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Formation of deeply bound kaonic atoms in (K−, N) reactions
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We study theoretically the (K−, N ) reactions for the formation of the deeply bound kaonic atoms, which were
predicted to be quasistable with narrow widths, using the Green’s function method. We systematically consider
various cases with different target nuclei and energies and find clear signals in the theoretical spectra for all
cases considered in this article. The signals show very interesting structures, such as a RESONANCE DIP instead
of a resonance peak. We discuss the origins of the interesting structures and the possibilities of obtaining new
information on the existence of kaonic nuclei from the spectra of atomic state formations.
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I. INTRODUCTION

Kaonic atoms and kaonic nuclei carry important informa-
tion concerning the K−-nucleon interaction in the nuclear
medium. This information is very important in understanding
kaon properties at finite density and, for example, to determine
the constraints on kaon condensation in high-density matter.

First, we need to clarify the differences between kaonic
atoms and kaonic nuclei. The kaonic nuclei are kaon-nucleus
bound systems by way of the strong interactions inside
the nucleus and are controversial objects, as described in
Refs. [1–3]. We simply mention here that some indications of
the existence of the NARROW kaonic nuclear states reported in
Ref. [4] were withdrawn by the authors in recent conference
talks [5]. On the other hand, the kaonic atoms are the Coulomb-
assisted kaon-nucleus bound systems which were theoretically
predicted to be quasistable by the realistic kaon-nucleus optical
potentials. Thus, the kaonic atoms are expected to be observed
by proper reactions. Actually, shallow atomic states have been
observed experimentally by kaonic x-ray spectroscopy for a
long time. In the beginning of Sec. III, we show two figures to
explain the quantitative differences between kaonic atoms and
kaonic nuclei. In this article, we consider mainly the deeply
bound kaonic atoms, which cannot be observed by the standard
x-ray spectroscopy.

In this article, we study in-flight (K−, N) reactions sys-
tematically using the Green’s function method [6] for the
formation of kaonic atoms. The Green’s function method is
known to be suited for evaluating the formation rates of both
stable and unstable bound systems. The (K−, N) reaction for
the K̄-nucleus system formation was proposed in Refs. [7,8],
and theoretical results of the reaction energy spectra were
obtained in Ref. [9] using the same theoretical approach of
Ref. [10] for the deeply bound pionic atom formation reaction
[11,12], where we used the effective number approach [9],
which is best suited for studying the formation of discrete
states. Theoretical spectra were later obtained using the
Green’s function method in Ref. [13], where we showed the
difficulties in experimentally obtaining clear signals for kaonic
nuclear states formation. Similar theoretical calculations were
also performed in Ref. [14]. In our previous paper [13], we
also found simultaneously that there existed clear signals

for kaonic atom formation in the theoretical spectra which
showed interesting structures such as RESONANCE DIP. We
think the evaluation made in Refs. [9,13] is very interesting
and important to knowing the experimental feasibilities of the
(K−, N ) reaction and to understanding the deeper meaning of
the observed spectra for both kaonic atom and kaonic nuclei
formation [7,15].

The purpose of this article is to study thoroughly the
atomic state formation spectra by (K−, N) reactions. We
consider various cases with different target nuclei and incident
energies and show the calculated spectra. We then study the
origins of the interesting structures of the spectra reported in
this article and in Ref. [13], and we study the experimental
feasibility. We also discuss the possibilities of obtaining new
information on the kaon-nucleus interaction and the existence
of kaonic nuclei from the (K−, N ) spectra of the atomic
state formation. We believe that realistic calculations of the
formation spectra are necessary for all observed results in
order to study kaon properties in the nuclear medium and to
obtain decisive conclusions. So far, experimental studies of the
in-flight (K−, N ) reactions were proposed to search for kaonic
nuclei and performed by Kishimoto and his collaborators
[7,15]. Our calculated results for kaonic nuclei formation
[9,13] are in good agreement with the data in Ref. [16],
which do not show any clear peaks and were reported after our
predictions.

The K−-nucleus interaction has been studied for a long
time based on the lightly bound kaonic atom data obtained by
x-ray spectroscopy. Very interesting features of kaon-nucleus
bound systems are tied to the properties of kaons in nuclei
which are strongly influenced by the change undergone by
the �(1405) in the nuclear medium, because the �(1405)
is a resonance state just below the kaon-nucleon threshold.
[We refer to the �(1405) generically although chiral theories
predict two �(1405) states [17] for which experimental
evidence is claimed [18].] In fact, studies of kaonic atoms have
been carried out by modifying the properties of the �(1405)
in the nuclear medium [19–21]. These works reproduce
the properties of specific kaonic atoms reasonably well. In
Ref. [22], a phenomenological study of kaonic atoms is per-
formed comprehensively, where different density-dependent
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potentials are considered for χ2 fits in order to take into account
possible nonlinear effects caused by the �(1405) resonance.

