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Nonrotating and rotating neutron stars in the extended field theoretical model
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We study the properties of nonrotating and rotating neutron stars for a new set of equations of state (EOSs)
with different high-density behavior obtained using the extended field theoretical model. The high-density
behavior for these EOSs are varied by varying the ω-meson self-coupling and hyperon-meson couplings in such
a way that the quality of fit to the bulk nuclear observables, nuclear matter incompressibility coefficient, and
hyperon-nucleon potential depths remain practically unaffected. We find that the largest value for maximum mass
for the nonrotating neutron star is 2.1M�. The radius for a neutron star with canonical mass is 12.8–14.1 km,
provided only those EOSs are considered for which the maximum mass is larger than 1.6M�, the lower bound
on the maximum mass measured so far. Our results for the very recently discovered fastest rotating neutron star
indicate that this star is supramassive with mass 1.7M�–2.7M� and circumferential equatorial radius 12–19 km.
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I. INTRODUCTION

Knowledge of neutron star properties is necessary to probe
the high-density behavior of the equation of state (EOS) for
baryonic matter in β equilibrium. The EOS for densities
higher than ρ0 = 0.16 fm−3 can be well constrained if radii
for the neutron stars over a wide range of their masses
are appropriately known. Even accurate information on the
maximum neutron star mass Mmax and radius R1.4 for the
neutron star with canonical mass (1.4M�) would narrow down
the choices for the plausible EOSs to just a few. Till date,
only neutron stars with masses of around 1.4M� have been
accurately measured [1–3]. Recent measurement of the mass
of the pulsar PSR J0751+1807 imposes lower bounds on the
maximum mass of the neutron star to be 1.6M� and 1.9M�
with 95% and 68% confidence limits, respectively [4]. The
increase in the lower bounds of the neutron star maximum mass
could eliminate the family of EOSs in which exotica appear
and substantial softening begins (around 2ρ0 to 4ρ0), leading
to appreciable reduction of the maximum mass. The available
data on the neutron star radius have large uncertainties [5–9].
The main source of the uncertainties in the measurements of
the neutron star radii are the unknown chemical composition
of the atmosphere, inaccuracies in the star’s distance, and
the high magnetic field (∼1012 G). The recent discovery of
the binary neutron star system PSR J0737–3039A,B [2] with
masses of the individual stars being 1.338M� and 1.249M�
has raised the hope for the possibility of measuring the moment
of inertia from the spin-orbit coupling effects [3]. It is expected
that a reasonably accurate value for neutron star radius
can be deduced from the moment of inertia measurements.
The very recent discovery of the fastest rotating neutron
star (with rotational frequency of 1122 Hz) observed in the
X-ray transient XTE J1739–285 [10] has placed an additional
constraint on the EOS at very high density [11].

Theoretically, the mass-radius relationship and composi-
tions of neutron stars are studied by using various mod-
els, which can be broadly grouped into (i) nonrelativistic
potential models [12], (ii) nonrelativistic mean-field models

[13–16], (iii) field-theoretical-based relativistic mean-field
(FTRMF) models [17–19], and (iv) Dirac-Brueckner-Hartree-
Fock models [20–23]. Each of these models can yield EOSs
with different high-density behavior, which is not yet well
constrained. As a result, neutron star properties vary over a
wide range even for the same model. In this work we shall
mainly focus on the variations in the properties of the neutron
stars obtained within the FTRMF models. The FTRMF models
predict values of Mmax = 1.2–3.0M� and R1.4 = 10–16 km
for nonrotating neutron stars [24–26]. The lower values of
Mmax and R1.4 correspond to neutron stars composed of
nucleons and hyperons in β equilibrium, whereas the higher
values of Mmax and R1.4 correspond to neutron stars with
no hyperons. We would like to emphasize that not all the
different parametrizations of the FTRMF model, employed to
study the neutron star properties, can reproduce satisfactorily
the basic properties of finite nuclei and nuclear matter at
the saturation density. For instance, the value of the nuclear
matter incompressibility coefficient, which largely controls
the low-density behavior of an EOS, varies between 200 and
360 MeV for different FTRMF models, although, the value
of the nuclear matter incompressibility coefficient is very well
constrained to 230 ± 10 MeV by experimental data on the
isoscalar giant monopole resonances in heavy nuclei [27,28].
The variations in neutron star properties resulting from the
differences in the high-density behavior of the different EOSs
can be appropriately studied only if the low-density behavior
for each of these EOSs is constrained by using the experimental
data on the bulk properties of the finite nuclei and nuclear
matter at the saturation density.

The extended FTRMF model [29–31] includes mixed
and self-coupling terms for the σ, ω, and ρ mesons. The
ω-meson self-coupling term enables one to vary the high-
density behavior of the EOS without affecting nuclear matter
properties at the saturation density [24]. The mixed interaction
terms involving ρ mesons allow ones to significantly vary
the density dependence of the symmetry energy coefficient
[32–34], which plays a crucial role in determining the cooling
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mechanism of a neutron star [35]. Yet, such a versatile version
of the FTRMF model has not been used to fully explore
variations in the properties of neutron stars resulting mainly
from the uncertainties in the high-density behavior of the EOS.
In the present work we use the extended FTRMF models to
obtain a new set of EOSs with different high-density behavior
for β-equilibrated matter composed of nucleons and hyperons.
Each of these different EOSs corresponds to a different choice
for the ω-meson self-coupling and hyperon-meson couplings,
which mainly affects the high-density behavior of an EOS. The
remaining parameters of the model are calibrated by using a set
of experimental data on the total binding energy and charge
rms radii for a few closed-shell nuclei. In our calibrational
procedure we also use the value of neutron skin thickness for
the 208Pb nucleus as one of the data. Because the neutron skin
thickness is only poorly known, we obtain different parameter
sets for different neutron skin thickness, ranging from 0.16 to
0.28 fm. We further restrict the parameters to yield a reasonable
value for the nuclear matter incompressibility coefficient at
the saturation density. We use our EOSs to study the mass-
radius relationship and chemical compositions for nonrotating
neutron stars. For the case of rotating neutron stars, we present
our results for the Keplerian sequences and also investigate
the variations of mass and circumferential equatorial radius
for the very recently discovered fastest rotating neutron star.

In Sec. II we outline very briefly the Lagrangian density
and corresponding energy density for the extended FTRMF
model. In Sec. III we present our various parametrizations for
different combinations of ω-meson self-coupling, hyperon-
meson couplings, and neutron skin thickness for the 208Pb
nucleus. In Sec. IV we present our results for nuclear matter
properties at the saturation density. In this section we also
discuss the quality of the fits to finite nuclei for these
parametrizations. In Sec. V we present our results for the
properties of nonrotating neutron stars. We also generate
some rotating neutron star sequences, for which the results
are presented in Sec. VI. Finally, our main conclusions are
presented in Sec. VII.

