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The axial-vector Ward-Takahashi identity is used to derive mass formulas for neutral pseudoscalar mesons.
Flavor symmetry breaking entails nonideal flavor content for these states. Adding that the η′ is not a Goldstone
mode, exact chiral-limit relations are developed from the identity. They connect the dressed-quark propagator to
the topological susceptibility. It is confirmed that in the chiral limit the η′ mass is proportional to the matrix element
which connects this state to the vacuum via the topological susceptibility. The implications of the mass formulas
are illustrated using an elementary dynamical model, which includes an Ansatz for that part of the Bethe-Salpeter
kernel related to the non-Abelian anomaly. In addition to the current-quark masses, the model involves two
parameters, one of which is a mass-scale. It is employed in an analysis of pseudoscalar- and vector-meson
bound-states. While the effects of SU (Nf = 2) and SU (Nf = 3) flavor symmetry breaking are emphasized,
the five-flavor spectra are described. Despite its simplicity, the model is elucidative and phenomenologically
efficacious; e.g., it predicts η–η′ mixing angles of ∼ −15◦ and π 0–η angles of ∼1◦.
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I. INTRODUCTION

Flavor symmetry breaking has long been of interest. For
example, it showed up in the application of current algebra to
strong interaction phenomena. In QCD no two current-quark
masses are equal. Isospin (SU (2)-flavor) breaking is deter-
mined by the current-mass difference mu − md , while SU (3)-
flavor breaking can be measured via ms − (mu + md )/2. The
c- and b-quark current-masses are too large for any sensible
discussion of larger flavor symmetry groups but the light-quark
mass differences also have an impact on the spectrum of
hadrons containing a heavy-quark.

It is of interest to explore and determine the effect of
these differences in current-quark mass throughout the hadron
spectrum. This leads one to consider the difference in mass
between charged and neutral hadrons. Part of that splitting
is electromagnetic in origin but constraining the strong
component is necessary before one can know just how large
that electromagnetic contribution might be.

We focus herein on the strong interaction component alone.
To be specific, we concentrate on exploring the effect of
flavor-symmetry breaking on pseudoscalar- and vector-meson
masses. These sectors are of particular interest because any re-
liable calculation of pseudoscalar meson masses must involve
a consideration of the axial-vector Ward-Takahashi identity.
Moreover, because when viewed simply vector mesons are
spin-flip partners of the pseudoscalars, it is natural to examine
how the 1−–0− mass splitting evolves with current-quark mass
and mass difference. On the other hand and in addition, one
might find that the strong breaking effects in mesons can be
interpreted judiciously and used to inform results for baryons.

In our analysis we employ the Dyson-Schwinger equations
(DSEs), pedagogical introductions to which can be found in
Refs. [1,2]. The approach is particularly well suited to the

study of bound states upon which symmetries and the manner
in which they are broken have a heavy impact [3]. Within this
framework, using the rainbow-ladder truncation—the lowest-
order in a systematic symmetry-preserving truncation scheme
[4,5]—effects of flavor-symmetry breaking were reported in
Ref. [6]. Those results provide a useful comparison with ours.
However, while in one sense a simpler interaction is employed
herein, we have a different perspective and demonstrate effects
that arise in proceeding beyond the leading-order truncation.
This is especially noteworthy in connection with neutral
pseudoscalar mesons, for which the non-Abelian anomaly
plays an important role [7].

In Sec. II we present the U (Nf ) axial-vector Ward-
Takahashi identity in its general form. It necessarily includes
a contribution from the non-Abelian anomaly, which is
explicated. We elucidate a couple of exact results that follow
from the spectral feature that the η′ mass is much larger than
that of other light-quark pseudoscalar mesons. In Sec. III
we derive and discuss exact mass formulas for pseudoscalar
mesons. Section IV introduces a model that enables the
illustration of implications of these formulas. It also reports a
calculation of the masses of ground-state pseudoscalar and
vector mesons for Nf = 5 and covers the phenomena of
mixing among the π0, η, and η′. The results enable us to
provide estimates of the nonelectromagnetic component of
the neutron-proton mass difference and the masses of hitherto
unseen B∗

f mesons. Section V recapitulates on the main
qualitative features emphasized by our study.