Recently, there have been significant developments in the
description of hadron properties in terms of the SU(3) chiral
Lagrangian. The interpretation of the �(1405) resonance state
as a baryon-meson coupled system proposed in Ref. [23] is
also supported by studies with the chiral Lagrangian [24,25].
Subsequently, the properties of �(1405) in nuclear medium
using the SU(3) chiral unitary model were also investigated
by Waas et al. [26], Lutz [27], Ramos and Oset [28], and
Cieplý et al. [29]. All these works considered the Pauli effect
on the intermediate nucleons. In addition, in Ref. [27], the
self-energy of the kaon in the intermediate states is considered,
and in Ref. [28], the self-energies of the pions and baryons are
also taken into account. An update of Ref. [28] considers also
the effect of the p-wave self-energy [30], which, however,
has a negligible effect in atoms [31]. These approaches lead
to a kaon self-energy in the nuclear medium that can be
tested with kaonic atoms and kaonic nuclei. The in-medium
K̄ properties have been studied also in Refs. [32,33] based on
the meson-exchange Jülich K̄N interaction and in Ref. [34]
for the environment in heavy ion collisions. These theoretical
potentials are shown to have the ability to reproduce the
kaonic atom data reasonably well [35,36]. The kaonic nuclear
states were also studied using these interactions and shown
to have large decay widths of the order of several tens of
MeV [8,9,13,35,37,38].

In this work, we mainly use the phenomenological optical
potential obtained in Ref. [22] and the microscopic chiral
unitary optical potential obtained in Ref. [28] to investigate
the structure and formation of deeply bound kaonic atoms.
We also consider another type of phenomenological optical
potential developed to take into account the two-body kaon
absorption effects explicitly according to Ref. [38].

In Sec. II, we describe the theoretical models used to study
the structure and formation of kaonic atoms. Numerical results
are presented and discussed in Sec. III. In Sec. IV, we discuss
the effects of the existence of kaonic nuclei in the spectra in the
energy region of the atomic states formation and also discuss
the origin of the interesting spectra shape of the atomic states
formation. We give conclusions of this study in Sec. V.

II. FORMALISM

To investigate the structure and formation of the kaonic
atoms theoretically, we consider the Klein-Gordon equation

[−∇2 + µ2 + 2µVopt(r)]φ(r) = [ω − Vcoul(r)]2φ(r). (1)

Here, µ is the kaon-nucleus reduced mass and Vcoul(r) is the
Coulomb potential with a finite nuclear size:

Vcoul(r) = −e2
∫

ρch(r ′)
|r − r ′|d

3r ′, (2)

where ρch(r) is the charge distribution of the nucleus. We
employ the empirical Woods-Saxon form for the density as

ρch(r) = ρ0

1 + exp[(r − R)/a]
, (3)

where we use R = 1.18A1/3 − 0.48 fm and a = 0.5 fm, with
A the nuclear mass number. To evaluate the kaon-nucleus
optical potential, we use the point nucleon density distributions
deduced from ρch in Eq. (3) by the same prescription described
in Sec. 4 in Ref. [39]. The shapes of the density distributions
of the proton and neutron are assumed to be the same in this
article. For the studies of the structure of the kaonic atoms,
we solve the Klein-Gordon equation numerically, following
the method of Oset and Salcedo [40]. The application of this
method to pionic atom studies is reported in detail in Ref. [39].

We use the Green’s function method [6] to calculate the
formation cross sections of the K̄-nucleus system in the
(K−, p) reactions. The details of the application of the Green’s
function method are found in Refs. [41–44].

The present method starts with a separation of the reaction
cross section into the nuclear response function S(E) and the
elementary cross section of the p(K̄, p)K̄ with the impulse
approximation

(
d2σ

d�dE

)
A(K̄,p)(A−1)⊗K̄

=
(

dσ

d�

)lab

p(K̄,p)K̄

× S(E). (4)

The forward differential cross section of the elementary
process p(K̄, p)K̄ in the laboratory frame (dσ/d�)Lab

p(K̄,p)K̄

is evaluated to be 8.8 mb/sr at TK̄ = 600 MeV using the K−p

elastic cross-section data in Ref. [45]. We should mention
here that the corrections to this evaluation were reported in
Ref. [29], which reduce the elementary cross section to be
3.6 mb/sr effectively. In this article, we show all the calculated
results assuming the elementary cross section to be 8.8 mb/sr.