II. EXTENDED FIELD THEORETICAL MODEL

The effective Lagrangian density for the FTRMF model
generally describes the interactions of baryons via the ex-
change of σ, ω, and ρ mesons. The σ and the ω mesons are re-
sponsible for nuclear binding whereas the ρ meson is required
to obtain the correct value for the empirical symmetry energy.
The cubic and quartic terms for the self-interaction of the σ

meson are often considered, which significantly improves the
value of the nuclear matter incompressibility. Nevertheless,
the values of the nuclear matter incompressibility coefficient
for these models are usually larger in comparison to their
values extracted from the experimental data on isoscalar
giant monopole resonances. Moreover, the symmetry energy
coefficient and its density dependence is also somewhat higher
relative to the corresponding empirical estimates. One can
easily overcome these issues in the extended FTRMF model,
which includes self- and mixed interaction terms for σ, ω,

and ρ mesons up to the quartic order. In particular, mixed

interaction terms involving the ρ-meson field enables one
to vary the density dependence of the symmetry energy
coefficient and the neutron skin thickness in heavy nuclei over
a wide range without affecting the other properties of finite
nuclei [33,34]. The contribution from the self-interaction of ω

mesons plays an important role in varying the high-density
behavior of the EOS and also prevents instabilities in the
calculation of the EOS [24,36]. However, the expectation value
of the ρ-meson field is an order of magnitude smaller than that
for the ω-meson field [31]. Thus, inclusion of the ρ-meson
self-interaction can affect the properties of finite nuclei and
neutron stars only very marginally [24].

The Lagrangian density for the extended FTRMF model
can be written as

L = LBM + Lσ + Lω + Lρ + Lσωρ + Lem + Leµ + LYY ,

(1)

where the baryonic and mesonic Lagrangian LBM can be
written as

LBM =
∑
B

�B

[
iγ µ∂µ − (MB − gσBσ )

−
(

gωBγ µωµ + 1

2
gρBγ µτB.ρµ

) ]
�B. (2)

Here, the sum is taken over the complete baryon octet, which
consists of nucleons and 	,
, and � hyperons. For the
calculation of finite nuclei properties only the neutron and
proton have been considered. τB are the isospin matrices. The
Lagrangian describing self-interactions for σ, ω, and ρ mesons
can be written as

Lσ = 1

2

(
∂µσ∂µσ − m2

σ σ 2
) − κ

3!
g3

σNσ 3 − λ

4!
g4

σNσ 4, (3)

Lω = −1

4
ωµνω

µν + 1

2
m2

ωωµωµ + 1

4!
ζg4

ωN (ωµωµ)2, (4)

Lρ = −1

4
ρµνρ

µν + 1

2
m2

ρρµρµ + 1

4!
ξg4

ρN (ρµρµ)2. (5)

The field tensors ωµν and ρµν correspond to the ω and ρ

mesons and can be defined as ωµν = ∂µων − ∂νωµ and ρµν =
∂µρν − ∂νρµ. The mixed interactions of σ, ω, and ρ mesons,
Lσωρ , can be written as

Lσωρ = gσNg2
ωNσωµωµ

(
α1 + 1

2
α1

′σ
)

+ gσNg2
ρNσρµρµ

(
α2 + 1

2
α2

′σ
)

+ 1

2
α3

′g2
ωNg2

ρNωµωµρµρµ. (6)

The Lem is the Lagrangian for electromagnetic interactions
and can be expressed as

Lem = −1

4
FµνF

µν −
∑
B

e�Bγµ

1 + τ3B

2
Aµ�B, (7)

where Fµν = ∂µAν − ∂νAµ. The hyperon-hyperon interac-
tion has been included by introducing two additional mesonic
fields (σ ∗ and φ) and the corresponding Lagrangian LYY
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(Y = 	, 
, and �) can be written as

LYY =
∑
Y

�Y (gσ ∗Y σ ∗ − gφY γ µφµ)�Y

+ 1

2

(
∂νσ

∗∂νσ ∗ − m2
σ ∗σ

∗2
) − 1

4
SµνS

µν + 1

2
m2

φφµφµ.

(8)

The charge-neutral neutron star matter also includes leptons
such as e− and µ− in addition to neutrons, proton, and
hyperons at high densities. The leptonic contributions to the
total Lagrangian density can be written as

Leµ =
∑

�=e,µ

��(iγ µ∂µ − M�)��. (9)

The equation of motion for baryons, mesons, and photons
can be derived from the Lagrangian density defined in Eq. (1).
The equation of motion for baryons can be given as[
γ µ

(
i∂µ − gωBωµ − 1

2
gρBτB.ρµ − e

1 + τ3B

2
Aµ − gφBφµ

)

− (MB + gσBσ + gσ ∗Bσ ∗)

]
�B = εB�B. (10)

The Euler-Lagrange equations for the ground-state expec-
tation values of the mesons fields are

(−� + m2
σ

)
σ =

∑
B

gσBρsB − κ

2
g3

σNσ 2 − λ

6
g4

σNσ 3

+α1gσNg2
ωNω2 + α1

′g2
σNg2

ωNσω2

+α2gσNg2
ρBρ2 + α2

′g2
σNg2

ρNσρ2, (11)

(−� + m2
ω

)
ω =

∑
B

gωBρB − ζ

6
g4

ωNω3 − 2α1gσNg2
ωNσω

−α1
′g2

σNg2
ωNσ 2ω − α3

′g2
ωNg2

ρNωρ2, (12)

(−� + m2
ρ

)
ρ =

∑
B

gρBτ3BρB − ξ

6
g4

ρNρ3 − 2α2gσNg2
ρNσρ

−α2
′g2

σNg2
ρNσ 2ρ − α3

′g2
ωNg2

ρNω2ρ, (13)(−� + m2
σ ∗

)
σ ∗ =

∑
B

gσ ∗BρsB, (14)

(−� + m2
φ

)
φ =

∑
B

gφBρB, (15)

−�A0 = eρp, (16)

where the baryon density ρB , scalar density ρsB , and charge
density ρp are, respectively,

ρB = 〈�Bγ 0�B〉 = γ k3
B

6π2
, (17)

ρsB = 〈�B�B〉 = γ

(2π )3

∫ kB

0
d3k

M∗
B√

k2 + M∗2
B

, (18)

ρp =
〈
�Bγ 0 1 + τ3B

2
�B

〉
, (19)

with γ the spin degeneracy. Here M∗
B = MB − gσBσ −

gσ ∗Bσ ∗ is the effective mass of the baryon species B, kB is

its Fermi momentum, and τ3B denotes the isospin projections
of baryon B.

