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São Paulo potential as a tool for calculating S factors of fusion reactions in dense stellar matter
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The goal of this paper is to test and justify the use of the São Paulo potential model for calculating astrophysical
S factors for reactions involving stable and neutron-rich nuclei. In particular, we focus on the theoretical
description of S factors at low energies. This is important for evaluating the reaction rates in dense stellar
matter. We calculate the S factors for a number of reactions (16O+16O, 20O+20O, 20O+26Ne, 20O+32Mg,
26Ne+26Ne, 26Ne+32Mg, 32Mg+32Mg, 22O+22O, 24O+24O) with the São Paulo potential in the framework of
a one-dimensional barrier penetration model. This approach can be easily applied for many other reactions
involving different isotopes. To test the consistency of the model predictions, we compare our calculations with
those performed within the coupled-channels and fermionic molecular dynamics models. Calculated S factors are
parametrized by a simple analytic formula. The main properties and uncertainties of reaction rates (appropriate
to dense matter in cores of massive white dwarfs and crusts of accreting neutron stars) are outlined.
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I. INTRODUCTION

In this paper, we investigate the model dependence of
astrophysical S factors for fusion reactions involving stable
and neutron-rich nuclei such as 16O, 20O, 22O, 24O, 26Ne, and
32Mg. With this approach, we seek to test the applicability
of the São Paulo (SP) potential for computing S factors for a
broad range of fusion reactions involving different isotopes.

As outlined in our previous work [1,2], the determination
of the astrophysical S factor at low energies is needed for
evaluating reaction rates in different stellar environments
ranging from the core of massive stars during late stellar
evolution to dense stellar matter of white dwarf cores and
neutron star crusts. Of particular interest is the possibility of
fusion induced burning in accreting neutron stars and white
dwarfs. The accreted matter in the envelopes of neutron stars
and in the interiors of white dwarfs is eventually compressed
(and/or heated) under the weight of newly accreted material
(and under the action of various energy release mechanisms)
and undergoes nuclear transformations. These transformations
involve β captures, fusion reactions, absorption, and emission
of neutrons. β captures become especially important at
densities ρ >∼ 109 g cm−3 (e.g., Ref. [3]). They lead to
the appearance of neutron-rich isotopes which can further
participate in nuclear fusion. At ρ ∼ (4–6) × 1011 g cm−3,
neutrons begin to drip from neutron-rich atomic nuclei in the
crust of neutron stars. As a result, the inner crust of a neutron
star (the layer that extends from this neutron drip density to the
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neutron star core, to ρ ∼ 1.5 × 1014 g cm−3; see, e.g., Ref. [4])
consists of very neutron-rich atomic nuclei, electrons, and free
neutrons.

Explosive burning of carbon and other elements in the cores
of massive white dwarfs trigger type Ia supernova explosions
(e.g., Ref. [5,6]). Thermonuclear burning of accreted matter
in surface layers of neutron stars in compact binary systems
produces type I x-ray bursts [7]. Deeper burning of carbon in
accreting neutron stars is possibly responsible for superbursts
observed from some x-ray bursters (e.g., Refs. [8–10]). Even
deeper burning of accreted matter in pycnonuclear reactions
and β captures in the crust of transiently accreting neutron
stars [10–12] can power [13] thermal radiation observed from
neutron stars in soft x-ray transients during quiescent states
(see, e.g., Refs. [10,14,15]).

To study all these processes, one needs to know various
nuclear transformation rates in huge ranges of density and
temperature at drastically different physical conditions. For
instance, nuclear reactions of hydrogen and helium burning in
the surface layers of accreting neutron stars (producing type I
x-ray bursts) occur in the thermonuclear regime (possibly
with strong plasma screening [16]). In contrast, the reactions
between very neutron-rich atomic nuclei in the inner neutron
star crust [11,12] (e.g., 34Ne+34Ne → 68Ca at ρ ≈ 1.5 ×
1012 g cm−3 [11]) are supposed to occur in the pycnonuclear
regime, as a result of strong zero-point vibrations of atomic
nuclei in Coulomb lattice (e.g., Ref. [17]). More details on
various burning regimes can be found, for instance, in Refs.
[1,2,18]. As a rule, one needs to consider multicomponent
dense matter containing many isotopes. For instance, modern
simulations of type I x-ray bursts involve up to 1300 isotopes
[19]. The composition of burst ashes may depend on many
parameters. The ashes burn further after sinking into deeper
layers of the crust of an accreting neutron star [10]. Therefore,
one should deal with many nuclear reactions.
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The determination of fusion cross sections at extremely low
energies remains a critical issue for calculating reaction rates
of astrophysical interest. In the simplest framework, two heavy
ions are assumed to fuse after tunneling through the Coulomb
barrier. However, at subbarrier energies, large enhancements
of the fusion cross section have been observed compared to
theoretical predictions obtained with the barrier penetration
(BP) model. At energies around and below the Coulomb
barrier, couplings between fusion and other degrees of freedom
become significant. Coupled-channels (CC) calculations have
successfully explained the enhancements observed in the
heavy-ion fusion subbarrier cross sections for a large number
of reactions (e.g., Refs. [20,21]). Recently, hindrance of
fusion cross sections occurring at extremely low energies
for medium-mass systems has been suggested [22]. Even
though this hindrance seems to depend on the entrance channel
properties of the nuclei, its complete understanding has not
yet been achieved. In particular, for reactions involving light
nuclei such as 12C and 16O, it is not entirely clear whether the
fusion cross sections at extreme subbarrier energies will be
affected by this phenomenon. Future experiments at energies
well below the Coulomb barrier are needed to clarify this point.

