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Differential cross section of φ-meson photoproduction at threshold
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We show that the differential cross section dσ/dt of the γp → φp reaction at threshold is finite and its value
is crucial to the mechanism of φ-meson photoproduction and for the models of φN interaction.
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Now it becomes clear that φ-meson photoproduction at
low energies, Eγ � 2–3 GeV, plays an important role in
understanding nonperturbative Pomeron-exchange dynamics
and the nature of φN interaction. It is expected that in
the diffractive region the dominant contribution comes from
the Pomeron exchange, because trajectories associated with
conventional meson exchanges are suppressed by the OZI rule
[1]. The exception is the finite contribution of the pseudoscalar
π, η-meson-exchange channel, but its properties are quite well
understood [2]. Therefore, low-energy φ-meson photoproduc-
tion may be used for studying the additional (exotic) processes.
Candidates are Regge trajectories associated with scalar and
tensor mesons containing a large amount of strangeness
[3,4], glueball exchange [1], or other channels with [5–7]
or without [8] suggestions of the hidden strangeness in the
nucleon.

One possible indication of the manifestation of the exotic
channels is nonmonotonic behavior of the differential cross
section dσ/dt of the γp → φp reaction, reported recently
by the LEPS Collaboration [9]. The data show a bump
structure around Eγ � 2 GeV, which disagrees with the
monotonic behavior predicted by the conventional (Pomeron
exchange) model. Another peculiarity of the LEPS’s data
is the tendency of dσ/dt at forward photoproduction angle
(θ � 0) to be finite when the photon energy Eγ approaches
the threshold value Ethr � 1.574 GeV. This is in contradiction
with relatively old [1,10] and recent [11] expectations of
dσ/dt = 0 at θ = 0 and Eγ � Ethr, based on a relation that
near threshold dσ/dt behaves as q2

φ/k2
γ , where kγ and qφ

are the momenta of the incoming photon and the outgoing φ

meson in the center of mass, respectively. Thus, the equation
for the differential cross section dσ/dt in Ref. [11] derived
from the base of the conventional vector meson dominance
approach, being quite reasonable at finite qφ , can not be applied
in the vicinity of qφ ∼ 0, which is just a goal of our present
consideration.

The aim of our article is to concentrate on this particular
aspect of the experimental data. We intend (i) to show the
absence of the so-called “threshold factor” q2

φ/k2
γ in the

differential cross section and (ii) to stress that dσ/dt at
Eγ � Ethr is related to the φN scattering length, which can be
used as a test for the models of φN interactions.

A. Threshold behavior of the differential cross section.
Assuming the vector dominance model (VDM) and using the

optical theorem, the differential cross section of the γp → φp

reaction can be written according to Ref. [11] in the form

dσ

dt

γp→φp

(θ = 0) = α

16γ 2
φ

q2
φ

k2
γ

[1 + r2]σ tot
φp

2
, (1)

where σ tot
φp is the total cross section of the φp interaction and

r is the ratio of the real to imaginary parts of the elastic
φp scattering amplitudes r = Re T φp/ImT φp. The coupling
γφ � 6.7 is defined from the φ → e+e− decay. Here we keep
only the diagonal transition γp → φp → φp. Taking r to be
constant, one gets the threshold factor q2

φ/k2
γ in explicit form.

Because ImT φp ∼ qφ [11] and ReT φp related to the real part
of the scattering length is finite, we have

r2(qφ → 0) ∼ 1

q2
φ

. (2)

This leads to the cancellation of q2
φ dependence and the

elimination of the threshold factor q2
φ/k2

γ in Eq. (1). The
value of r near the threshold is unknown, and therefore
one cannot utilize the threshold factor in practice without
additional assumptions.

For more consistent analysis of the threshold behavior we
express the differential cross section of γp → φp through the
differential cross section of φp → φp elastic scattering,

dσ

dt

γp→φp

= απ2

γ 2
φ k2

γ

dσ

d�

φp→φp

. (3)

At small qφ , the differential cross section dσφp→φp/d�

becomes isotropic and it can be expressed through the spin
averaged φp scattering length aφp,

dσ

d�

φp→φp

= a2
φp. (4)

This leads to the following estimation,

dσ

dt

γp→φp

threshold
= απ2

γ 2
φ k2

γ

a2
φp. (5)

One can see that at threshold the cross section of φ-meson
photoproduction is finite and its value is defined by the φp

scattering length.
1. Direct estimations. The direct estimation of the φp

scattering length on the basis of QCD sum rules was carried
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out by Koike and Hayashigaki [12]. They got aφp � −0.15 fm,
which results in

dσthr

dt

γp→φp

1
� 0.63 µb/GeV2. (6)

This value is in qualitative agreement with the experimental
indication [9].