The calculation of the nuclear response function with the
complex potential is formulated by Morimatsu and Yazaki [6]
in a generic form as

S(E) = − 1

π
Im

∑
f

τ
†
f G(E)τf , (5)

where the summation is taken over all possible final states. The
amplitude τf denotes the transition of the incident particle (K̄)
to the proton-hole and the outgoing ejectile (p), involving the
proton-hole wave function ψjp

and the distorted waves χi and
χf , of the projectile and ejectile, taking the appropriate spin
sum; that is,

τf (r) = χ∗
f (r)ξ ∗

1/2,ms
[Y ∗

lK̄
(r̂) ⊗ ψjp

(r)]JMχi(r), (6)

with the meson angular wave function YlK̄ (r̂) and the spin wave
function ξ1/2,ms

of the ejectile. The distorted waves are written
with the distortion factor F (r) as

χ∗
f (r)χi(r) = exp(iq · r)F (r), (7)

with the momentum transfer q. The distortion factor F (r) is
defined as

F (r) = exp

(
−1

2
σ̄

∫ ∞

−∞
dz′ρ̄(z′, b)

)
, (8)

where σ̄ is the averaged distortion cross section defined as

σ̄ = σK̄N + σpN

2
, (9)
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with the total cross sections of the incident kaon and emitted
proton with the nucleons in the nucleus. The averaged nuclear
density ρ̄(z′, b) in Eq. (8) is defined as

ρ̄(r) = ρ0

1 + exp[(r − R̄)/ā]
(10)

in the polar coordinates with the averaged radial parameter R̄

and diffuseness parameter ā defined as

R̄ = Ri + Rf

2
(11)

and

ā = ai + af

2
, (12)

with the density parameters of the nuclei in the initial and final
states.

Green’s function G(E) contains the kaon-nucleus optical
potential in the Hamiltonian HK̄ as

G(E, r, r ′) = 〈p−1|φK̄ (r)
1

E − HK̄ + iε
φ
†
K̄

(r)|p−1〉, (13)

where φ
†
K̄

is the meson creation operator, |p−1〉 the proton-hole
state, and E the kaon energy defined as E = TK̄ − Tp − Sp

using the kinematical variables defined in the formation
reaction, where TK̄ is the incident kaon kinetic energy,
Tp the emitted proton kinetic energy, and Sp the proton
separation energy from each proton single-particle level, which
is compiled in Table III in Ref. [9] and in Table III in this
article for various cases. The separation energies for the ground
states of the daughter nuclei can be found in the Table of
Isotopes [46]. Obtaining Green’s function with the optical
potential is essentially the same as solving the associated
Klein-Gordon equation. We can calculate the nuclear response
function S(E) from τ

†
f (r)G(E; r, r ′)τf (r ′) by performing the

appropriate numerical integrations for the variables r and r ′.
In the Green’s function formalism, we can calculate the

response function S(E) for both the bound and quasifree
kaon production energy regions, and we can also perform
the summation of the kaon final states without assuming the
existence of discrete kaon bound states, which could disappear
in the cases with a strongly absorptive optical potential.

As for the kaon-nucleus interaction, we mainly consider two
different optical potentials: that obtained with the chiral unitary
approach [28] and that obtained with a phenomenological
fit [22]. We also consider another type of phenomenological
potential in some cases for comparison, which was developed
according to Ref. [38] to take into account the two-body kaon
absorption effect explicitly. The optical potentials of the chiral
unitary approach, which is obtained by the kaon self-energy
in nuclear matter with the local density approximation, is
described in detail in Ref. [28].

The optical potential obtained in the phenomenological fit
[22] is written as

2µVopt = −4πηaeff(ρ)ρ(r), (14)

where aeff(ρ) is a density-dependent effective scattering length
and η = 1 + mK̄/MN . The aeff(ρ) is parametrized as

Re aeff = −0.15 + 1.66(ρ/ρ0)0.24 fm (15)

and

Imaeff = 0.62 − 0.04(ρ/ρ0)0.24 fm. (16)

When we consider the atomic states, the energy dependence
of the potentials considered in Ref. [13] is irrelevant because
of the relatively small binding energies of the atomic states.
We include the energy dependence of the phenomenological
optical potentials in exactly the same manner as in Refs. [13,
47] whenever necessary.

Another type of phenomenological optical potential has
the same real part as that of the phenomenological potential
described above [Eq. (15)], but its imaginary part has a
different form to show the two-body kaon absorption effect
explicitly as explained in Ref. [38] in detail,

ImVopt = −4π

2µ

{(
1 + mK̄

mN

)
a1ρ +

(
1 + mK̄

2mN

)
a2ρ

2

}
.

(17)

Two parameter sets are newly determined to obtain a better
χ2 fit to the kaonic atom data for various nuclei than with
the parameters listed in Ref. [38] where we only considered
the K−-12C system. One set is (a1, a2) = (1.15, 66.8) in
kaon mass units determined by assuming the kaon absorption
from atomic 2p states [38], and another set is (a1, a2) =
(0.91, 136) in kaon mass units determined by assuming the
kaon absorption from atomic 3d states [38]. In this article, we
adopted the potential parameter (a1, a2) = (1.15, 66.8). We
use the same energy dependence of the potential as in Ref. [38]
whenever necessary.