For reactions involving neutron-rich nuclei, which are
expected to dominate pycnonuclear burning in the deep crust
of accreting neutron stars [11,12,18], the situation gets even
more complicated. The large spatial extent of the neutron
matter may lower an average fusion barrier, resulting in an
induced enhancement of fusion cross sections. Alternatively,
the loosely bound halo nuclei can break up in the field of
the other nucleus, leading to a loss of flux to peripheral
reaction channels, thereby causing a hindrance of the fusion
process [23–28]. Most of the calculations are qualitative, and
a fully quantitative understanding of this process remains
challenging. Because of the low intensity of radioactive
beams, experimental investigation of reaction mechanisms
with unstable beams is difficult. Studies with weakly bound
stable nuclei currently allow more precise and extensive
experimental measurements, but the results obtained so far
have not been conclusive [29–38].

In earlier works [39,40], we adopted the BP formalism
and the well-known parameter-free SP potential [41] in the
analysis of fusion cross sections involving stable nuclei. The
subbarrier data could be reasonably accounted for through
the introduction of effective barrier parameters. However, the
validity of the SP potential in providing a global description
of fusion reactions for nuclei far from the stability valley has
not been explored. Since no experimental data are available
for fusion reactions between unstable nuclei, we compare the
fusion cross sections obtained through the SP potential and the
BP model with the results provided by a CC analysis performed
with the FRESCO code [42]. In addition, we compare the BP
results with predictions of the fermionic molecular dynamics
(FMD) model [43]. Here, the nucleus-nucleus system is
treated in the spirit of the microscopic cluster model [44,45].
The wave function is fully antisymmetrized and projected
on angular momentum. The same effective nucleon-nucleon
interaction [46] is used to determine the ground state and the
nucleus-nucleus energy surface. The isospin degree of freedom
is treated explicitly in the FMD model. The microscopic

many-body nucleus-nucleus interaction is mapped in a two-
step process [47] on a local nucleus-nucleus potential that
takes into account the Pauli forbidden states. Solving the
two-body Schrödinger equation with incoming wave boundary
conditions (IWBC) [48,49], we obtain the fusion cross sections
for the 16O+16O, 22O+22O, and 24O+24O reactions.

The goal of the present paper is to prove the reliability
of the SP potential in predicting low-energy S factors for
fusion reactions involving nuclei far from stability. The
main point is to establish the uncertainties against more
elaborated approaches such as the CC and FMD models. The
advantage in adopting the SP potential and the BP model is
that once the density distribution of the reacting nuclei is
determined, no additional parameter is necessary to obtain
the real part of the nuclear interaction. Furthermore, the CC
and FMD calculations may be very time consuming. Hence,
our simple phenomenological model gives us a powerful tool
for predicting average low-energy S factors for many fusion
reactions.

The paper is organized as follows. In Sec. II we outline
the main points of the SP potential, BP model, and the CC
analysis. In addition, we compare S factors for the 16O+16O,
20O+20O, 20O+26Ne, 20O+32Mg, 26Ne+26Ne, 26Ne+32Mg,
and 32Mg+32Mg reactions obtained with and without taking
coupling effects into account. Section III contains the de-
scription of the FMD calculations. The S factors computed
using this formalism for the 16O+16O, 22O+22O, and 24O+24O
reactions are compared with those provided by the BP model.
We briefly discuss the properties of reaction rates in dense
stellar matter in Sec. IV and conclude in Sec. V.

II. THE BARRIER PENETRATION MODEL

For calculating the fusion cross section using the BP model,
we adopt the parameter-free nonlocal SP potential [41,50–52].
This potential has been used and tested in describing many
reactions over a broad energy range [39–41,53–59]. The SP
potential VSP(R,E) is related to the folding potential VF (R)
[60] through

VSP(R,E) = VF (R) exp(−4v2/c2), (1)

where c is the speed of light, and v is the local relative velocity
between the two nuclei,

v2(R,E) = (2/µ) [E − VC(R) − VSP(R,E)], (2)

where µ is the reduced mass, and VC(R) is the Coulomb
potential. In the limit of E → 0, Eq. (1) reduces to the usual
expression for the folding potential. In particular, the Pauli
nonlocality correction in the nuclear potential is negligible
for the stellar nuclear reaction rates. However, the choice of
the SP potential for calculating S factors remains valid since
this phenomenological approach represents a general model
that provides a better match to the energy dependence of the
reaction cross sections. The folding potential depends on the
matter densities of the reacting nuclei,

VF (R) =
∫

ρ1(r1)ρ2(r2)V0δ(R − r1 + r2)d3r1d
3r2, (3)
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TABLE I. Inelastic channels included in the CC
calculations. Excitation energies (in parentheses) are
in MeV.