II. AXIAL-VECTOR WARD-TAKAHASHI IDENTITY

The axial-vector Ward-Takahashi identity is basic to any
study of pseudoscalar mesons. The impact of this statement of
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chiral symmetry and the pattern by which it is broken is felt
even by heavy-light [8] and heavy-heavy bound states [9].

The general form of the identity can be expressed [10]

Pµ�a
5µ(k; P ) = S−1(k+)iγ5Fa + iγ5FaS−1(k−)

− 2iMab�b
5 (k; P ) − Aa(k; P ), (1)

where P = p1 − p2 is the total and k the relative momentum
between the amputated quark legs [11]. Equation (1) is fully
renormalized and it is important that the product Mab�b

5 does
not mix with other operators under renormalization.

In Eq. (1), {Fa|a = 0, . . . , N2
f − 1} are the generators of

U (Nf ) in the fundamental representation, orthonormalized
according to trFaFb = 1

2δab. The dressed-quark propaga-
tor S = diag[Su, Sd, Ss, Sc, Sb, . . .] is matrix-valued with
nonzero entries that can be expressed in various equivalent
forms, e.g.,

S(k) = 1

iγ · kA(k2) + B(k2)
= Z(k2)

iγ · k + M(k2)
. (2)

The propagator is determined by the gap equation

S(p)−1 = Z2 (iγ · p + Mbm) + �(p), (3)

�(p) = Z1

∫ �

q

g2Dµν(p − q)
λa

2
γµS(q)�a

ν (q, p), (4)

wherein
∫ �

q
represents a Poincaré invariant regular-

ization of the integral, with � the regularization
mass-scale [3]; Dµν is the dressed-gluon propagator;
�ν(q, p) is the dressed-quark-gluon vertex; and Mbm =
diag[mbm

u ,mbm
d ,mbm

s , mbm
c , mbm

b , . . .] is the matrix of �-
dependent current-quark bare masses. The quark-gluon-
vertex and quark wave function renormalization constants,
Z1,2(ζ 2,�2), depend on the gauge parameter, the renormal-
ization point, ζ , and the regularization mass-scale. The gap
equation is completed by the renormalization condition

S(p)−1|p2=ζ 2 = iγ · p + M(ζ ), (5)

where M(ζ ) is the matrix of renormalized (running) current-
quark masses whose nonzero entries obey

Z2(ζ 2,�2)mbm(�) = Z4(ζ 2,�2)m(ζ ), (6)

with Z4 the Lagrangian mass renormalization constant. In
Eq. (1) we defined

Mab = trF [{Fa,M}Fb], (7)

where the trace is over flavor indices.
The inhomogeneous axial-vector vertex in Eq. (1) satisfies[

�a
5µ(k; P )

]
tu

= Z2[γ5γµFa]tu

+
∫ �

q

[S(q+)�a
5µ(q;P )S(q−)]srK

rs
tu (q, k;P),

(8)

where P = p1 − p2 = q1 − q2 and r, . . . , u represent color,
Dirac, and flavor indices. The pseudoscalar vertex �a

5 satisfies
an analogous equation driven by the inhomogeneity Z4γ5Fa .