The energy density of uniform matter in the extended
FTRMF models is given by

E =
∑

j=B,�

1

π2

∫ kj

0
k2

√
k2 + M∗2

j dk +
∑
B

gωBωρB

+
∑
B

gρBτ3Bρ + 1

2
m2

σ σ 2 + κ

6
g3

σNσ 3 + λ

24
g4

σNσ 4

− ζ

24
g4

ωNω4 − ξ

24
g4

ρNρ4 − 1

2
m2

ωω2 − 1

2
m2

ρρ
2

−α1gσNg2
ωNσω2 − 1

2
α1

′g2
σNg2

ωNσ 2ω2 − α2gσNg2
ρNσρ2

− 1

2
α2

′g2
σNg2

ρNσ 2ρ2 − 1

2
α3

′g2
ωNg2

ρNω2ρ2 + 1

2
m2

σ ∗σ
∗2

+
∑
B

gφBφρB − 1

2
m2

φφ2. (20)

The pressure of uniform matter is given by

P =
∑

j=B,�

1

3π2

∫ kj

0

k4dk√
k2 + M∗2

j

− 1

2
m2

σ σ 2 − κ

6
g3

σNσ 3

− λ

24
g4

σNσ 4 + ζ

24
g4

ωNω4 + ξ

24
g4

ρNρ4 + 1

2
m2

ωω2

+ 1

2
m2

ρρ
2 + α1gσNg2

ωNσω2 + 1

2
α1

′g2
σNg2

ωNσ 2ω2

+α2gσNg2
ρNσρ2 + 1

2
α2

′g2
σNg2

ρNσ 2ρ2

+ 1

2
α3

′g2
ωNg2

ρNω2ρ2 − 1

2
m2

σ ∗σ
∗2 + 1

2
m2

φφ2. (21)

III. PARAMETERIZATIONS OF THE EXTENDED
FTRMF MODEL

In this section we consider various parametrizations of
the extended FTRMF model. The different parameter sets
are obtained by using different values for the ω-meson self-
coupling ζ , hyperon-meson couplings giY (i = σ, ω, ρ, σ ∗,
and φ mesons), and neutron skin thickness �r for the 208Pb
nucleus. The parameter ζ mainly affects the high-density
behavior of the EOS and cannot be well constrained by the
properties of finite nuclei. The different sets of giY can be
obtained to yield different EOSs for the dense matter without
affecting the resulting potential depth for hyperons in nuclear
matter at the saturation density. The value of �r for a single
heavy nucleus such as 208Pb, which can constrain the linear
density dependence of the symmetry energy, is only poorly
known. The different choices for ζ, giY , and �r are so made
that they span the entire range of values as often used in the
literature. We must point out that the contributions from
the ρ-meson self-coupling are ignored, because their effects
are found to be only marginal even for pure neutron matter at
very high densities [24].

Toward our parametrizational procedure we first set
hyperon-meson couplings giY = 0 in Eqs. (2) and (8). Then the
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TABLE I. New coupling strength parameters for the Lagrangian of the extended FTRMF model as given in Eq. (1). The
seven different parameter sets correspond to the different values of the neutron skin thickness �r for the 208Pb nucleus used
in the fit. The value of ω-meson self-coupling ζ is equal to 0.0 for all these parametrizations. The values of �r are in fm,
the parameters κ, α1, and α2 are in fm−1, and mσ values are in MeV. The masses for other mesons are taken to be mω =
782.5 MeV, mρ = 763 MeV, m∗

σ = 975 MeV, and mφ = 1020 MeV. For the masses of nucleons and hyperons we use MN =
939 MeV, M	 = 1116 MeV, M
 = 1193 MeV, and M� = 1313 MeV. The values of κ, λ, α1, α1

′, α2, α
′
2, and α′

3 are multiplied
by 102.

�r 0.16 0.18 0.20 0.22 0.24 0.26 0.28

gσN 10.51369 10.65616 10.44426 10.50339 10.34061 10.48597 10.32009
gωN 13.48789 13.95799 13.52239 13.80084 13.46209 13.81202 13.45113
gρN 14.98497 14.32687 13.11709 12.12975 11.18278 10.39449 10.09608
κ 2.62556 3.02154 2.43049 3.39711 3.24752 3.05611 2.82791
λ −0.73495 −0.45437 −0.04279 −1.15784 −1.36867 −0.86772 −1.13890
α1 0.22672 0.38665 0.18121 0.44021 0.35304 0.34843 0.23357
α′

1 0.07325 0.07791 0.15979 0.00987 0.00725 0.052231 0.04733
α2 3.05925 2.91796 2.96668 2.56759 2.27472 0.68086 0.60739
α′

2 1.55587 1.35016 1.25303 0.51396 0.15515 0.41389 0.33057
α′

3 1.50060 1.47585 0.09727 1.04562 0.52777 1.14566 0.30434
mσ 502.23217 495.76339 497.83489 491.48257 492.76821 490.24238 491.86681

remaining coupling parameters appearing in Eqs. (2)–(6) are
determined by fitting the FTRMF results to the experimental
data for the total binding energies and charge rms radii for
many closed-shell normal and exotic nuclei. We consider
total binding energies for 16,24O, 40,48Ca, 56,78Ni, 88Sr, 90Zr,
100,116,132Sn, and 208Pb nuclei and charge rms radii for 16O,
40,48Ca, 56Ni, 88Sr, 90Zr, 116Sn, and 208Pb nuclei. In addition,
we also fit the value of neutron skin thickness for the 208Pb
nucleus. Recently extracted values of neutron skin thickness
for the 208Pb nucleus from isospin diffusion data lie within
0.16–0.24 fm, indicating large uncertainties [37]. We generate
21 different parameter sets using different combinations of ζ

and �r . The value of ζ is taken to be 0.0, 0.03, and 0.06 and for
the �r we use 0.16, 0.18, . . . , 0.28 fm. The best-fit parameters
are obtained by minimizing the χ2 function given as

χ2 = 1

Nd − Np

Nd∑
i=1

(Oexp
i − Oth

i

δi

)2

, (22)

where Nd is the number of experimental data points and
Np the number of parameters to be fitted. The δi stand for
theoretical errors and Oexp

i and Oth
i are the experimental

and the corresponding theoretical values, respectively, for a
given observable. Since the Oth

i in Eq. (22) are calculated
by using the FTRMF model, the value of χ2 depends on
the values of the parameters appearing in Eqs. (2)–(6). The
theoretical errors δi in Eq. (22) are taken to be 1.0 MeV for the
total binding energies, 0.02 fm for the charge rms radii, and
0.005 fm for the neutron skin thickness. The best-fit parameters
for a given set of values ofOexp

i and δi are searched by using the
simulated annealing method [38,39]. In our earlier work [39]
we have obtained parameter sets for ζ = 0.0, 0.03, and 0.06
with �r = 0.18 fm. Here too we follow the same strategy to
obtain the parameter set for a given combination of �r and ζ .
In Tables I, II, and III we list the values of parameters for all the
sets presently generated. We now determine the values of the
hyperon-meson coupling parameters giY . These couplings can
be expressed in terms of the nucleon-meson couplings using

TABLE II. Same as Table I, but with ω-meson self-coupling ζ = 0.03.

�r 0.16 0.18 0.20 0.22 0.24 0.26 0.28

gσN 10.62886 10.76147 10.73005 10.71942 10.61808 10.67656 10.60110
gωN 13.65991 14.11102 14.04275 14.12534 13.88708 14.11958 14.03101
gρN 14.99076 14.67414 13.69014 12.19156 10.96456 10.14811 10.00441
κ 1.38118 1.56065 1.62316 1.61820 1.77184 1.68916 1.78793
λ 0.58536 0.97528 0.64498 1.06102 0.48269 0.86649 0.74676
α1 0.00366 0.10311 0.08281 0.10650 0.12586 0.11999 0.16088
α′

1 0.02717 0.05071 0.02980 0.06526 0.00052 0.04411 0.01669
α2 2.89393 3.06821 3.18222 2.77747 1.18745 0.68168 0.47146
α′

2 1.59659 1.16255 0.47540 0.22126 1.27574 0.54787 0.52816
α′

3 1.52088 1.35981 0.97721 0.45581 0.28975 0.35906 0.32358
mσ 506.50582 500.51106 499.52635 497.20745 499.12460 495.18211 494.93882
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TABLE III. Same as Table I, but with ω-meson self-coupling ζ = 0.06.