16O 20O 26Ne 32Mg

0+(g.s.) 0+(g.s.) 0+(g.s.) 0+(g.s.)
3−(6.130) 2+(1.673) 2+(2.018) 2+(0.885)
2+(6.619) 4+(3.570)

2+(4.072)
0+(4.456)
3+(5.614)

where V0 = −456 MeV fm3. The use of the matter densities
and the δ function corresponds to the zero-range approach for
the folding potential, which is equivalent [41] to the more usual
procedure of adopting the M3Y effective nucleon-nucleon
interaction with the nucleon densities of the nuclei. We adopt
the relativistic Hartree-Bogoliubov (RHB) model to calculate
the density distributions of the nuclei.

The calculation of the fusion cross section and the associ-
ated astrophysical factor S(E) through the BP model requires
the determination of the effective potential, defined as a sum
of the Coulomb, nuclear, and centrifugal parts,

Veff(R,E) = VC(R) + VSP(R,E) + �(� + 1)h̄2

2µR2
. (4)

The Coulomb potential has been calculated through a folding
procedure using the charge densities obtained from the RHB
model. In the BP model, the fusion cross section is associated
to the flux transmitted through the barrier,

σBPM(E) = π

k2

�max∑
�=0

(2� + 1) T�. (5)

The sum is performed up to a maximum � = �max, the largest
angular momentum that produces a pocket in the effective
potential (4).

Let us compare the S factors calculated using the SP
potential and the BP model with those calculated by a CC
method using the FRESCO code [42]. For CC calculations,
it is important to determine the bare nuclear potential and
the number of states or partitions to be included in the
coupled reaction channel set. As in the BP model calculations,
we have employed the SP potential as a bare potential in
the CC analysis. As shown in Table I, we include only
inelastic excitations to low-energy excited states (g.s. labels
the ground states). The deformation length for the quadrupole
and octupole excitations are taken from Refs. [61,62].

A. Density calculations in the relativistic
Hartree-Bogoliubov theory

Deriving the cross sections for fusion reactions between
light neutron-rich nuclei by using a folding nuclear potential
model requires accurate modeling of the nuclear density
distribution. There are several ways to determine these density
distributions [63]. For example, density functional theories
provide a successful description of many nuclear properties,

in particular, of charge distributions in experimentally known
nuclei. Because these models are universal in the sense that
their parameters are carefully adjusted and valid all over the
nuclear chart, one can expect that they also well describe nuclei
far from stability. Nonrelativistic density functionals, such as
the ones based on the Skyrme or Gogny forces [64], have been
widely used in the literature.

In recent years, relativistic (covariant) density functionals
have become very accurate in describing nuclear properties
[65,66]. Best known is the RHB model [66–68], which
includes pairing correlations with a finite-range pairing force.
It provides a unified description of mean-field and pairing
correlations in nuclei. These relativistic density functionals
strongly depend on density, either through the nonlinear
coupling terms between mesons and nucleons (e.g., in the
Lagrangians with parameter sets NL3 [69]), or through explicit
density dependence for meson-nucleon vertices (e.g., in the
parameter set DD-ME2 [70]). Both parametrizations work
well in neutron-rich nuclei [66,69,70] and accurately describe
proton density distributions in the mass region of interest
[1,66].

In the current work, the RHB densities are used. It is impor-
tant to understand how the uncertainties in the calculations of
the RHB densities affect the S factors obtained within the BP
model. These uncertainties are due to the fact that particle-hole
(mean field) and particle-particle (pairing) channels of the
RHB model are not necessarily optimally parametrized. In
addition, there are no experimental data on the tail of the
density distribution at large distances from the nucleus center.
Therefore, it is unknown how well modern theories describe
the asymptotic tail of the density distribution. To resolve this
issue, we study the dependence of calculated S factors on
(i) the choice of the relativistic mean field (RMF) Lagrangian,
(ii) the uncertainties related to the choice and treatment of
pairing, and (iii) the uncertainties in the description of the tail
of the density distribution.

For simplicity, we restrict ourselves to spherical nuclei. The
RHB calculations were performed using the NL3 and DD-ME2
parametrizations of the RMF Lagrangian in the particle-hole
channel and the central part of the D1S Gogny force [64] in
the particle-particle channel. We take a number of C, O, Ne,
and Mg isotopes from the β stability line to the neutron drip
line.

The densities calculated with the NL3 and DD-ME2
parametrizations are similar. As a consequence, the difference
in the S factors calculated in the BP formalism with respective
RHB densities is rather small for the reactions involving nuclei
close to the β stability line. However, the difference can
reach a factor of 3 for the reactions involving neutron-rich
nuclei, reflecting the fact that isospin properties of the RMF
Lagrangians are not uniquely constrained.

To study the impact of pairing, the S factors of symmetric
reactions involving O and Ne isotopes were calculated from the
RHB densities with and without pairing. As shown in Fig. 1,
the largest difference in the calculated density distributions is
observed for the 22O nucleus. The origin of this difference lies
in the specifics of the shell structure of the neutron subsystem:
the filling of the νs1/2 subshell (as, for example, in the case in
24O) considerably increases the density in the central part of the
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FIG. 1. Self-consistent RHB neutron densities for the ground
states of oxygen isotopes obtained in the calculations (a) without
and (b) with pairing.

nucleus (Fig. 1). In 22O, this subshell is empty in the absence
of pairing, and it is partially filled when pairing is present.
Consequently, the largest difference in S(E) (of about a factor
of 2) is observed for the 22O+22O reaction. For reactions
involving neutron-rich Ne and Mg isotopes, only a marginal
difference is observed in the results based on the different
model parameters and treatment of pairing.

