clearly seen that the GR
effect increases the velocity of the front considerably (by a
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FIG. 2. Variation of velocity of the front along the radial direction
for different rotational velocities (in units of 10−4 s−1) of the star.
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FIG. 3. Variation of velocity of the front along the radial direction
for different χ values.

maximum of 30%) and the effect is most pronounced for the
static case. The rotational effect of the star seems to suppress
the GR effect and therefore the velocity of the front decreases.
The result becomes clearer if we look at Fig. 2 where we have
plotted the front velocity with equatorial radius for different
rotational velocities; as the rotational velocity increases, the
velocity of the front decreases.

From Fig. 3, we find that the front velocity is maximum
along the polar direction and minimum along the equator. This
is quite an interesting result as the equator has the maximum
length and the front takes the maximum time to convert nuclear
matter to two-flavor quark matter in that direction than toward
the pole. Therefore, at any particular instant of time, we may
have a situation where the polar part of the star has been
converted, whereas along the equatorial direction, the front is
still propagating. The result is interesting but not unexpected as
at the pole the EOS is much steeper than at the equator (and we
have used the slope of the EOS to calculate the front velocity).
At some distance from the center of the star, the propagation
front breaks up into several distinct fronts propagating with
different velocities in different directions.

From Fig. 4 we can see that the time taken by the conversion
front to convert the neutron star to a two-flavor quark star is
of the order of few milliseconds. The static star takes the
minimum time (3.3 ms) whereas the rotating star takes the
maximum time (5.1 ms) owing to the enlarged equatorial
radius. The polar part of the star needs much less time for
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FIG. 4. Variation of time of arrival of the front at certain radial
distance for different cases.
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conversion (3.1 ms), even less than the static star, as its radius
gets compressed.

To summarize, we have shown in this article that the
conversion of nuclear matter to quark matter in compact
stars, especially rotating stars, which are more realistic than
static stars, is strongly affected by GR effects. The emergence
of different conversion fronts, propagating with different
velocities along different radial directions, is a novel finding,
not anticipated by Newtonian or SR calculations. It remains
to be explored whether the incorporation of dissipative effects
materially changes the conclusion. Intuition would point to

a dampening of motion under dissipation, but the relative
gradients between the different fronts may also be accentuated,
with important physical consequences. Involved though it is,
such an investigation is on our immediate agenda.
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