�r 0.16 0.18 0.20 0.22 0.24 0.26 0.28

gσN 11.05170 11.02412 10.95765 11.01908 10.91944 11.10806 11.03151
gωN 14.65579 14.66595 14.59582 14.77458 14.64700 15.19792 15.01572
gρN 14.98725 14.52186 13.41111 11.94837 10.71055 10.08835 10.00666
κ 0.66576 0.69497 0.76852 0.78002 0.90221 1.13349 0.80797
λ 2.46427 2.44874 2.41259 2.47238 2.33265 2.51229 2.41320
α1 0.00601 0.00449 0.00409 0.01469 0.03499 0.14153 0.02073
α′

1 0.00203 0.00526 0.01079 0.01559 0.00230 0.00085 0.01109
α2 2.86236 2.58355 2.66308 2.02292 1.24695 1.18538 0.55325
α′

2 1.55176 1.56881 1.30876 0.90169 0.77919 0.27422 0.16326
α′

3 1.55307 1.58487 0.84916 0.96305 0.74863 0.40699 0.72768
mσ 503.43838 501.37038 499.38134 497.27203 495.82388 490.83495 490.68907

the SU(6) model as

1

3
gσN = 1

2
gσ	 = 1

2
gσ
 = gσ�,

1

3
gωN = 1

2
gω	 = 1

2
gω
 = gω�,

gρN = gρ
 = 2gρ�, gρ	 = 0, (23)

2gσ ∗	 = 2gσ ∗
 = gσ ∗� = 2
√

2

3
gωN, gσ ∗N = 0,

2gφ	 = 2gφ
 = gφ� = 2
√

2

3
gωN, gφN = 0.

Neutron star properties are quite sensitive to the values of gσY

and gωY , whereas they are not significantly affected even if
the values of gσ ∗Y are varied over a reasonable range for a
fixed value of g�Y [40]. For gρY , gσ ∗Y , and g�Y we use the
values as given by Eq. (23). The values of gσY and gωY are
determined by using the expressions for the hyperon-nucleon
potential. The potential depth for a given hyperon species in
nuclear matter at the saturation density (ρsat) is given as

U
(N)
Y (ρsat) = −gσY σ (ρsat) + gωY ω(ρsat). (24)

The values of U
(N)
Y chosen are as follows [41]:

U
(N)
	 = −28 MeV, U

(N)

 = +30 MeV, and

(25)
U

(N)
� = −18 MeV.

Normally, gσY is determined for a given value of U
(N)
Y (ρsat)

with gωY taken from the SU(6) model. For the sake of
convenience we define

XmY =



(
gmY

gmN

)
for 	 and 
 hyperons,

2
(

gmY

gmN

)
for � hyperons,

(26)

where m stands for σ and ω mesons. In the present work
we vary XωY from 0.5 to 0.8 [42]. In Fig. 1 we display the
variations of XσY as a function of XωY obtained using the
parameter set corresponding to ζ = 0.03 and �r = 0.22 fm.
For all other combinations of ζ and �r the values of XσY

are very much the same as depicted in Fig. 1. This is because
properties of symmetric nuclear matter, such as binding energy
per nucleon B/A, nuclear matter incompressibility coefficient

K , and effective nucleon mass M∗
N, at the saturation density

are very similar for all the parametrizations considered in the
present work.

IV. NUCLEAR MATTER AND FINITE NUCLEI

The various properties associated with nuclear matter are
obtained by using the parameter sets of Tables I, II, and III.
The values of B/A,K,M∗

N , and ρsat for all these parameter
sets lie in a narrow range. We find that B/A = 16.11 ±
0.04 MeV, K = 230.24 ± 9.80 MeV, M∗

N/MN = 0.605 ±
0.004, and ρsat = 0.148 ± 0.003 fm−3. The values of the sym-
metry energy coefficient J and its linear density dependence,

L = 3ρ
dJ

dρ

∣∣∣∣
ρsat

, (27)

are strongly correlated with the �r for the 208Pb nucleus used
in the fit. In Fig. 2 we display the variations of J and L

calculated at saturation density as a function of �r . The values

0.5 0.6 0.7 0.8
XωY

0.4

0.5

0.6

0.7

0.8

X
σ 

Y

Λ
Σ
Ξ

ζ = 0.03   

∆ r = 0.22 fm

FIG. 1. (Color online) Variations of XσY with XωY for 	, 
, and
� hyperons. The values of XσY for a given value of XωY are calculated
by using Eqs. (24) and (26).
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L
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FIG. 2. (Color online) Variations of the symmetry energy co-
efficient J (upper panel) and its linear density dependence L (lower
panel) as a function of �r for different parametrizations with ζ = 0.0,

0.03, and 0.06.

of L lie in the range 80 ± 20 MeV for �r varying between
0.16 and 0.28 fm, which is in reasonable agreement with the
recent predictions based on isospin diffusion data [37].

The relative errors in the total binding energy and charge
rms radii for the nuclei included in the fits are more or less
the same as we have obtained in our earlier work [39]. So,
we do not wish to present here the detailed results. It might
be sufficient for the present purpose to display the results
for the rms errors for the total binding energies and charge
rms radii obtained for our newly generated parameter sets. In
Fig. 3 we plot the rms errors for the total binding energies and

1.6

1.8

δB
 [

M
eV

]

ζ = 0.00
ζ = 0.03
ζ = 0.06

0.16 0.2 0.24 0.28
∆r [fm]

0.02

0.03

0.04

δr
ch

 [
fm

]

FIG. 3. (Color online) Variations of the rms errors in the total
binding energies (upper panel) and charge rms radii (lower panel) as
a function of �r for different parametrizations with ζ = 0.0, 0.03,
and 0.06.

charge radii as a function of �r . It is quite clear from this
figure that the rms errors show hardly any variations, implying
that all the parameter sets generated in the present work fit
the finite nuclear properties equally well. In fact, if we do not
consider the parametrizations with ζ = 0.0 and �r = 0.26
or 0.28 fm, the rms errors on the total binding energy are
1.5–1.8 MeV, which is comparable with that obtained using
the NL3 parametrizations, the most commonly used [43]. The
rms error of charge radii for the nuclei considered in the fit lie
within the range 0.025–0.040 fm.

V. NONROTATING NEUTRON STARS

In this section we present our results for the properties
of nonrotating neutron stars for a set of EOSs obtained
using different parametrizations for the extended FTRMF
model. Each of these parametrizations corresponds to different
combinations of neutron skin thickness �r in the 208Pb
nucleus, the ω-meson self-coupling ζ and hyperon-meson
couplings XωY as described in Sec. III. The values of �r, ζ, and
XωY are so varied that they span the entire range of values often
encountered in the literature. The variations in ζ and XωY affect
the high-density behavior of the EOS, whereas the density
dependence of the symmetry energy coefficient is strongly
correlated with �r . It is therefore natural to expect that the
variations in �r, ζ, and XωY can affect significantly neutron
star properties. The parameters of the FTRMF model are so
calibrated that the quality of fit to finite nuclei, the properties
of nuclear matter at saturation density, and hyperon-nucleon
potentials are almost the same for each of the parametrizations.
Thus, these parametrizations provide the right starting point
to study the actual variations in the properties of neutron stars
resulting from the uncertainties in the EOS of dense matter.