An additional uncertainty comes from the strength of the
pairing force. Physical observables such as moments of inertia
[68,71,72] and odd-even mass differences [72,73], which are
sensitive to the pairing strength, are correctly described in
many cases by the D1S Gogny force. However, there still are
some cases where the modification of the strength of the D1S
Gogny force by ≈10–15% is needed in order to reproduce
experimental data [72]. Thus, the uncertainty in the strength
of the pairing force can be estimated to be on the level of
15%. Such uncertainties do not appreciably modify the nuclear
densities, and they affect S(E) by a maximum factor of 2.
In most cases, this factor is actually lower. The study of Ne
isotopes also shows that either exact or approximate (by means
of the Lipkin-Nogami method) particle number projection has
little effect on densities and S factors.

Available experimental data on the proton density dis-
tributions cover the density range ρ ≈ 10−1–10−3 fm−3.
Thus, it is unclear how well existing theories describe the
density profile at large distances from the nucleus center,
where ρ <∼ 10−4 fm−3. Different density profiles at radial
distances corresponding to ρ < 10−4 fm−3 were used to
simulate the impact of the uncertainties in the asymptotic
tail of density distribution on S(E). It turns out that even a
drastic (definitely unphysical) assumption that ρ → 0 as soon
as ρ = 10−4 fm−3 changes S(E) very little (by a factor <∼2
only at some reaction energies). Thus, possible uncertainties
in the calculated asymptotic tail of the density distribution at
ρ <∼ 10−4 fm−3 are unimportant.

In summary, the uncertainties in S(E) (and corresponding
reaction rates) due to nuclear structure effects are expected to
be smaller than one order of magnitude even if the reactions
involve neutron-rich nuclei. For many astrophysical reactions,
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FIG. 2. 16O+16O astrophysical factors S(E) as a function of
the center-of-mass energy E = Ec.m.. Lines show theoretical results
obtained through the BP model (solid), CC calculations (dotted) and
FMD (dashed) models. Various symbols present experimental results.

such a description is satisfactory, since the uncertainties related
to the plasma physics can reach many orders of magnitude
(Sec. IV).

B. S factor results with and without coupling effects

In Fig. 2, we compare the BP model and CC calculations
against the measured [74–78] 16O+16O fusion S factors.
The S factors obtained with the BP model were previously
shown in Fig. 1 of Ref. [2]. We present these results again to
compare our simple phenomenological approach against more
sophisticated theoretical models such as CC and FMD. The
agreement between data and theoretical predictions obtained
with a single- and coupled-channels analyses (solid and dotted
lines, respectively) is satisfactory considering that there are
no free parameters included in the calculations. At extremely
low energies, where no experimental data are available, the
difference between the CC and BP results does not exceed
a factor of 4. At such low energies, we might expect a
negligible effect of couplings. However, for the determination
of astrophysical reaction rates, the calculated S factor must
be extrapolated toward the energy region of astrophysical
interest. Therefore, the determination of S factors at extremely
low energies is not completely independent of the S factors
calculated at energies around the Coulomb barrier. In this
way, couplings might affect the determination of low-energy
S(E). For astrophysical applications, a discrepancy of a factor
of 4 between the theoretical calculations can be disregarded
(Sec. IV). In calculating the SP potential, two colliding
spherical nuclei are considered in the simple approach of
frozen densities. Hence, a treatment including resonant effects
is beyond the scope of this work. In particular, resonances in
the fusion excitation function for the 16O+16O reaction are
much less pronounced than those observed for the 12C+12C
and 12C+16O reactions. This gives us confidence in the
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TABLE II. The coefficients A1, . . . , A5 and E0 in the fits expression (6) for all
calculated S factors.

Reaction Model E0 A1 A2 A3 A4 A5

16O+16O BP 10.52 56.16 −0.571 −1.160 −1.044 0.0366
16O+16O CC 10.73 55.47 −0.754 −1.05 −0.749 0.0276
16O+16O FMD 10.14 58.11 −0.358 −2.00 −1.315 0.0365
20O+20O BP 10.65 64.24 −0.737 −3.41 −0.941 0.0325
20O+20O CC 10.15 64.77 −0.738 −2.49 −1.117 0.0400
20O+26Ne BP 12.42 77.97 −0.742 −3.03 −1.059 0.0200
20O+26Ne CC 12.20 78.41 −0.885 −2.83 −0.949 0.0130
20O+32Mg BP 14.35 90.28 −0.755 −2.72 −1.197 0.0260
20O+32Mg CC 13.99 90.98 −0.951 −2.59 −0.965 0.0090
26Ne+26Ne BP 14.88 95.03 −0.756 −3.03 −1.203 0.0210
26Ne+26Ne CC 14.61 96.82 −0.732 −5.19 −0.627 −0.0720
26Ne+32Mg BP 17.16 110.75 −0.770 −2.42 −1.410 0.0316
26Ne+32Mg CC 16.52 112.30 −0.953 −2.31 −1.331 0.0342
32Mg+32Mg BP 20.32 129.51 −0.770 −3.62 −1.203 0.0041
32Mg+32Mg CC 18.79 133.43 −0.757 −3.86 −1.216 −0.0118
22O+22O BP 9.90 69.28 −0.832 −3.17 −1.200 0.0453
22O+22O FMD 9.19 71.85 −0.487 −3.07 −1.832 0.0568
24O+24O BP 9.51 74.44 −0.916 −4.20 −1.304 0.0498
24O+24O FMD 8.47 78.75 −0.129 −4.49 −2.564 0.0676

extrapolation of the 16O+16O S factor toward low energies. As
reported in Ref. [2], the BP model can be adopted to calculate
the S factor for the 16O+16O reaction over the entire energy
range.