The final term in the last line of Eq. (1) expresses the
non-Abelian axial anomaly. It can be written

Aa(k; P ) = S−1(k+) δa0AU (k; P )S−1(k−), (9)

with

AU (k; P ) =
∫

d4xd4yei(k+·x−k−·y)Nf 〈F0 q(x)Q(0)q̄(y)〉.
(10)

Here the matrix element represents an operator expectation
value in full QCD; the operation in Eq. (9) amputates the
external quark lines; and

Q(x) = i
αs

4π
trC[εµν ρσ FµνFρσ (x)] = ∂µKµ(x) (11)

is the topological charge density operator, where the trace is
over color indices and Fµν = 1

2λaF a
µν is the matrix-valued

gluon field strength tensor. It is plain and important that only
Aa=0 is nonzero. NB. While Q(x) is gauge invariant, the
associated Chern-Simons current, Kµ, is not.

If one imagines there are Nf massless quarks, then
dynamical chiral symmetry breaking (DCSB) is a necessary
and sufficient condition for the a �= 0 components of Eq. (1)
to guarantee the existence of N2

f − 1 massless bound-states of
a dressed-quark and -antiquark [3].

However, owing to Eq. (9), a = 0 in Eq. (1) requires special
consideration. One case is easily covered; viz., it is clear that
if A0 ≡ 0, then the a = 0 component of Eq. (1) is no different
to the others and there is an additional massless bound-state in
the chiral limit.

On the other hand, the large disparity between the mass of
the η′-meson and the octet pseudoscalars suggests that A0 �= 0
in real-world QCD. Let’s consider this possibility and proceed
by allowing that �0

5µ might possess a longitudinal massless
bound-state pole. In this case one can write

�̃0
5µ(k; P )

∣∣
P 2≈0

= r0
A

Pµ

P 2
�BS(k; P )

+F0γ5
[
γµF 0

R(k; P ) + γ · kk · PG0
R(k; P )

+ σµνkµPνH
0
R(k; P ) + �̃0

5µ(k; P )
]
, (12)

where F 0
R,G0

R,H 0
R , and �0

5µ(k; P ) are regular as P 2 →
0, Pµ�̃0

5µ ∼ O(P 2), �BS(k; P ) is the possible bound state’s
canonically normalized Bethe-Salpeter amplitude, and r0

A is
its residue. The amplitude takes the general form [12]

�BS(k; P ) = 2F0γ5[iEBS(k; P ) + γ · PFBS(k; P )

+ γ · kk · PGBS(k; P ) + σµνkµPνHBS(k; P )].

(13)

Since in these circumstances one can write

A0(k; P ) = F0γ5[iEA(k; P ) + γ · PFA(k; P )

+ γ · kk · PGA(k; P ) + σµνkµPνHA(k; P )],

(14)
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then the Goldberger-Treiman relations of Ref. [3] become

2r0
AEBS(k; 0) = 2B0(k2) − EA(k; 0), (15)

F 0
R(k; 0) + 2r0

AFBS(k; 0) = A0(k2) − FA(k; 0), (16)

G0
R(k; 0) + 2r0

AGBS(k; 0) = 2A′
0(k2) − GA(k; 0), (17)

H 0
R(k; 0) + 2r0

AHBS(k; 0) = −HA(k; 0), (18)

where A0, B0 characterize the gap equation’s chiral limit
solution. NB. A massless pole in A0(k; P ) is incompatible
with Eq. (1).

It now plain that if

EA(k; 0) = 2B0(k2), (19)

then r0
AEBS(k; 0) ≡ 0. This being true, then the homogeneous

Bethe-Salpeter equation (BSE) also produces r0
AFBS(k; 0) ≡

0 ≡ r0
AGBS(k; 0) ≡ 2r0

AHBS(k; 0). Hence, Eq. (19) guarantees
that �0

5µ cannot possess a massless pole. The converse is also
true; namely, the absence of such a pole requires Eq. (19).
It is noteworthy that in the neighborhood of P 2 = 0,
Eqs. (16)–(18) thus provide pointwise relations between
A0(k; P ), the dressed-quark propagator and the regular part
�0

5µ(k; P ).
Equation (19) is a necessary and sufficient condition for

the absence of a massless bound-state pole in �0
5µ. We are

discussing the chiral limit, in which case B0(k2) �= 0 if, and
only if, chiral symmetry is dynamically broken. Hence, the
absence of an additional massless bound-state is only assured
through the existence of an intimate connection between
DCSB and an expectation value of the topological charge
density.