III. NUMERICAL RESULTS

First, we show plots of the calculated results of the density
distributions of kaon bound states (Fig. 1) and of the (K−, p)
reaction spectra (Fig. 2) for kaonic atoms and kaonic nuclei
formation of the K−−15N system to explain the differences
of the kaonic atoms and kaonic nuclei. Both states are
solutions of the Klein-Gordon equation, Eq. (1), with the same
optical potential. Thus, they should be called sequentially as
1s, 2s, 3s, . . . for s-wave states, for example. However, since
the real part of the optical potential is strongly attractive, there
exist kaonic nuclear states bound in the interior of the nucleus
which can be easily distinguished from the atomic “outer”
states in the series of eigenstates of the same Hamiltonian, as
we can see in Fig. 1, which shows the density distributions
of the s-wave kaonic bound states in 15N. Both the ground
state (1s) and the first excited state (2s) exist almost inside
the nucleus, while the second excited state (3s) behaves like
the ground state in the Coulomb potential and is usually
recognized as the “ground state of kaonic ATOMS.” As we
can expect from the density distributions, the interior states
(1s and 2s) and the outer state (3s) must have much different
properties. Thus, we call the interior states “kaonic nuclei”
and the outer states “kaonic atoms” to distinguish these states
with significantly different character. This classification can
be easily and unambiguously performed by observing the
densities, for example, as shown in Fig. 1.
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FIG. 1. Kaonic bound state density distributions |φ(r)|2r2 in
coordinate space for 15N obtained with the phenomenological optical
potential [22]. The solid and dotted curves indicate the distributions
of 1s and 2s states. The dashed curve represents the density of the
3s state which is usually regarded as a kaonic atom 1s state. The
half-density radius of 15N is also shown.

In Fig. 2, we show the calculated (K−, p) reaction spectra
for the formation of K−−15N bound systems. Here, we can
also see the differences of the atomic states and nuclear states.
In the spectra, the contributions of the formation of nuclear
states distribute in a wide energy range such as Tp = 600–
800 MeV and do not make any clear signals because of the
large decay widths in our calculation. On the other hand, the
atomic states have smaller binding energies and widths and
make clear signals around the threshold Tp ∼ 590 MeV shown
as two spikes in Fig. 2. The detail structures of the spikes will be
explained later. In this article, we mainly consider the structure
and formation of these atomic outer states.

We solve the Klein-Gordon equation with the optical
potential shown in Eq. (1) to obtain the binding energies and
widths of the atomic states. The results for lighter nuclei were
already compiled in Tables I and II of Ref. [9]. We show
here the calculated results for heavier nuclei, 119In and 207Tl,
which correspond to the kaon-nucleus systems formulated by
the 120Sn(K−, p) and 208Pb(K−, p) reactions. We show the
calculated binding energies and widths of kaonic atoms in
Tables I and II for the phenomenological optical potential [22]
and the chiral unitary optical potential [28], respectively. We
also show the level structure of the kaonic atoms in 207Tl in
Fig. 3. As we found before in our previous paper [9], the

TABLE I. Calculated binding energies and widths of kaonic
atoms in 119In and 207Tl with the phenomenological optical potential
[22] in units of keV.

Atomic state 119In 207Tl
(keV)

B.E. � B.E. �

1s 4309.7 999.7 7279.9 1544.3
2s 2226.6 391.0 4194.2 711.5
3s 1376.8 194.7 2775.7 393.7
4s 938.2 111.0 1982.7 241.6
2p 3774.2 740.2 6779.2 1335.6
3p 2015.2 304.7 3962.3 629.2
4p 1270.5 156.4 2646.7 353.1
3d 2890.7 328.2 5853.3 896.4
4d 1658.7 160.2 3536.3 451.9
4f 1930.7 54.2 4629.0 434.4

TABLE II. Calculated binding energies and widths of kaonic
atoms in 119In and 207Tl with the optical potential of the chiral
unitary model [28] in units of keV.

Atomic state 119In 207Tl
(keV)

B.E. � B.E. �

1s 4296.8 944.5 7241.8 1502.7
2s 2226.2 366.7 4186.5 676.6
3s 1377.5 182.2 2774.5 372.0
4s 938.9 103.7 1983.1 227.8
2p 3778.4 681.0 6755.9 1270.8
3p 2020.5 279.9 3960.2 586.8
4p 1273.9 143.4 2648.5 328.1
3d 2888.2 303.8 5837.0 858.2
4d 1658.9 147.6 3532.9 424.0
4f 1930.9 48.4 4626.0 404.8

results obtained by both potentials resemble each other and,
at the same time, indicate the existence of discrete deeply
bound atomic states in all nuclei generally. For example, as
shown in Fig. 3, the atomic 1s, 2p, 3d states overlap each
other because of the level widths. However, we can also
expect to have other narrow atomic states. Actually we should
notice here that kaonic x-ray spectroscopy only provides
data for the 7i state in this nuclear mass region. So, states
deeper than the 7i state have not been observed so far and
should be studied experimentally. As we mentioned above, the
theoretical predictions are quite robust in this binding energy
region and are quite reliable. Similar results for the atomic
level structure with the phenomenological potential were also
reported in Ref. [37].