For convenience of applications, we parametrize all calcu-
lated S factors by the equation [2]

S(E) = exp

(
A1 + A2 �E

+ A3 + A4 �E + A5 �E2

1 + exp(−�E)

)
MeV b, (6)

where �E = E − E0; the center-of-mass energy E and the
fit parameter E0 are expressed in MeV. The parameter E0 is
approximately equal to the height of the Coulomb barrier. The
fit expression reflects different behavior of S(E) above and
below the barrier. The fit parameters are presented in Table II.
The fits cover the energy ranges E � Emax, where Emax =
18 MeV for C+C and O+O reactions; 20 MeV for C+Ne,
O+Ne, Ne+Ne, C+Mg, and O+Mg reactions; and 22 MeV
for Ne+Mg and Mg+Mg reactions. In most cases, formal
maximum fit errors do not exceed 10–30%, being smaller
than expected intrinsic errors of selected theoretical models.
This fitting accuracy is more than sufficient for astrophysical
applications.

In Fig. 3, we compare the BP (solid lines) and CC (closed
circles) calculations for the reactions 20O+20O, 20O+26Ne,
20O+32Mg, 26Ne+26Ne, 26Ne+32Mg, and 32Mg+32Mg. Cou-
plings hardly affect S(E) at energies above the barrier but
mainly enhance S(E) at the subbarrier energies. Despite the
somewhat large discrepancies between the two approaches at

extremely low energies, the SP potential in the basis of the
BP model still can be employed in the determination of the
astrophysical S factor (see Sec. IV). In particular, the CC
S factors for the 26Ne+32Mg reaction are about two orders
of magnitude larger than those obtained with a single-channel
potential at very small energies. Discrepancies between the BP
and CC calculations are smaller for all other reactions studied
in this paper.

For the 20O+20O case, the one- and two-neutron transfers
to the lower excited state channels were included in the
coupling scheme in order to verify its influence on S(E). These
couplings turn out to be negligible at energies below and above
the Coulomb barrier.

III. THE FERMIONIC MOLECULAR DYNAMICS MODEL

The FMD model uses a completely different theoretical
approach to determine the fusion cross sections of reactions
involving both stable and neutron-rich nuclei. In this context,
such calculations provide an independent test for the reliability
of the SP potential and the BP model. In this section, we
present S factors for the 16O+16O, 22O+22O, and 24O+24O
reactions calculated at energies above and well below the
Coulomb barrier. Technical details are provided in a separate
publication [79].

In the FMD model [43,46], Slater determinants built out
of Gaussian wave packets are used as many-body basis states.
The mean positions, mean momenta, and widths of the wave
packets as well as the orientation of spins are treated as
variational parameters. The isospin of each wave packet is
fixed to represent either a proton or a neutron.
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S(E) as a function of the
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for the 20O+20O, 20O+26Ne,
20O+32Mg, 26Ne+26Ne, 26Ne+
32Mg, and 32Mg+32Mg reactions.
The solid lines are obtained with
the SP potential and the BP
model, whereas the closed circles
correspond to the CC analysis. See
text for details.

An effective interaction based on the realistic Argonne V18
interaction is used. The essential short-range central and tensor
correlations are treated explicitly using the unitary correlation
operator method (UCOM) [80,81]. A phenomenological mod-
ification of the correlated interaction that simulates effects
of missing three-body correlations and genuine three-body
forces is added and adjusted to reproduce experimental binding
energies and radii for doubly magic nuclei. This interaction has
been successfully used to describe binding energies and radii
of nuclei in the p and sd shells [46].

To obtain the ground state wave functions, the expectation
value of the intrinsic energy is minimized with respect to
the parameters of the single-particle states. For the oxygen
isotopes considered here, the ground states are found to be
spherical and identical to closed-shell harmonic oscillator
configurations.

The Gaussian basis allows one to easily translate and rotate
the wave functions and can therefore be used to build many-
body states for the nucleus-nucleus system in the spirit of a

microscopic cluster model [44],

|	(R)〉 = A{|ψ(−R/2)〉 ⊗ |ψ(R/2)〉} . (7)

The states of the individual clusters are given by the Slater
determinants |ψ〉. The antisymmetrization operator A ex-
changes nucleons between the clusters. The mean separation R
between the clusters plays the role of the generator coordinate
in the language of the generator coordinate method (GCM). To
restore the rotational symmetry of the Hamiltonian, the basis
states have to be projected on angular momentum [45,82]. For
the sake of simplicity, we will nevertheless use the unprojected
states in the following discussion.