This noteworthy connection is further highlighted by the
following result, obtained through a few straightforward
manipulations of Eqs. (1), (9), and (10):

〈q̄q〉0
ζ = − lim

�→∞
Z4(ζ 2,�2)trCD

∫ �

q

S0(q, ζ ) (20)

= Nf

2

∫
d4x〈q̄(x)iγ5q(x)Q(0)〉0, (21)

where here the superscript “0” indicates that the quantity is
calculated in the chiral limit. The absence of a Goldstone
boson in the a = 0 channel is only guaranteed if this explicit
identity between the chiral-limit vacuum quark condensate and
the vacuum polarization generated by the topological charge
density is satisfied.

III. MASS FORMULAS

A wide range of additional observations are possible, some
of which are canvased in Ref. [7]. Herein we will derive those
that are especially relevant in the context of this work.

Equation (1) is an identity that connects two and three point
functions in QCD. It applies at all values of the total momentum
P , in particular, at the location of bound-state poles. To exploit
this we extend Eq. (12) and observe that in the neighborhood

of such a pseudoscalar pole, whether massless or massive,

�a
5µ(p1, p2)

∣∣
P 2+m2

πi
≈0

= f a
πi

Pµ

P 2 + m2
πi

�πi
(k; P )

+ �
a reg
5µ (p1, p2), (22)

i�a
5 (p1, p2)

∣∣
P 2+m2

πi
≈0 = ρa

πi
(ζ )

P 2 + m2
πi

�πi
(k; P )

+ i�
a reg
5 (k; P ); (23)

viz., each vertex in Eq. (1) is expressed as a simple pole plus
terms regular in the neighborhood of this pole, with �πi

(k; P )
representing the bound state’s canonically normalized Bethe-
Salpeter amplitude [12], where i = 0 labels the lightest
pseudoscalar bound-state, i = 1, the next lightest, and so on.
In Eqs. (22) and (23),

f a
πi

Pµ = Z2 tr
∫ �

q

Faγ5γµχπi
(q; P ), (24)

iρa
πi

(ζ ) = Z4 tr
∫ �

q

Faγ5χπi
(q; P ), (25)

where χπi
(k; P ) = S(k+)�πi

(k; P )S(k−), k± = q ± P/2.
These residues are gauge invariant and cutoff independent.
NB. The nature of r0

A in Eq. (12) is now clear.
While there is certainly no bound-state pole in the inverse

of the dressed-quark propagator, the opposite can be true of the
term associated with the topological susceptibility; namely, we
must consider

A0(p1, p2) = ∣∣
P 2+m2

πi
≈ 0 = nπi

P 2 + m2
πi

�πi
(k; P )

+ A0 reg(p1, p2), (26)

where

nπi
=

√
Nf

2
νπi

, νπi
= 〈0|Q|πi〉. (27)

Using Eqs. (22), (23), and (26) in the axial-vector Ward-
Takahashi identity, we arrive at a mass formula for pseu-
doscalar mesons:

m2
πi

f a
πi

= 2Mabρb
πi

+ δa0nπi
. (28)

It is valid for current-quark masses of any magnitude.
For nondiagonal mesons this is naturally the same formula

as that derived in Refs. [3,13]. Allowing for the fact that the
Standard Model requires observable particles to be eigenstates
of the electric charge, it yields, e.g., with FK+ = F4 − iF5,

m2
K+fK+ = [mu(ζ ) + ms(ζ )]ρK+(ζ ), (29)

and similarly,

m2
D+fD+ = [md (ζ ) + mc(ζ )]ρD+(ζ ). (30)