One can estimate aφN using the φN potential approaches.
Thus, for example, Gao, Lee, and Marinov [13] suggested
using the QCD van der Waals attractive φN potential for
analysis of φ-nucleus bound states. This potential reads

VφN = −A exp(−µr)/r, (7)

where A = 1.25 and µ = 0.6 GeV. The corresponding scat-
tering length, aφp � 2.37 fm, found by direct solution of the
Schrödinger equation, leads to large cross section dσ/dt �
1.6 × 102µb/GeV2. It is more than two orders of magnitude
greater than the experimental hint and provides a problem for
this potential model. Thus, to get the scattering length aφp �
±0.15 fm (and, correspondingly, the cross section dσ/dt close
to the experiment), one has to choose A = 2.56 or 0.226 for the
positive (strong attraction) or negative (weak attraction) aφp,
respectively. At A � 2.75, the elastic scattering disappears
(aφp = 0) and we get some kind of Ramsauer effect [14]. In
principle, such analysis may be used for other potentials as
well.

2. SU(3) symmetry considerations. Estimation of the upper
bound of |aφp| may be carried out on the assumption that
the amplitudes of the φp and ωp scattering are dominated
by the scalar σ -meson exchange. Then the SU(3) symmetry
gives the relation

aφp = ξaωp, (8)

where ξ ≡ −tg�θV (�θV � 3.7◦ is the deviation of the φ-ω
mixing angle from the ideal mixing [15]). More complicated
processes such as s-channel exchange with intermediate
nucleon or nucleon resonances, or box diagrams with ω(φ)πρ

vertices, would give terms proportional to ξ 2 and, generally
speaking, violate Eq. (8). But for crude estimation of the order
of magnitude of aφp one can utilize Eq. (8) using aωp as an
input.

Thus, the QCD sum rule analysis of Koike and Hayashigaki
[12] results in aωp = −0.41 fm. The coupled channel unitary
approach of Lutz, Wolf, and Friman [16] leads to aωp =
(−0.44 + ı0.20) fm. An effective Lagrangian approach based
on the chiral symmetry developed by Klingl, Waas, and Weise
[17] results in aωp = (1.6 + ı0.3) fm. The corresponding
φ-meson photoproduction cross sections for these scattering
lengths, denoted with subscripts 2, 3, and 4, respectively, read

dσ
γp→φp

thr

dt 2
= 2.0 × 10−2 µb/GeV2, (9)

dσ
γp→φp

thr

dt 3
= 2.7 × 10−2 µb/GeV2, (10)

dσ
γp→φp

thr

dt 4
= 3.1 × 10−1 µb/GeV2. (11)
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FIG. 1. Differential cross section of the γp → φp reaction at
θ = 0 as a function of the photon energy. The enumerated symbols
“plus” correspond to the threshold predictions, given in Eq. (6) and
Eqs. (9)–(11). Experimental data are taken from Refs. [9,18].

Figure 1 shows predictions of Eq. (6) and Eqs. (9)–(11) by
the enumerated symbols “plus.” Experimental data at θ = 0
are taken from Refs. [9,18]. The predictions of Eqs. (6) and
(11) seem to be preferable. The difference between Eqs. (9)
and (10) and data can indicate a small ωp scattering length or
the necessity to introduce a large OZI rule evading factor in
Eq. (8) that can be related to the finite hidden strangeness in the
nucleon. For example, analysis of φ-meson photoproduction
at large angles in Refs. [2,19] favors the large OZI rule
evading factor xOZI � 3–4. Such values result in increasing
the threshold predictions based on aωp by almost an order
of magnitude. Employing this evading factor seems to be
consistent with predictions in Eqs. (9) and (10) and create
a problem for one in Eq. (11).