The properties of nonrotating neutron stars are obtained
by integrating the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions [44]. To solve the TOV equations we use the EOS for
matter consisting of nucleons, hyperons, and leptons. The
composition of matter at fixed total baryon density,

ρ =
∑
B

ρB, (28)

are so determined that the charge neutrality condition∑
B

qBρB +
∑

�

q�ρ� = 0 (29)

and chemical equilibrium conditions

µB = µn − qBµe, (30)

µµ = µe (31)

are satisfied. In Eqs. (29)–(31) q and µ are the charge and
chemical potential for various baryons and leptons considered
in our calculations. For densities higher than 0.5ρ0, the
baryonic part of the EOS is evaluated within the FTRMF
model, whereas the contributions of the electrons and muons
to the EOS are evaluated within the Fermi gas approximation.
At densities lower than 0.5ρ0 down to 0.4 × 10−10ρ0 we use
the EOS of Baym-Pethick-Sutherland (BPS) [45].
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FIG. 4. (Color online) The EOSs for pure neutron matter (upper
panel) and symmetric nuclear matter (lower panel). The solid and
dashed curves correspond to �r = 0.16 and 0.28 fm, respectively.
The shaded regions represent the experimental data taken from
Ref. [61].

In Fig. 4 we plot the EOS for pure neutron matter and
symmetric nuclear matter as a function of number density for
the selected combinations of ζ and �r . We see that the EOS
for ζ = 0.0 is the most stiffest, and as ζ increases the EOS
becomes softer. The softening of the EOS with ζ is more
pronounced at higher densities. In Fig. 5 we plot our results
for the neutron and electron chemical potentials as a function
of baryon density obtained for the EOSs corresponding to
moderate values of �r and XωY . The chemical potentials
for other particles can be evaluated by using Eqs. (30)

2 4 6 8
ρ/ρ

0

100
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µ e [
M

eV
]
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1600

µ n [
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eV
]

ζ=0.00
ζ=0.03
ζ=0.06

∆r = 0.22 fm
XωY

 = 2/3

FIG. 5. (Color online) The chemical potentials for neutrons
(upper panel) and electrons (lower panel) as a function of density.
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∆Ι/Ι 
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FIG. 6. (Color online) Variation of neutron star mass as a function
of its radius R for selected EOSs. These EOSs are obtained by using
the parameter sets LY (UY) correspond to combinations of �r =
0.16 (0.28), ζ = 0.06 (0.0), and XωY = 0.5 (0.8). The parameter sets
L0 and U0 are analogous to LY and UY, respectively, but with no
hyperons. The various constraints as indicated by causality, rotation,
and �I/I = 0.014 are discussed in the text.

and (31). The change in slope for neutron chemical potential
versus baryon density is associated with the appearance of
hyperons. The decrease in µe for ρ � 2ρ0 is accompanied by
the appearance of the �− hyperons. The maximum values of
µe are less than half of the bare mass for kaons, which indicates
that the presence of hyperons inhibits kaon condensation.

Let us now consider various neutron star properties result-
ing from the EOSs for the two different parameter sets (referred
hereafter to as LY and UY). These parameter sets are obtained
by using different combinations of �r, ζ, and XωY . The
parameters of the LY set are obtained with �r = 0.16 fm, ζ =
0.06, and XωY = 0.5, and the UY parametrization is obtained
with �r = 0.28 fm, ζ = 0.0, and XωY = 0.8. Among all the
parametrizations as obtained in Sec. III, LY and UY yield the
softest and the stiffest EOSs, respectively. Thus, maximum
variations in neutron star properties can be studied by using
the EOSs obtained for the LY and UY parameter sets. For
the comparison, we also present our results for the L0 and
U0 parameter sets, which are similar to the LY and UY
parametrizations, but, without the hyperons. In Fig. 6 we
present our results for the mass-radius relationship for LY,
UY, L0, and U0 parametrizations. The region bounded by
R � 3GM/c2 is excluded by the causality limit [46]. The line
labeled �I/I = 0.014 is the radius limit estimated by Vela
pulsar glitches [47]. The rotation constraint as indicated in
Fig. 6 is obtained from [48]

νk = 1833η

(
M

M�

)1/2 (
10 km

R

)3/2

Hz, (32)

with η = 0.57 and νk = 1122 Hz, which corresponds to the
frequency for the fastest rotating neutron star present in
the recently observed X-ray transient XTE J1739–285 [10].
The renormalization factor η accounts for the effects of
deformation and gravity. We also calculate the variations in
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TABLE IV. The values of central baryon density ρc, mass M ,
radius R, radiation radius R∞, binding energy Ebind, and redshift Z

for nonrotating neutron stars with maximum mass calculated for the
EOSs obtained by using LY, UY, L0, and U0 parametrizations. The
parameter sets LY (L0) and UY (U0) yield the softest and stiffest EOS
with (without) hyperons in comparison to all other parametrizations
obtained in Sec. III.

LY UY L0 U0

ρc (fm−3) 1.05 0.84 1.12 0.79
M (M�) 1.4 2.1 1.7 2.4
R (km) 11.3 12.0 10.9 12.2
R∞ (km) 14.2 17.3 14.9 18.9
Ebind

(1053 ergs)
1.36 3.80 2.76 6.49

Z 0.25 0.41 0.37 0.57

the radiation radius,

R∞ = R√
1 − 2GM

Rc2

, (33)

for a neutron star with the canonical mass 1.4M�. It can be
verified by using the results for the LY and UY cases presented
in Fig. 6 that R∞ lies in the range 14.2–16.8 km. Similarly,
without the inclusion of hyperons, the values of R∞ vary in
the range 15.3–16.8 km. In Tables IV and V we collect a few
important bulk properties for nonrotating neutron stars with
maximum and canonical masses. We see that the values of
Mmax with the inclusion of hyperons vary between 1.4M�
and 2.1M�. Once the contributions from the hyperons are
ignored Mmax varies between 1.7M� and 2.4M�. The values
of R1.4 vary from 11.3 to 14.1 km and from 12.5 to 14.1 km
depending on whether the hyperonic contributions are included
or not. Thus, combining our results for neutron stars with and
without hyperons we find that the values of Mmax and R1.4

obtained within the FTRMF model can vary by about 1M�
and 3 km, respectively. These variations are almost half of
those obtained earlier by using the FTRMF model in which
bulk nuclear observables and nuclear matter incompressibility
were not fitted appropriately. The values of redshift given in
Tables IV and V are obtained for the ratio M/R as

Z = 1√
1 − 2GM

Rc2

− 1. (34)

TABLE V. Same as Table IV, but for the nonrotating neutron
stars with canonical mass.