To evaluate the formation spectra of these atomic states by
the (K−, N ) reactions, we use the Green’s function method. As
we explained in Sec. II, in the (K−, N) reactions, one nucleon
is picked up and emitted from the target nucleus in the final
states. We mainly consider here the (K−, p) reaction. The
deeper proton-hole states have large decay widths for γ decay
and are not suited for the kaonic atom formation, because the
widths of the proton-hole states can be significantly larger
than the level spacing of kaonic atoms and can smear out
all signals. Thus, we consider only the proton single-particle
levels corresponding to the ground states of the daughter nuclei
which do not have decay widths. We show in Table III the

TABLE III. One-proton separation energies Sp of 12C,
16O, 40Ca, 120Sn, and 208Pb taken from Ref. [46]. All proton-
holes in the final states correspond to the ground states of
the daughter nuclei and have no decay widths.

Single-particle states

Target jp Sp [MeV]

12C 1p3/2 16.0
16O 1p1/2 12.1
40Ca 1d3/2 8.3
120Sn 1g9/2 10.7
208Pb 3s1/2 8.0
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FIG. 2. Calculated spectra of the 16O(K−, p)15N ⊗ K− reactions
at TK̄ = 600 MeV plotted as a function of the emitted proton energy
Tp at θ lab

p = 0◦. The energy-dependent phenomenological potential
is used as in Ref. [13]. The arrow indicates the kaon production
threshold.

proton single-particle levels jp and the separation energies Sp

used in this paper, which are taken from Ref. [46].
As one can see in the studies of the deeply bound π atom

formation reactions [10,12], the matching condition of the
momentum transfer and the angular momentum transfer plays
an important role in providing the large formation rate. As
we can see from Table III, the target nuclei considered in this
paper have various proton-hole states with different quantum
numbers, and we can expect to have the interesting spectra
with the characteristic behaviors for different targets. In Fig. 4,
we show the momentum transfer of the 16O(K−, p)15N ⊗ K−
reactions as a function of the incident kaon kinetic energy
for several kaon binding energy cases. We find that the
recoilless condition is only satisfied for kaon bound states
with relatively small binding energies (B.E. � several MeV),
for small incident kaon energies. For the states with large
B.E., such as kaonic nuclear states, the recoilless condition
is never satisfied; thus, the finite angular momentum transfer
is preferred by the matching condition. For kaonic atoms, we
can expect to have nearly recoilless kinematics for the small
incident kaon energies. On the other hand, the momentum
transfer is expected to be q ∼ 200 MeV/c for the kaon energies
obtained at the Japan Proton Accelerator Research Complex
(J-PARC) facility.

FIG. 4. Momentum transfer in the 16O(K−, p)15N ⊗ K− reac-
tions. The proton separation energy Sp is fixed at 12.1 MeV, and the
kaon binding energies are assumed to be 0, 50, and 100 MeV.

We show in Fig. 5 the calculated results of the kaonic atom
formation spectra by an in-flight kaon beam for light nuclei.
As reported in Ref. [13], we find very interesting shapes of
the spectra for all nuclei. The calculated result for 12C target
with the chiral unitary optical potential (upper left figure in
Fig. 5) is essentially the same as that in Fig. 5 in Ref. [13]. In
this article, since we only include one proton-hole state in the
final states corresponding to the ground states of the daughter
nuclei, the absolute value of the cross sections are smaller than
in the previous results [13].

As we can see from Fig. 5, the interesting structure of the
spectra could be characterized by the angular momenta of the
proton and kaon single-particle states. For the 12C target case,
the proton-hole state is considered to be 1p3/2. In this case, the
subcomponents coupled with the lK̄ = 0 states (1s, 2s, . . .)
make the dips, while the subcomponents coupled with the
lK̄ = 1 states (2p, 3p, . . .) make the spectral shape with the
steep rise and fall putting the resonance energy in between.
We can see qualitatively the same characteristic shapes for the
16O target case in Fig. 5, where the proton hole state is the
1p1/2 state. On the other hand, the spectral shape has different
features for the 40Ca target with the 1d3/2 proton-hole state in
the daughter nucleus. In this case, the lK̄ = 1 states show the

FIG. 3. Energy levels of kaonic atoms of 207Tl up to the principle quantum number n = 7 obtained with the optical potentials of the chiral
unitary model (left) and of the phenomenological fit (right). The hatched areas indicate the level widths for the deeply bound states such as
B.E. >3 MeV.
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FIG. 5. Kaonic atom formation cross sec-
tions in (K−, p) reactions at TK̄ = 600 MeV for
12C (left), 16O (center), and 40Ca (right) target
nuclei plotted as functions of the emitted proton
energy Tp at θ lab

p = 0◦ for the chiral unitary po-
tential (upper) [28] and for the phenomenologi-
cal potential (lower) [22]. The vertical dashed
lines indicate the binding energies of some
kaonic atom states as indicated in the figure.
The proton single-particle state considered for
each target is 12C (1p3/2), 16O (1p1/2), and 40Ca
(1d3/2), as listed in Table III.

dip structure and the lK̄ = 2 state has the spectral shape with
the steep rise and fall. As for the origin of these interesting
spectral shapes, we will offer some discussion in Sec. IV B.