(NB. With our normalization, fK+ = 113 MeV experimen-
tally.) Again, these formulas are valid for arbitrarily large, or
small, current-quark masses. The Gell-Mann–Oakes–Renner
relation is a small quark mass corollary [3,13] and aspects
of their implications for mesons containing a heavy-quark, or
two, are detailed in Refs. [8,9].
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A novelty of Eq. (28) is its validity for charge neutral
mesons. For example, in the case Nf = 3 one derives for the
neutral pion

m2
π0




f 3
π0

f 8
π0

f 0
π0


 =


 0

0
nπ0


 + [M3×3]




ρ3
π0

ρ8
π0

ρ0
π0


 , (31)

where

[
M3×3

]
=




m110

√
1
3m1−10

√
2
3m1−10√

1
3m1−10

1
3m114

√
2
9m11−2√

2
3m1−10

√
2
9m11−2

2
3m111


 , (32)

with mαβγ = α mu + βmd + γ ms .
In the isospin symmetric case, i.e., mu = md,M3×3 exhibits

no mixing between F3 and F0,8. This signals that the flavor
content of the π0 is described solely by F3. Therefore,
Eqs. (24) and (25) give f 8

π0 = 0 = f 0
π0 , ρ

8
π0 = 0 = ρ0

π0 , and
Eq. (26) yields νπ0 = 0. Hence, in this instance the complete
content of Eq. (31) is

m2
π0f

3
π0 = [mu(ζ ) + md (ζ )]ρ3

π0 (ζ ). (33)

This is not true, however, for mu �= md , as we shall subse-
quently illustrate.

For Nf = 3 one also obtains

m2
η




f 3
η

f 8
η

f 0
η


 =


 0

0
nη


 + [M3×3]




ρ3
η

ρ8
η

ρ0
η


 , (34)

m2
η′




f 3
η′

f 8
η′

f 0
η′


 =


 0

0
nη′


 + [M3×3]




ρ3
η′

ρ8
η′

ρ0
η′


 . (35)

Naturally, on the domain in which an expansion in current-
quark mass is valid, viz., m(1 GeV) <∼ 50 MeV [14], Eqs. (31),
(34), and (35) reproduce current algebra results [15].

Of importance is a prediction of the manner by which the
η′ is split from the octet pseudoscalars by an amount that
depends on QCD’s topological susceptibility. This is most
easily illustrated by considering the U (Nf ) limit, in which all
current-quark masses assume the single value m(ζ ). In this
case the complete content of Eq. (35) is the statement

m2
η′f

0
η′ = nη′ + 2m(ζ )ρ0

η′(ζ ). (36)

Plainly, the η′ is split from the Goldstone modes so long
as nη′ �= 0 [16]. Numerical simulations of lattice-regularized
QCD have confirmed the relationship reproduced here [18,19].

It is argued [20,21] that in QCD

nη′ ∼ 1√
Nc

, (37)

and it can be seen to follow from the gap equation, the
homogeneous BSE and Eqs. (24) and (25) that

f 0
η′ ∼

√
Nc ∼ ρ0

η′ (ζ ). (38)

One thus obtains

m2
η′ = nη′

f 0
η′

+ 2m(ζ )
ρ0

η′(ζ )

f 0
η′

. (39)

The first term vanishes in the limit Nc → ∞ while the second
remains finite. Subsequently taking the chiral limit, the η′ mass
approaches zero in the manner characteristic of all Goldstone
modes. (NB. One must take the limit Nc → ∞ before the chiral
limit because the procedures do not commute [22].) These
results are realized in the effective Lagrangian of Ref. [23]
in a fashion that is consistent with all the constraints of the
anomalous Ward identity [24].