LY UY L0 U0

ρc (fm−3) 1.05 0.32 0.50 0.32
R (km) 11.3 14.1 12.5 14.1
R∞ (km) 14.2 16.8 15.3 16.8
Ebind

(1053 ergs)
1.36 1.10 1.37 1.10

Z 0.25 0.19 0.22 0.19

2
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8

ρ/
ρ 0

UY
LY

Λ Ξ− Σ−
Ξ0

M
1.4

M
max

FIG. 7. (Color online) The threshold density for various hyperons
and central densities for a neutron star with the canonical mass and
maximum mass obtained for the EOSs corresponding to the parameter
sets LY and UY.

Our results for the values of redshift for a neutron star with
canonical mass are 0.22 ± 0.03. It is also interesting to note
that Z � 0.35 only for stars with masses 1.7M� or larger.

In Fig. 7 we have plotted the threshold densities for various
hyperon species. In the same figure we also show the values
of central densities for neutron stars with canonical mass and
maximum mass. The threshold density is lowest for the 	

hyperons. It is interesting to note that for the UY case the
threshold density for the 	 hyperons is almost equal to the
central density for th neutron star with the canonical mass.
This implies that the properties of the neutron star with the
canonical mass do not get affected by the hyperons for the
UY parametrization. This is the reason why our results for
the mass and radius for U0 and UY parametrizations are very
similar for neutron stars with masses up to 1.6M�, as can be
seen from Fig. 6. The 
+ and 
0 hyperons do not appear
in the density range relevant for the present study. However,
for the TM1 parametrization of the FTRMF model one finds
that all kinds of hyperons appear well below 7ρ0 [49,50].
This seems to be due to the large value of the nuclear matter
incompressibility coefficient (K = 281 MeV) associated with
the TM1 parameter set. In other words, not only do the
variations in the properties of the neutron stars get reduced
but the chemical compositions for these stars can also become
different if the parameters of the FTRMF models are calibrated
appropriately. In Fig. 8 we plot the particle fractions as a
function of radial coordinate. These fractions are calculated for
neutron stars with Mmax = 1.4M� and 2.1M�, corresponding
to the LY (upper panel) and UY (lower panel) parametrizations,
respectively. The neutron fractions in Fig. 8 are plotted after
dividing them by a factor of 3. We see that the compositions
of the neutron stars shown in the upper and lower panels are
not the same. For the case of LY parametrizations, �− and 
−
hyperons appear more or less simultaneously. For the UY case,
�0 hyperons appear instead of 
− hyperons. It is noteworthy
that for the case with UY parametrization the hyperons are the
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FIG. 8. (Color online) Particle fractions as a function of radial
coordinate of the neutron star obtained at maximum mass for LY
(upper panel) and UY (lower panel) parametrizations. The curves
labeled as “n/3" should be multiplied by 3 to get the actual neutron
fractions.

dominant particles at the interior (r < 4 km) of the neutron
star, leading to complete deleptonization. We see from Fig. 8
that the proton fractions for both cases are greater than the
critical value (∼15%) for the direct Urca process to occur [35].

We now consider our results for neutron star properties
at the canonical and maximum masses for the set of EOSs
obtained by using all the different parametrizations as given
in Sec. III. These different parametrizations correspond to
different combinations of �r, ζ, and XωY . The values of
�r, ζ, and XωY vary in the ranges 0.16–0.28 fm, 0.0–0.06,
and 0.5–0.8, respectively. Knowledge of Mmax and (R1.4)
or moment of inertia (I1.4) for neutron stars with canonical
mass are very important for understanding the behavior of
the EOS over the wide range of density well above ρ0.
The discovery of the pulsars PSR J0737–3039A,B and PSR
J0751+1807 have raised hope for the availability of more
accurate information about these quantities in the near future.
The maximum mass Mmax probes the densest segment of the
EOS, whereas R1.4 or I1.4 probe the relatively lower density
region of the EOS. It is not possible to say a priori whether or
not Mmax is correlated with the properties of a neutron star with
mass 1.4M�. Earlier studies using FTRMF models indicate
some correlations between Mmax and R1.4 [19]. Another study
carried out for 25 EOSs taken from different models show
hardly any correlations between Mmax and I1.34 [51]. In Fig. 9
we plot the variations of radius and the redshift for a neutron
star with the canonical mass as a function of Mmax. We see
that Mmax varies between 1.4M� and 2.1M� and R1.4 varies
between 11.3 and 14.1 km. The vertical line at Mmax = 1.6M�
corresponds to the mass of the PSR J0751+1807 measured
with a 95% confidence limit. If only those EOSs for which
Mmax � 1.6M� are considered then the value of R1.4 would
lie in the range 12.8–14.1 km. This result is in reasonable

FIG. 9. (Color online) Variations of radius (R1.4) and redshift
(Z1.4) for a neutron star with the canonical mass as a function of
maximum neutron star mass obtained for the EOSs corresponding
to the all different parametrizations of the extended FTRMF model
as considered. The vertical line at Mmax = 1.6M� in the upper panel
corresponds to the mass of the PSR J0751+1807 measured with a
95% confidence limit.

agreement with R1.4 = 14.8+1.8
−1.6 km, as deduced very recently

by adequately fitting the high-quality X-ray spectrum from the
neutron star X7 in the globular cluster 47 Tucanae [52]. We also
note strong correlations of Mmax with R1.4 and Z1.4. For a given
value of Mmax, the spread in the values of R1.4 is 0.7 ± 0.1 km.
Only for Mmax ∼ 1.4M� do we find that the spread in the
values of R1.4 is ∼ 0.3 km. To understand this better, we list
in Table VI the values of Mmax and R1.4 obtained for the sets
of EOSs corresponding to the selected combinations of �r, ζ ,
and XωY . For additional information we also give in Table VI
the values of Rmax that correspond to the radius of a neutron star
with maximum mass. It is clear from the table that for smaller
ζ the value of R1.4 varies with �r and is independent of XωY .
This is because, for smaller ζ , the central density for a neutron
star with mass 1.4M� is lower or almost equal to the threshold
density for hyperons (see also Fig. 7). As ζ increases, the
central density becomes larger than the threshold densities for
various hyperons, and thus R1.4 depends on �r as well as XωY .
In Fig. 10 we plot the variations of Rmax and Zmax versus the
maximum neutron star mass. We see that the correlations in the
values of Mmax and Rmax are stronger than the ones observed in
the case of Mmax and R1.4. The spread in the values of Rmax is
only 0.2 ± 0.1 km for a fixed value of Mmax. The values of Rmax

do not depend strongly on the choice of �r, as can be seen from
Table VI. The horizontal line in the lower panel corresponds to
the measured value of the redshift, Z = 0.35, for the neutron
star EXO 0748–676 [53]. For Z = 0.35, we find that Mmax ∼
1.8M� and the corresponding radius is ∼12 km. These values
for neutron star masses and the corresponding radii are in
reasonable agreement with the best suggested values of the
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TABLE VI. Values of the Mmax, R1.4, and the radius Rmax for a neutron star with maximum mass obtained
for the EOSs corresponding to the selected combinations of �r, ζ, and XωY .