In Fig. 5, we can also see that the formation spectra
calculated with the phenomenological optical potential and
the chiral unitary potential are qualitatively the same. Thus,
we can expect that the theoretical predictions are quite robust
for these potentials. On the other hand, to distinguish the
different potentials, we need very precise data which enable us
to recognize the tiny differences appearing between the upper
and lower figures in Fig. 5.

In Fig. 6, we also consider the heavier target cases, 120Sn
and 208Pb. The reason to consider the heavier targets is to

FIG. 6. Kaonic atom formation cross sections in (K−, p) reac-
tions at TK̄ = 600 MeV for 120Sn and 208Pb target nuclei plotted as
functions of the emitted proton energy Tp at θ lab

p = 0◦ for the chiral
unitary potential (upper) [28] and the phenomenological potential
(lower) [22]. The vertical dashed lines indicate the binding energies
of some kaonic atom states for 120Sn as indicated in the figure. For
208Pb, the bound states up to 4d do not show clear indications in the
spectra. The proton single-particle state considered for each target is
120Sn (1g9/2) and 208Pb (3s1/2) as listed in Table III.

investigate the spectral shapes with different proton single-
particle levels, 1g9/2 for 120Sn and 3s1/2 for 208Pb, and to study
the possibility of observing very deeply bound kaonic atoms.
Actually, for the heavier nuclei, the atomic level spacing is
expected to be larger in general than in lighter nuclei because
of the Coulomb-like level structure, and thus the very high
energy resolution could be unnecessary to observe the peaks
in the formation spectra and to distinguish the results with both
potentials.

As we can see in Fig. 6, the level spacing and width of
each peak structure are larger for heavier targets cases than for
lighter targets shown in Fig. 5 as we expected. The spectrum for
the 120Sn target case, where the proton 1g9/2 state is considered,
shows the qualitatively same structure as that for the 40Ca
target with the 1d3/2 proton state and has the dips of the lK̄ =
1 states and the shape with the rise and fall of lK̄ = 2. For
the 208Pb target case, we can only observe the clear signals
for the formation of shallow atomic states at TK̄ = 600 MeV.
The bound states up to 4d do not show the clear indications
due to the large widths and the large momentum transfer. In
both target cases, the shapes of the calculated spectra of both
potentials, chiral unitary model and phenomenological model,
resemble each other, and it seems difficult to distinguish these
potentials by the observed spectra.

Finally, we show the calculated results for the lower kaonic
incident energy cases to know the spectra with the recoilless
condition. In Fig. 7, we show the calculated spectra for the
208Pb target. Here, as shown in Eqs. (7) and (8), we have
not included Coulomb distortion for the emitted proton in our
calculation, which could reduce the absolute cross sections for
the lower proton energy cases. In the recoilless kinematics,
the kaonic states with small angular momenta are expected to
be largely populated with the s−1

1/2 proton hole for the 208Pb
target because of the matching condition. Actually, the s and d

kaonic state contributions dominate the spectra. The kaonic
p states are suppressed by parity. We have found that the
calculated spectra with the recoilless condition shown in Fig.
7 are significantly different from those with the in-flight
kaon cases shown in Fig. 6 (right) and have found that the
deeper kaonic states with lower angular momenta provide clear
structures in the spectra. Hence, we think that the atomic states
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FIG. 7. Kaonic atom formation cross sections in 208Pb(K−, p)
reactions at TK̄ = 22 MeV, which correspond to the recoilless
kinematics for the 208Pb target, plotted as function of the emitted
proton energy Tp at θ lab

p = 0◦ for the chiral unitary potential (upper)
[28], for the phenomenological potential (middle) [22], and another
phenomenological potential defined in Eq. (17) with the parameters,
(a1, a2) = (1.15, 66.8) in kaon mass units (lower). The dotted and
dashed curves in the upper figure indicate the subcomponents of s-
and d-wave kaonic atom states, respectively, and the vertical dashed
lines indicate the binding energies of s- and d-wave kaonic atom
states. The proton single-particle state considered is 3s1/2 as listed in
Table III.

formation with the recoilless kinematics using the low energy
kaon is also interesting in the study of deeply bound kaonic
atoms. On the other hand, as shown in Fig. 7, we have found
again that the differences of the expected spectra due to those
of the kaon-nucleus optical potential are tiny at the recoilless
kinematics case.