IV. MESON MASSES: EXEMPLIFYING
EFFECTS OF MIXING

A. Model defined

Implications of the exact results presented above can be
illustrated and further elucidated by way of a simple kernel for
the gap and BSEs. We write

K = KL + KA, (40)

where KL is the leading order in the systematic and symmetry
preserving truncation explained in Refs. [4,5], namely, a
dressed-ladder interaction,

(KL)turs(q, p; P ) =
−G((p − q)2)Dfree

µν (p − q)

[
γµ

λa

2

]
ts

[
γν

λa

2

]
ru

, (41)

wherein Dfree
µν (k) is the free gauge boson propagator and G(k2)

represents an effective coupling. For the latter we use the
simple model introduced in Ref. [27]

G(k2) = (2π )4G2k2δ4(k), (42)

with G a constant that sets the mass-scale. The model is
ultraviolet-finite and hence one can remove the regular-
ization mass-scale to infinity and set the renormalization
constants to one. The infrared enhancement exhibited by
Eq. (42) is sufficient to provide for confinement and DCSB,
as explained, e.g., in Sec. 2.2 of Ref. [2]. Moreover, in
practice it has many features in common with a class
or renormalization-group-improved effective-interactions; and
its distinctive momentum-dependence works to advantage in
reducing integral equations to algebraic equations that preserve
the character of the original. There is a drawback: the simple
momentum-dependence can lead to some model-dependent
artifacts, but they are easily identified and hence not generally
cause for serious concern.

One weakness hampers us, however. The model generates
Bethe-Salpeter amplitudes whose dependence on the relative
momentum, k, is unrealistic. In an internally consistent
definition it is described by δ4(k). Hence one cannot obtain
values for the independent overlaps f a

πi
and ρa

πi
in Eq. (28) and

so the mass formulas cannot be directly verified. Nevertheless,
we will see their imprint in the calculated results for meson
masses. Verification of Eq. (28) is possible with the interactions
employed, e.g., in Refs. [6,13,28]. Indeed, that has already
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KA ∼

f1 f2

IS

IS

e.g. IS=

f1 f2

FIG. 1. An illustration of the nature of KA; viz., the contribu-
tion to the Bethe-Salpeter kernel associated with the non-Abelian
anomaly. All terms have the “hairpin” structure illustrated in the
lower panel. No finite sum of such intermediate states is sufficient.
Straight lines denote quarks, with f1 and f2 independent, and springs
denote gluons.

been done for channels in which the rainbow-ladder truncation
is a good approximation, such as charged pseudoscalar mesons
and neutral heavy-heavy pseudoscalar mesons [9,13].

In Eq. (40), KA is a novel addition that we use to model
effects owing to the non-Abelian anomaly. Its inclusion takes
us beyond ladder-truncation and is thus an expedient that is
a dynamical extension of that employed in Ref. [29]. It can
be argued from Eqs. (10) and (11) that an anomaly-related
contribution to a meson’s Bethe-Salpeter kernel cannot contain
external quark or antiquark lines that are connected to the
incoming lines: purely gluonic configurations must mediate,
as illustrated in Fig. 1. Furthermore, it is straightforward to see
that no finite sum of gluon exchanges can serve this purpose.
Indeed, consider any one such single contribution in the chiral
limit. It will be proportional to the total momentum and hence
vanish for P = 0, in conflict with Eq. (36). This lies behind
the need for something like the Kogut-Susskind ghost [16].
(NB. The resummed kernels explored in Refs. [30–32] do not
resolve such vacuum polarization diagrams [5] and thus cannot
generate KA �= 0.)

As in Ref. [33], with these observations in mind we employ

(KA)turs(q, p; P ) = −ξ ((q − p)2){cos2 θξ [ςγ5]rs[ςγ5]tu

+ sin2 θξ [ςγ · Pγ5]rs[ςγ · Pγ5]tu}, (43)

ξ (k2) = (2π )4ξδ4(k), (44)

where ξ is a dimensionless coupling strength. In principle,
ξ (k2) would also depend on the total momentum but for
simplicity we ignore that herein. In proposing Eq. (43) we have
also used the fact that Eq. (42) only supports a pseudoscalar
Bethe-Salpeter amplitude of the form

�πi
(P ) = 2Fπi γ5

[
ig

πi

1 + γ · Pg
πi

2

]
; (45)

namely, as described above, the interaction requires the con-
stituents’ relative momentum to vanish. The angle θξ controls
the relative magnitude of the two possible contributions to the
kernel.