ζ = 0.0 ζ = 0.06

XωY �r Mmax R1.4 Rmax Mmax R1.4 Rmax

(fm) (M�) (km) (km) (M�) (km) (km)

0.50 0.16 1.8 13.4 12.0 1.4 11.3 11.3
0.28 1.8 14.1 12.2 1.4 11.6 11.6

0.80 0.16 2.1 13.4 12.0 1.5 12.3 11.0
0.28 2.1 14.1 12.1 1.5 13.0 11.3

mass, 1.8M�, and radius, 11.5 km, corresponding to Z = 0.35
[54].

To this end, we would like to mention that the calculations
are repeated for an attractive 
-N potentials by assuming
U

(N)

 = −30 MeV in Eq. (24). We find that with this choice of

U
(N)

 our results for the variations in Mmax and R1.4 do not get

affected. However, the threshold density for the 
− hyperon
becomes lowest and the �− hyperon does not appear even
for the maximum neutron star mass. It must be pointed out
that the tensor coupling of the ω meson to the hyperons, not
considered in the present work, could increase the value of
Mmax by about 0.1M� [55]. We also remark that the effects
of the exchange and of the correlations are not considered
explicitly but are taken into account at least partly through
the nonlinear self- and mixed interactions of the mesons
[29,30]. Equations (11)–(16) can be interpreted as the Khon-
Sham equations in the relativistic case and in this sense
they include effects beyond the Hartree approach through the

FIG. 10. (Color online) Variations of radius (Rmax) and redshift
(Zmax) for a neutron star with the maximum mass as a function of
maximum neutron star mass obtained for the EOSs corresponding to
the all different parametrizations of the extended FTRMF model as
considered. The horizontal line in the lower panel corresponds to the
measured value of the redshift, Z = 0.35, for the neutron star EXO
0748–676 [53].

nonlinear couplings. However, a more accurate treatment of
the exchange and correlation effects should be pursued [56,57].

VI. ROTATING NEUTRON STARS

The properties of neutron stars can get significantly affected
in the presence of rotation. The effects of rotation on neutron
star properties are pronounced when the frequency of rotation
is close to its Keplerian limit. Earlier studies indicate that the
Keplerian frequency is ∼1000 Hz for neutron stars with mass
around 1M� [58]. Only very recently [10] has a neutron star
rotating at 1122 Hz been discovered in the X-ray transient
XTE J1739–285. In this section we shall discuss our results
for the rotating neutron stars obtained by using the extended
FTRMF model. These results are obtained by solving the
Einstein equations for stationary axisymmetric space-time.
The numerical computations are performed by using the code
written by Stergioulas [59].

In Fig. 11 we plot neutron star mass versus circumferential
equatorial radius Req for the Keplerian sequences obtained by
using EOSs for the LY, UY, L0, and U0 parametrizations of our
model. The maximum mass of the neutron stars varies between
1.7M� and 2.5M� and between 2.0M� and 3.0M� for the
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FIG. 11. (Color online) The relationship between mass M and
the circumferential equatorial radius Req for Keplerian sequences for
different EOSs obtained within the extended FTRMF model.

045801-10



NONROTATING AND ROTATING NEUTRON STARS IN AN . . . PHYSICAL REVIEW C 76, 045801 (2007)

10 12 14 16 18 20
R

eq
 [km]

1.2

1.6

2

2.4

2.8
M

 [
M

O
]

UY
LY
U0
L0

X
T

E
 J

17
39

-2
85

 (1
12

2H
z)

FIG. 12. (Color online) The mass M verses the circumferential
equatorial radius Req for neutron stars rotating at 1122 Hz for selected
EOSs obtained within the extended FTRMF model. The minimum
values for the radius indicated by open circles are determined
by the setting-in of the instability with respect to axisymmetric
perturbations. The maximum values for the radius indicated by open
squares are determined by the mass-shedding instability. The values
of maximum radius are well fitted by the solid curve obtained using
Eq. (35).

cases with and without hyperons, respectively. The values of
R1.4

eq lie in the range 18.4–20.0 km irrespective of whether
or not hyperonic degrees of freedom are included, because
the central density for the canonical mass in the presence of
rotation becomes lower than the threshold densities for the
hyperons. The Keplerian frequencies at maximum neutron star
mass for the various cases shown in Fig. 11 lie in the range
1320–1560 Hz. This means that all the EOSs obtained in the
present work can yield neutron stars rotating at 1122 Hz. In
Fig. 12 we plot the mass and the corresponding values for Req

for a neutron star rotating at 1122 Hz. The lower and upper
bounds on the radii Req are determined by the setting-in of
the axisymmetric perturbation and mass-shedding instabilities,
respectively [60]. The maximum values of Req are well fitted
by [60]

Rmax
eq = 13.87

(
M

M�

)1/3

km, (35)

which can be obtained by using νk = 1122 Hz and η = 1 in
Eq. (32). In Table VII, we give the minimum and maximum
values for Req and the corresponding neutron star mass for
the various cases plotted in Fig. 12. We get Rmin

eq = 12.1–
13.8 km and Rmax

eq = 16.5–18.7 km. The values of M(Rmin
eq )

and M(Rmax
eq ) are in the ranges 1.6–2.7M� and 1.7–2.6M�,

respectively. The absolute difference between M(Rmin
eq ) and

M(Rmax
eq ), which gives the variations in the neutron star mass

for a given EOS, is at most 0.2M�. We also find that the
baryonic masses for the neutron stars rotating with 1122 Hz
for all the cases considered here are larger than the maximum
baryonic mass for the corresponding nonrotating sequences.
This suggests that the recently discovered fastest rotating

TABLE VII. The properties of a neutron star rotating with
1122 Hz for different EOSs calculated within the FTRMF model.

EOS M(Rmin
eq ) Rmin

eq rpole/req T/|W |
(M�) (km)

L0 1.908 12.12 0.804 0.054
U0 2.721 13.46 0.815 0.063
LY 1.624 13.85 0.692 0.076
UY 2.266 12.99 0.799 0.059

EOS M(Rmax
eq ) Rmax

eq rpole/req T/|W |
(M�) (km)

L0 1.909 17.14 0.566 0.109
U0 2.556 18.73 0.556 0.127
LY 1.694 16.49 0.575 0.097
UY 2.360 18.35 0.559 0.118

neutron star rotating with 1122 Hz is supramassive. We also list
in Table VII the values for the flattening parameter (rpole/req)
and T/|W |, where T is the kinetic energy and W is the
gravitational energy.

VII. CONCLUSIONS

We have used the extended FTRMF model to obtain a new
set of EOSs with different high-density behavior. These EOSs
are then employed to study the variations in the properties of
nonrotating and rotating neutron stars. The high-density be-
havior of the EOS, which is not yet well constrained, is varied
by choosing different values of the ω-meson self-coupling and
the couplings of the ω meson to the various hyperons in our
model. The different values for these couplings are so chosen
that they span the entire range often considered in earlier
works. The remaining parameters of the models are calibrated
to yield a reasonable fit to the bulk nuclear observables,
nuclear matter incompressibility coefficient, and hyperon-
nucleon potential depths. The properties of finite nuclei and
nuclear matter associated with each of the parametrizations
used for obtaining these EOSs can be summarized as follows.
The rms errors for the total binding energies and charge radii
calculated for the nuclei considered in the fits are 1.5–1.8 MeV
and 0.025–0.040 fm. The binding energy per nucleon
is 16.11 ± 0.04 MeV, the saturation density is 0.148 ±
0.003 fm−3, and the nuclear matter incompressibility coef-
ficient is 230.24 ± 9.80 MeV.