IV. DISCUSSIONS

A. Effects of the existence of kaonic nuclei

In this section, we would like to explore the possible effects
to the (K−, p) spectra in the energy region of the atomic states
formation due to the existence of kaonic nuclear states. As
we discussed in the beginning of Sec. III, the kaonic nuclear
states and kaonic atom states are the eigenstates of the same
Hamiltonian, and their wave functions are expected to satisfy
the orthogonality condition.1 Thus, if there exist kaonic nuclear
states, the wave functions of the kaonic atom states have nodes

1Strictly speaking, this orthogonal condition holds only approxi-
mately for the Klein-Gordon equation, Eq. (1), and should be modified

inside the nucleus to satisfy the orthogonality conditions with
kaonic nuclear states.

On the other hand, the spatial dimensions of the kaonic
nuclear states are almost equivalent to those of nucleons in
the nucleus. Hence, we can expect that the wave functions
of nucleons and kaonic nuclear states with the same quantum
numbers resemble each other, which means that the nucleon
wave functions may satisfy the orthogonality conditions
approximately with outer kaonic atom wave functions.

For example, we consider the K−-39K system with the
phenomenological optical potential, which has several kaonic
nuclear states 1s, 2s, 2p, . . . as listed in Table I in Ref. [9].
Thus, the kaonic atom wave functions of the system are
expected to be approximately orthogonal to kaonic nuclear
wave functions and also to the nuclear wave functions with
the same principal quantum number n and orbital angular
momentum l.

Another important thing is that the strength of the formation
of kaonic atoms can be simply estimated by the effective
number approach adopted in Refs. [9,10], which can be
roughly described as

Neff ∝
∣∣∣∣
∫

d r exp(iq · r)D(b)φ∗̄
K
ψN

∣∣∣∣
2

, (18)

with the momentum transfer q, the distortion factor D(b), and
the wave functions of kaon and nucleon φ∗̄

K
and ψN [9,10].

This factor can be reduced to the simpler form

Neff ∝
∣∣∣∣
∫

d r φ∗̄
K
ψN

∣∣∣∣
2

, (19)

by considering the recoilless kinematics (q ∼ 0) and neglect-
ing the distortion effect, which will be 0 for the orthogonal
sets of the wave functions. Thus, we can conclude that the
existence of the kaonic nuclear states may significantly reduce
the formation rate of kaonic atom states coupled to the nucleon
hole states with the same quantum (nl) numbers of the kaonic
nuclei in the recoilless kinematics.

We show the numerical results of these scenarios for some
cases below. We consider the (K−, n) reactions for 40Ca
and 16O targets. The valence neutron states are 2s1/2 for
40Ca and 1p1/2 for 16O, respectively. As shown in Tables I
and II in Ref. [9], we expect to have a kaonic nuclear 2s

state for A ∼ 40 nuclei with the phenomenological deep
optical potential, while we do not expect the 2s kaonic
states with the chiral unitary optical potential. Similarly, we
expect a kaonic nuclei p state for A ∼ 16 nuclei with the
phenomenological potential but not with the chiral unitary
potential. Thus, as described above, we can expect a significant
suppression of the atomic state formation cross sections for
the calculations with the phenomenological optical potential
because of the approximate orthogonality between kaonic
atom wave functions and valence neutron wave functions at
the recoilless kinematics.

The numerical results are shown in Fig. 8. In the upper
panels, we calculate the spectra by neglecting the distortion

from its usual form because of the existence of the energy dependence
and the imaginary part of the optical potential [48].
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FIG. 8. Kaonic atom formation cross sec-
tions in 40Ca(K−, n) and 16O(K−, n) reactions
at recoilless kinematics using low energy kaon
beams with TK̄ = 39.4 MeV for the 40Ca target
and TK̄ = 33.9 MeV for the 16O target. The
cross sections are plotted as the functions of
the emitted neutron energy Tn at θLab

n = 0◦ for
the chiral unitary potential (solid line) [28] and
the phenomenological potential (dashed line)
[22]. The spectra are calculated with (upper
panels) no distortion effects [F (r) = 1 in Eq. (7)]
and the reduced imaginary potentials Im V /5,
(middle panels) full distortion effects and the
reduced imaginary potentials Im V /5, and (lower
panels) full distortion effects and full imaginary
potentials corresponding to the full calculation
in our model. The neutron separation energies
Sn are 18.1 MeV for 40Ca and 15.7 MeV for 16O.

effects and by reducing the strength of the imaginary part of
the optical potentials to Im Vopt/5 to confirm our expectation
in the ideal cases. We found that our expectation is correct,
and the spectra with the phenomenological optical potential is
suppressed significantly in both target cases. The spectra with
the chiral unitary potential, which do not provide the kaonic
nuclear states with the same quantum number as the valence
neutron states, have significantly larger absolute values than
those with the phenomenological potential, as expected. Now,
we move to the realistic calculations. In the middle panels,
we show the spectra with the full distortion effects and the
reduced imaginary optical potentials ImVopt/5. We found that
the significant differences of the spectra due to the optical
potential remain for the 40Ca target case, while the differences
disappeared for the 16O target case because of the distortion
effects.