The Slater determinants [Eq. (7)] provide a convenient
basis for the evaluation of matrix elements, but they cannot be
directly mapped onto a two-body picture with pointlike nuclei.
Such a mapping can be achieved using a procedure proposed
by Friedrich [47]. In the GCM basis states, the relative motion
of the two nuclei is entangled with the intrinsic motion of the
two nuclei and the total center-of-mass motion. In this respect,
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the resonating group method (RGM) basis states |�(r)〉 [45]

〈ρ, ξ1, ξ2|�(r)〉 = A{δ(r − ρ)φ(ξ1)φ(ξ2)} (8)

are more convenient. Here, the intrinsic wave functions for
the nuclei are given by φ(ξ1) and φ(ξ2), while r represents
the cluster separation. If the intrinsic degrees of freedom are
frozen, the RGM wave function depends solely on r , and we
can write the GCM basis states as

|	(R)〉 =
∫

d3r �(R, r)|�(r)〉 ⊗ |�c.m.〉. (9)

The function

�(R, r) =
(µA

πa

)3/4
exp

(
−µA

(R − r)2

2a

)
,

µA = A1A2

A1+A2
, (10)

(a is the width parameter of the wave packets) describes the
relative motion of the nuclei within the Slater determinant. The
center-of-mass motion, given by |�c.m.〉, decouples completely
from the internal degrees of freedom.

Whereas the RGM basis states are already asymptotically
orthogonal, that is,

〈�(r)|�(r ′)〉 r,r ′→∞∝ δ(r − r ′), (11)

the antisymmetrization destroys the orthogonality at short
distances, where the two nuclei overlap. We therefore define
new basis states

|�̃(r)〉 =
∫

d3r ′|�(r ′)〉n−1/2(r ′, r), (12)

using the RGM norm kernel

n(r, r ′) = 〈�(r)|�(r ′)〉. (13)

These new basis states are now orthonormal and can
finally be used to map the microscopic description with
Slater determinants [Eq. (7)] onto a collective picture using
pointlike nuclei. Technically, the transformation in Eq. (12)
requires the diagonalization of the RGM norm kernel, which
is performed numerically. Eigenstates of the norm kernel with
zero eigenvalues correspond to Pauli forbidden states.

The basis states [Eq. (12)] could be used to directly
define a (necessarily nonlocal) nucleus-nucleus potential. For
simplicity and to provide some physical insight, we instead
follow Friedrich [47] and fit a local equivalent potential VN (r)
to the GCM matrix elements of the intrinsic Hamiltonian
(where the kinetic energy of the center-of-mass motion Tc.m.

has been subtracted),

〈	(R)|H − Tc.m.|	(R)〉
!=

∫
d3r �̃(R, r)

(
− h̄2

2µ
∇2 + VC(r) + VN (r)

+E1 + E2

)
�̃(R, r). (14)

The use of

�̃(R, r) =
∫

d3r ′ n1/2(r, r ′)�(R, r ′) (15)

reflects the effects of antisymmetrization between the two
clusters. The Coulomb potential VC(r) is that of two homoge-
neously charged spheres; E1 and E2 are the intrinsic energies
of the nuclei. The fit is performed for the � = 0, 2, 4 partial
waves. As the resulting potentials are almost identical, we
make a combined fit for the different partial waves and obtain
a single effective nucleus-nucleus potential VN (r).

This potential is finally used to solve the Schrödinger
equation with incoming wave boundary conditions [48,49].
We assume here that the two nuclei will fuse if they reach
the minimum in the potential surface behind the Coulomb
barrier. The solution outside the range of the nucleus-nucleus
potential is matched to the Coulomb wave functions to obtain
the penetration probabilities for all possible partial waves.

These calculations are obtained using only frozen con-
figurations and correspond to single-channel calculations of
the fusion cross sections. To estimate the coupling to other
channels, we create FMD configurations for the combined
system of the two nuclei with constraints on the quadrupole
deformation. When compared with the frozen configurations
[Eq. (7)], we see almost no change for the GCM nucleus-
nucleus energy surface in the barrier region. For smaller
separations, the system tries to avoid the repulsion caused by
antisymmetrization and deforms, thereby lowering the energy.
As the energy surface in the region of the barrier is almost
unchanged, we expect the effect of other channels on the fusion
cross sections to be small.

As indicated by the dashed line in Fig. 2, the FMD
calculations for the 16O+16O reaction present a slightly worse
agreement with the data at energies around the Coulomb
barrier (VB ∼ 10.2 MeV). The discrepancy between the results
obtained via the FMD and BP models is not larger than
a factor of 4 over the entire range of energy. In the limit
of E → 0, the difference between the two calculations is
roughly a factor of 2. For the reactions involving neutron-rich
nuclei, such as 22O+22O and 24O+24O, the FMD S factors are
presented as open circles in Fig. 4. The comparison to the BP
model results (solid lines) indicates a good agreement between
the two theoretical models at energies above the Coulomb
barrier. At subbarrier energies, the S factor for the 22O+22O
reaction obtained from the FMD model is in reasonable
agreement with predictions of the BP model. At extremely low
energies, the difference between the theoretical calculations is
approximately a factor of 5. For the 24O+24O reaction, the
situation is somewhat worse, and the discrepancies between
the two predictions reach up to two orders of magnitude
in the limit of small energies. The FMD model predicts an
almost constant S factor for the 24O+24O reaction at subbarrier
energies, whereas the S factors calculated via the BP model
follow an exponential behavior.