Values of Mmax for nonrotating neutron stars composed of
nucleons and hyperons in β equilibrium can vary between
1.4M� and 2.1M�. The radius R1.4 for such neutron stars
can vary in the range 11.3–14.1 km. The values of R1.4

narrow down to only 12.8–14.1 km if one considers the
EOSs for which Mmax is larger than 1.6M� (which is the
highest mass measured for PSR J0751+1807 with a 95%
confidence limit). This result is in reasonable agreement with
R1.4 = 14.8+1.8

−1.6 km, as deduced very recently by adequately
fitting the high-quality X-ray spectrum from the neutron star
X7 in the globular cluster 47 Tucanae [52]. We also note
strong correlations between the values of Mmax and R1.4.
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The values of the redshift for neutron stars with canonical
and maximum masses are also calculated. The redshift for a
neutron star with canonical mass obtained for different EOSs
varies between 0.19 and 0.25. The maximum value for the
redshift is 0.41, which corresponds to the maximum neutron
star mass of 2.1M�. For the measured value of redshift equal
to 0.35, we find that the neutron star mass is ∼1.8M� and the
corresponding radius is ∼12 km. These values for neutron
star masses and the corresponding radii are in reasonable
agreement with the best suggested values of the mass, 1.8M�,

and radius, 11.5 km, for Z = 0.35 [54]. For the sake of
comparison we have presented our results obtained without
the inclusion of the hyperons. In this case the Mmax and R1.4

lie in the ranges 1.7–2.4M� and 12.5–14.1 km, respectively.
We use our EOSs to compute the properties of rotating

neutron stars. In particular, we studied the mass and the
circumferential equatorial radius for a neutron star rotating
at 1122 Hz as recently observed [10]. Our results for different

EOSs indicate that the mass for such a star can lie within 1.6–
2.7M�. The minimum values for the circumferential equatorial
radius determined by the onset of the instability with respect
to the axisymmetric perturbation are found to vary in the range
12.1–13.8 km. The maximum values for the circumferential
equatorial radius obtained by the mass-shedding limit vary
within 16.5–18.7 km. Looking into the results for the baryonic
mass we find that a neutron star rotating at 1122 Hz is
supramassive for our EOSs.
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[20] H. Müther, M. Prakash, and T. L. Ainsworth, Phys. Lett. B199,

469 (1987).

[21] L. Engvik, M. Hjorth-Jensen, E. Osnes, G. Bao, and E. Østgaard,
Phys. Rev. Lett. 73, 2650 (1994).

[22] L. Engvik, E. Osnes, M. Hjorth-Jensen, G. Bao, and E. Østgaard,
Astrophys. J. 469, 794 (1996).

[23] H. J. Schulze, A. Polls, A. Ramos, and I. Vidana, Phys. Rev. C
73, 058801 (2006).

[24] H. Müller and B. D. Serot, Nucl. Phys. A606, 508 (1996).
[25] A. R. Taurines, C. A. Z. Vasconcellos, M. Malherio, and

M. Chiapparini, Phys. Rev. C 63, 065801 (2001).
[26] T. K. Jha, P. K. Raina, P. K. Panda, and S. K. Patra, Phys. Rev.

C 74, 055803 (2006); [Erratum-ibid. 75, 029903 (2007)].
[27] P. G. Reinhard, Nucl. Phys. A649, 305c (1999).
[28] D. H. Youngblood, Y.-W. Lui, and H. L. Clark, Phys. Rev. C 65,

034302 (2002).
[29] R. Furnstahl, B. D. Serot, and H.-B. Tang, Nucl. Phys. A598,

539 (1996).
[30] R. Furnstahl, B. D. Serot, and H.-B. Tang, Nucl. Phys. A615,

441 (1997).
[31] B. D. Serot and J. D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997).
[32] C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett. 86, 5647

(2001).
[33] R. Furnstahl, Nucl. Phys. A706, 85 (2002).
[34] T. Sil, M. Centelles, X. Vinas, and J. Piekarewicz, Phys. Rev. C

71, 045502 (2005).
[35] J. M. Lattimer, C. J. Pethick, M. Prakash, and P. Haensel, Phys.

Rev. Lett. 66, 2701 (1991).
[36] Y. Sugahara and H. Toki, Nucl. Phys. A579, 557 (1994).
[37] L.-W. Chen, C. M. Ko, and B.-A. Li, Phys. Rev. C 72, 064309

(2005).
[38] B. K. Agrawal, S. Shlomo, and V. K. Au, Phys. Rev. C 72,

014310 (2005).
[39] R. Kumar, B. K. Agrawal, and S. K. Dhiman, Phys. Rev. C 74,

034323 (2006).
[40] I. Bednarek and R. Manka, J. Phys. G 31, 1009 (2005).
[41] J. Schaffner-Bielich and A. Gal, Phys. Rev. C 62, 034311

(2000).
[42] N. K. Glendenning and S. A. Moszkowski, Phys. Rev. Lett. 67,

2414 (1991).
[43] G. A. Lalazissis, J. Konig, and P. Ring, Phys. Rev. C 55, 540

(1997).

045801-12



NONROTATING AND ROTATING NEUTRON STARS IN AN . . . PHYSICAL REVIEW C 76, 045801 (2007)

[44] S. Weinberg, Gravitation and Cosmology (Wiley, New York,
1972).

[45] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170, 299
(1971).

[46] J. M. Lattimer, M. Prakash, D. Masak, and A. Yahil, Astrophys.
J. 355, 241 (1990).

[47] J. M. Lattimer and M. Prakash, Astrophys. J. 550, 426 (2001).
[48] J. M. Lattimer and M. Prakash, Science 304, 536 (2004).
[49] J. Schaffner and I. N. Mishustin, Phys. Rev. C 53, 1416

(1996).
[50] H. Shen, Phys. Rev. C 65, 035802 (2002).
[51] M. Bejger, T. Bulik, and P. Haensel, Mon. Not. R. Astron. Soc.

364, 635 (2005).
[52] C. O. Heinke, G. B. Rybicki, R. Narayan, and J. E. Grindlay,

Astrophys. J. 644, 1090 (2006).

[53] F. Ozel, Nature (London) 441, 1115 (2006).
[54] A. R. Villarreal and T. E. Strohmayer, Astrophys. J. 614, L121

(2004).
[55] Y. Sugahara and H. Toki, Prog. Theor. Phys. 92, 803 (1994).
[56] V. Greco, F. Matera, M. Colonna, M. Di Toro, and G. Fabbri,

Phys. Rev. C 63, 035202 (2001).
[57] P. K. Panda, J. da Providência, and C. Providência, Phys. Rev.

C 73, 035805 (2006).
[58] S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs,

and Neutron Stars (Wiley, New York, 1983).
[59] N. Stergioulas and J. L. Friedman, Astrophys. J. 444, 306 (1995).
[60] M. Bejger, P. Haensel, and J. Zdunik, Astron. Astrophys. 464,

L49 (2007).
[61] P. Danielewicz, R. Lacey, and G. Lynch, Science 298, 1592

(2002).

045801-13