In the lower panels, we show the results with the full
calculation of our model with the full distortion effects and
the full imaginary part of the optical potentials. We found
that the discrepancies of the spectra for the 40Ca target also
disappeared by including the full imaginary part of the optical
potentials, and the spectra with the different optical potentials
resemble each other for both target cases.

Hence, we think that our idea is nice and reasonable;
however, it does not work well for kaon-nucleus systems
because of the strong absorption effects and the distortion
effects of the reaction. Thus, our idea could be realized in
cases with less absorptive system formation by reactions with
particles with smaller distortion effects.

B. Origin of the interesting spectra shape of
atomic state formation

In this section, we consider the origin of the interesting
structures of the formation spectra of the kaonic atom states.
We follow the discussions given in Ref. [6] and show a simple
example.

In the Green’s function formalism, we can divide Green’s
function into two parts, the pole part Gpole and the background
part GBG, as

G(E) = Gpole(E) + GBG(E), (20)

where the pole part can be written as

Gpole = 1

E − (ε − i�/2)
[res G(E)|E=ε−i�/2], (21)

where ε − i�/2 is the complex pole energy. The contribution
to the spectra from the pole part can be expressed as

Spole(E) = − 1

π
Im

A

E − (ε − i�/2)
, (22)

where A is defined as

A =
∑
f

τ+
f [res G(E)|E=ε−i�/2]τf , (23)

with τf defined in Eq. (6). The magnitude A includes
the information of the residue of Green’s function and the
wave functions of the particles participating in the formation
reactions. As a simple example, we write the argument of A as
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FIG. 9. Contribution to the spectra from the pole Spole as function
of E. The pole energy is assumed to be E = 12.5 − 5i MeV. These
lines indicate the Spole behavior with the arg A = 0, π/2, and π ,
where A is defined in Eq. (23).

θ = argA and plot in Fig. 9 the Spole contribution in Eq. (22)
for three θ values.

We have found that the shape of the formation spectra of
the bound states changes according to the argument θ of A,
and we have the resonance peak structure for θ = 0, the spike
structure with the rise and fall of the spectrum for θ = π/2,
and the resonance dip for θ = π .

Thus, we can deduce the information of the phase of A in
Eq. (23) from the shape of the spectra. On the other hand,
the simple fit by a Lorentz distribution is not suited for these
spectra, and we should be careful to extract the resonance
energies and the widths from the data. This interference of
the pole contribution with the background also appeared in the
case of pionic atoms production in the γA → γAπ reaction
in Ref. [49].

V. CONCLUSION

We study the formation spectra of the deeply bound kaonic
atoms theoretically in this paper. The deeply bound atomic
states cannot be observed by the standard x-ray spectroscopy;
however, theoretical calculations have shown the existence of
the narrow (quasistable) bound states beyond the accessible
levels by the x-ray method. We show the calculated results of
the binding energies and widths of the deeply bound kaonic
atom states with the phenomenological and the chiral unitary
optical potentials.

We consider the missing mass spectroscopy by the (K−, N )
reactions as the formation reactions of the deeply bound states.
We study various target nuclei and different incident energies

and systematically show the expected (K−, p) spectra; we also
consider (K−, n) reactions in several cases. We then compare
the expected spectra of the different optical potentials obtained
by the phenomenological fit and the chiral unitary model. We
have found that the expected spectra always show interesting
structures for various target cases with clear signals of the
atomic state formation.

The origin of the interesting structure is also considered. We
show that the argument of the pole contribution of the spectral
function is important and we should be careful to deduce the
resonance energies and widths from the data.

The effects due to the existence of the kaonic nuclear states
are also investigated. We show that the exotic nuclear states
with less absorptive interaction will be identified by observing
the atomic states by the missing mass spectroscopy using the
transport particles at the recoilless kinematics.

Finally, we would like to comment on the importance of
the experimental investigations of this research. As shown in
this article, the structures of the deeply bound kaonic atoms
are very robust, and all optical potentials, which reproduce the
existing weakly bound atomic data, are expected to provide
similar predictions for the deeply bound atomic states. Thus,
experimentally confirming the predicted structures is of great
importance, since all present potentials reproducing the lightly
bound kaonic atoms make the same prediction for the spectra of
the (K−, p) reaction in the deeply bound K− atom region. If an
experiment with enough resolution did not find the predicted
structures, this would cast serious doubt on the validity of
such potentials. This could happen if we have all missed
the important ingredients of the kaon-nucleus interactions for
higher densities. Thus, we think that it is very important
to experimentally investigate the structures of the deeply
bound kaonic atoms. We hope that our results stimulate the
experimental study of the deeply bound kaonic atoms, even
though it is very hard to observe these states.
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