IV. REACTION RATES

In the following, we outline the impact of calculated S

factors on fusion reaction rates in dense stellar matter. We do
not consider a realistic composition of stellar matter since that
would require more detailed reaction network simulations, but
we discuss two fiducial examples of pure 16O and pure 22O
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FIG. 4. Astrophysical factors S(E) as a function of the center-
of-mass energy E = Ec.m. for the 22O+22O and 24O+24O reactions,
derived from the SP potential and BP model (solid lines) and from
the FMD calculations (open circles).

matter at a density ρ = 5 × 109 g cm−3 typical for cores of
massive white dwarfs and outer crusts of neutron stars. The 16O
isotope is stable in the laboratory and remains stable against β

captures at the given density. The 22O isotope is very neutron
rich and thus unstable in the laboratory, but it becomes stable
against β decays in our scenario because relativistic degenerate
electrons in the stellar matter block β decays. At the chosen
density, the electrons are still insufficiently energetic to initiate
β captures on 22O, so our illustrative 22O matter is, in principle,
stable.

Figure 5 shows the temperature dependence of the 16O+16O
reaction rate in pure 16O matter (left panel) and of the
22O+22O reaction rate in pure 22O matter (right panel). In
the displayed temperature range, plasma ions (oxygen nuclei)
form a strongly coupled Coulomb plasma. At temperatures
T >∼ 5 × 107 K, it is liquid; while at lower T , it solidifies. The

ion plasma temperature, which measures the importance of
quantum effects in ion motion, is Tp ∼ 2 × 108 K. Recall that
the reaction rates are determined by plasma physics effects
(Coulomb barrier penetration in dense plasma environment)
and nuclear physics effects (S factors). At sufficiently high
temperatures, T >∼ Tp, oxygen burning at conditions displayed
in Fig. 5 proceeds in the thermonuclear regime (owing to
the thermal energy of reacting nuclei) with strong plasma
screening. The reaction rates exponentially decrease with
decreasing temperature, although the plasma screening effects
greatly enhance the rates. The Gamow peak energy of the most
efficiently reacting nuclei decreases and drops below the range
accessible in laboratory experiments. At T <∼ Tp the nuclei
burn in the pycnonuclear regime owing to zero-point vibrations
in the strongly coupled plasma. In this case, the reaction rates
weakly depend on the temperature but exponentially depend
on the density (e.g., Ref. [17]). At T <∼ 5 × 107 K, for the
given density, the rates become temperature independent. The
energy of the reacting nuclei becomes ∼kBTp [17], where kB

is the Boltzmann constant. Because the 22O nuclei are more
massive than 16O, their zero-point vibrations are weaker and
the pycnonuclear reaction rates are much lower, as seen by
comparing the left and right panels of Fig. 5.

As a first step, let us adopt the optimal Coulomb tunneling
model of Ref. [1] and the S factors obtained with the SP
potential. In Fig. 5, the corresponding reaction rates are plotted
by thick solid lines. The hatched regions show current theoret-
ical uncertainties of the Coulomb tunneling problem for these
S factors. They are limited by the maximum and minimum
Coulomb tunneling penetrability from Ref. [1]. We see that in
the thermonuclear burning regime, the plasma physics uncer-
tainties are reasonably small, but in the pycnonuclear regime,
they reach approximately 10 orders of magnitude. They are
much larger than the maximum uncertainties of about two
orders of magnitude in the low-energy S factors deduced from
different calculations for some reactions (Secs. II B and III).
The nature of the plasma physics uncertainties is summarized
in Ref. [1]. They are mainly due to unknown microstructure of
cold Coulomb plasma in stellar matter (a body-centered cubic
or face-centered cubic crystal, a disordered state, a crystal with
defects, etc.). They partly come from the not fully explored
response of neighboring ions to the Coulomb tunneling of

FIG. 5. (Color online) Temperature depen-
dence of the 16O+16O reaction rate R in 16O
matter (left) and of the 22O+22O reaction rate
in 22O matter (right) at a density ρ = 5 ×
109 g cm−3. The solid, dashed, and dot-dashed
lines are calculated, respectively, with the BP,
FMD, and CC S factors using the optimal
Coulomb tunneling model [1]. Hatched re-
gions show current theoretical uncertainties of
Coulomb tunneling models [1] employing the
BP S factors. Insets display some fragments on
a larger scale. See text for details.
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the reacting nuclei (static or fully relaxed crystalline lattice
models of Ref. [17], or intermediate dynamical response) and
from other delicate features of Coulomb tunneling in dense
stellar matter.

By way of comparison, let us adopt the optimal Coulomb
tunneling model and use different nuclear physics input
(different S factors, keeping in mind that the reaction rates
are directly proportional to S). The dashed lines in both
panels of Fig. 5 are calculated using the FMD S factors,
while the dot-dashed line in the left panel is obtained with
the CC S factor. We see that the uncertainties of the reaction
rates introduced by the different theoretical S factor models
are much smaller than those introduced by plasma screening
effects. The thick solid, dashed, and dot-dashed curves are
almost indistinguishable in the main panels of Fig. 5, but they
can be distinguished in the inserts. The uncertainties are of
the same order of magnitude for the reactions involving stable
isotopes and very neutron-rich isotopes. Therefore, one can
definitely use the SP potential in the basis of the BP model for
calculating the S factors to be employed as a physics input to
compute numerous reaction rates of astrophysical importance.
It is the plasma physics problem in the pycnonuclear regime
which prevents calculation of accurate reaction rates in a rather
cold stellar matter.