B. Nondiagonal transitions. The nondiagonal transition
γp → ρp → φp also contributes near threshold. Such an
example is φ-meson photoproduction with π - and η-meson
exchange, shown in Fig. 2, which is associated with the ρ → φ

transition.
The corresponding invariant amplitude written in obvious

standard notation reads

T γp→φp
m = −i

egNNmgγφm

Mφ

(
t − m2

m

)εµναβεµ(γ )ε∗
ν (φ)kγ α

qφβ

× [ūp′γ5up]F 2
m(t), (12)

where m = π, η, gγφm has a sense of gρφm/2γρ coupling and it
is taking from φ → γπ (η) decay: (gγφπ(η) � 0.14 (0.71) [15]).
For the gNNπ coupling constant we take its standard value
gNNπ � 13.3, and following estimates based on QCD sum
rule [20] and chiral perturbation theory [21], as well as the
phenomenological analysis of η photoproduction [22], we use
gNNη � 1.94. The function F 2

m(t) is a product of the form

π,η

φ

p p ’

γ ρ

π,η

φ

p p ’

γ

FIG. 2. Diagrammatic presentation of the pseudoscalar π, η

exchange processes in the γp → φp reaction.
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factors in γφm and NNm coupling vertices, taken as

F (t) = �2 − m2
m

t − m2
m

. (13)

The amplitude of Eq. (12) leads to the estimate

dσ

dt

γp→φp (π,η)

threshold
= α|t0|

(
M2

φ − t0
)2

64E0M
2
NM2

φ

(
gNNπgγφπF 2

π (t0)

t0 − m2
π

+ gNNηgγφηF
2
η (t0)

t0 − m2
η

)2

, (14)

where E0 = Ethr = (2MNMφ + M2
φ)/2MN � 1.5745 GeV

and t0 = tthr = −MNM2
φ/(MN + Mφ) � −0.49 GeV2. All pa-

rameters in Eq. (14) are fixed, except the cutoff parameter
� in Eq. (13). Actually, this parameter defines the relative
contribution of the pseudoscalar exchange channel and can
be determined from the spin density matrix element ρ1

1−1,
which defines the angular distribution of the φ → K+K−
decay as a function of the angle between the decay plane and
the plane of the photon polarization and has a sense of asym-
metry between transitions with natural (Pomeron exchange)
and unnatural parity (pseudoscalar meson) exchanges [23].
The experimental measurement of this value at |t | − |tmax|
< 0.2 GeV2 and Eγ = 1.97–2.17 GeV gives ρ1

1−1 � 0.2 [9].
Using for the “diagonal” transition the Donnachie-Landshoff
Pomeron model [2], one can get ρ1

1−1 � 0.2 at � = 1.05 GeV.
Using this data one can find

dσ

dt

γp→φp (π,η)

threshold
� 0.1µb/GeV2, (15)

giving about of 50% of the total cross section at the threshold.
So again, dσ γp→φp/dt is finite and its magnitude is in the range
of the uncertainty of other estimations. This example has a

practical significance. As long as only the “diagonal” transition
is related to the scattering length, then for its determination,
one has to subtract the “nondiagonal” contribution from the
total cross section. For this aim, the precise data on φ-meson
decay distribution in reactions with linearly polarized photon
near the threshold are required.

Finally we notice, that the differential dσ γp→φp/d� and the
total σγp→φp cross sections have the obvious kinematical phase
space factor qφ/kγ . For example, for the diagonal transition
we get

dσ

d�

γp→φp

threshold
= qφ

kγ

απ

γ 2
φ

a2
φp, σ

γp→φp

threshold = qφ

kγ

4απ2

γ 2
φ

a2
φp. (16)

If one accepts the threshold behavior of dσ/dt as in Eq. (1)
with a constant r , then the cross sections dσ/d� and σγp→φp

will decrease near threshold as (qφ/kγ )3, which seems to be
rather strong.

In summary, we analyzed the differential cross section
dσ/dt of the γp → φp reaction at threshold and have shown
that it is finite. A part of the threshold cross section is directly
related to the φN scattering length. This offer to put constraints
on the φN interaction. Non-natural parity exchange (or
nondiagonal VDM) transition also gives a finite contribution at
threshold. The way to separate diagonal (Pomeron exchange)
and nondiagonal (pseudoscalar meson exchange) transitions
requires the performance of high statistic experiments with
linearly polarized photon beams. The problems discussed
above may be studied experimentally at the electron and
photon facilities at LEPS of SPring-8, JLab, Crystal-Barrel
of ELSA, and GRAAL of ESRF.
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