Let us remark that the largest uncertainties of about two
orders of magnitude between the S factors calculated by the
BP and CC methods for the 26Ne+32Mg reaction (see Sec. II B)
and by the BP and FMD methods for the 24O+24O reaction
(see Sec. III) occur at the lowest collision energies. Therefore,
they introduce the largest uncertainties into the reaction rates
only in the pycnonuclear regime where much larger plasma
physics uncertainties are expected.

Finally, let us emphasize that even sufficiently large
uncertainties in S(E) are not very important for astrophysical
applications. This is because the reaction rates are very rapidly
varying functions of the temperature (in the thermonuclear
regime, T >∼ Tp) or the density (in the pycnonuclear regime,
T <∼ Tp). Therefore, even large deviations of the reaction rate
due to the uncertainties in S(E) can be easily absorbed by
small shifts of T (at T >∼ Tp) or ρ (at T <∼ Tp). For instance, let
us consider pure 16O matter at ρ = 5 × 109 g cm−3 and T =
109 K, corresponding to the thermonuclear burning regime in
the left panel of Fig. 5, and adopt the SP potential in the basis
of the BP model. In this case, the 16O+16O reaction rate is
R ≈ 8.8 × 1021 cm−3 s−1. If we artificially increase S(E) by
one order of magnitude, the reaction rate at T = 109 K will
increase by the same factor, but we can easily restore the initial
rate by dropping the temperature to 9.3 × 108 K (∼7%). Such
temperature shifts are often insignificant.

For instance, consider a temperature profile T (ρ) in the
outer envelope of a steadily accreting neutron star in the
regime of stable nuclear burning of accreted matter (see, e.g.,
Ref. [10] and references therein). This profile is determined
by the balance of the nuclear energy generation rate and
the thermal energy outflow (mainly by thermal conduction
to the stellar surface). The thermal conduction outflow is
a slowly varying function of temperature which cannot be
affected by 10% temperature variations. Therefore, in a hot
16O matter at ρ ∼ 5 × 109 g cm−3 in our illustrative example,

a factor of 10 uncertainty in S(E) will translate into ∼7%
lowering of the temperature profile T (ρ) which will hardly
affect observational properties of the neutron star. We can
add that the nuclear physics uncertainties of S(E) will also
be smoothed in a multicomponent matter with many nuclear
reaction chains.

V. CONCLUSIONS

The astrophysical S factors are a necessary component for
calculating fusion reaction rates in dense stellar matter of
white dwarf cores and neutron star envelopes. To this aim,
one needs S factors at low energies which cannot be measured
in laboratory experiments and can only be computed.

We have calculated S factors for a number of fu-
sion reactions (16O+16O, 20O+20O, 20O+26Ne, 20O+32Mg,
26Ne+26Ne, 26Ne+32Mg, 32Mg+32Mg, 22O+22O, 24O+24O)
using the SP potential and the BP model. The reactions involve
stable and neutron-rich nuclei. We have compared these S

factors with those determined by CC and FMD calculations,
which require much larger computer resources. Our main
conclusions are the following:

(i) The overall agreement between the S factors calculated
by the BP, CC, and FMD methods is satisfactory for
calculating the fusion reaction rates involving nuclei far
off stability at the extreme temperature and/or density
conditions of astrophysical importance.

(ii) The largest difference of calculated S factors reaches
two orders of magnitude at the lowest collision energies
for the 26Ne+32Mg and 24O+24O reactions, comparing
the BP results with the CC and FMD calculations,
respectively. Such a difference translates into uncertain-
ties of the corresponding reaction rates in stellar matter,
which reach a maximum of two orders of magnitude
in the pycnonuclear regime. However, much larger
uncertainties into the pycnonuclear rates come from the
plasma physics problem which entails the calculation
of the tunneling probability taking into account the
influence of the Coulomb interaction between the
reacting nuclei by plasma particles. It is the plasma
physics problem in the pycnonuclear regime which
should be accurately solved first of all.

(iii) Considering the simplicity of the SP potential and
the BP model, and the absence of free adjustable
parameters in these calculations, we conclude that it is
the best tool for computing the S factors for numerous
reactions of astrophysical interest that involve stable
and neutron-rich isotopes.

(iv) All the S factors computed here by different methods
are parametrized by simple analytic expressions to
facilitate their applications in computer codes. Many
other S factors, which can be calculated using the BP
model, can be parametrized in the same way to produce
a bank of uniform S factor data.

Finally, it should be mentioned that the procedure of
extrapolating S factors discussed above does not include
the possibility of a low-energy hindrance of fusion reactions
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as suggested in Ref. [22]. Recently, Jiang et al. [83] have
proposed a phenomenological extrapolation of the low-energy
S factor which would cause a dramatic decline of S factor
toward lower energies and consequently significantly reduce
the reaction rate to an extent that pycnonuclear burning
would be extremely slow. These results are speculative and
disagree with the low-energy predictions of the FMD approach
which inherently should have reflected such a hindrance
term [79]. We will nevertheless discuss the consequences
and implications of such low-energy fusion behavior in a
forthcoming paper.

We are now at a stage to include a unified description of
pycnothermonuclear reaction rates [2] in a network code to
simulate nucleosynthesis in high-density stellar matter. We
expect that our results will be useful to the study of nuclear

reactions in the cores of accreting white dwarfs and in the
envelopes of accreting neutron stars and to the simulation of
a number of important astrophysical phenomena, for instance,
x-ray bursts and superbursts, and deep crustal heating in
accreting neutron stars.
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