The remaining piece of Eq. (43) is the flavor matrix

ς = diag

[
1

MD
u

,
1

MD
d

,
1

MD
s

, . . .

]
, (46)

MD
f = Mf (s = 0), (47)

where Mf (s) is the mass function for a quark of flavor f [see
Eq. (2)]. Equation (47) defines a dynamical constituent-quark
mass. It differs from the Euclidean constituent-quark mass
(e.g., Ref. [34]), but is easier to calculate and is likewise a
renormalization point invariant in QCD. This term introduces
a nonperturbative mass-dependence, which models that arising
from the dressed-quark lines that complete a “U-turn” in the
so-called hairpin diagram in Fig. 1.

B. Parameters fixed

The model has three parameters in addition to which there
are Nf current-quark masses. We determine the current-quark
masses and G in Eq. (42) by applying the model to charged-
pseudoscalar and vector meson ground-states. Because KA

doesn’t contribute in these channels, this corresponds to a
rainbow-ladder treatment of those states, which is plausibly
accurate to <∼10% [32] for light-quark mesons and becomes
precise for heavy-heavy systems [31].

The rainbow gap equation is obtained from Eq. (3) with

�tu(p) = −
∫

q

(KL)turs(q, p; P )Ssr (q). (48)

[NB. It is plain upon insertion that KA defined in Eq. (43) does
not modify Eq. (48).] The gap equation is solved to obtain
the matrix dressed-quark propagator, which is then used to
complete the homogeneous BSE:

�H (k; P ) =
∫

q

[S(q+)�H (q+, q−)S(q−)]sr (KL)rstu(q, k; P ).

(49)

Equation (49) can be viewed as defining an eigenvalue
problem. There can be and is no mixing between charged
and neutral mesons so the eigenvector in the case of charged
pseudoscalars can be written

�H5 (P ) =
∑

d=1,2,4,5,6,7,...

2Faγ5
[
ipa

1 + γ · Ppa
2

]
, (50)

with the index selecting all Nf (Nf − 1) nondiagonal gen-
erators of SU (Nf ). One inserts Eq. (50) into Eq. (49) and
evaluates the spinor trace to arrive at an equation with the
structure

p = [KH5 ] p, (51)

with p = column[p1
1, p

1
2, p

2
1, p

2
2, . . .]. (The procedure is made

explicit, e.g., in Ref. [30].) The matrix KH5 has Nf (Nf − 1)
eigenvalues, {λi

H5
}, and eigenvectors, each of which depend on

the value of P 2. One has a solution of the homogeneous BSE
when one of those eigenvalues acquires the value “one” and
the mass of the associated bound-state is the value of P 2 for
which this occurs; viz.,

(
mi

H5

)2 = { − P 2
∣∣λi

H5
(P 2) = 1

}
. (52)

At this point the related eigenvector is that meson’s Bethe-
Salpeter amplitude. If n eigenvectors assume the value “one”
at the same value of P 2, then one has an n-fold degeneracy.
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With the interaction in Eq. (42), the eigenvector associated
with the vector mesons of U (Nf ) has the general form

�λ
HV

(P ) =
Nf∑
a=1

2Fa
[
γ · ελva

1 + σµνε
λ
µPνv

a
2

]
, (53)

where {ελ
µ(P )|λ = −1, 0, 1} is the polarization four-vector

P · ελ(P ) = 0, ∀λ; ελ(P ) · ελ′
(P ) = δλλ′

. (54)

In ladder truncation, v2 ≡ 0. From this point the solution of
Eq. (49) proceeds as described above for charged pseudo-
scalars.

We are now in a position to fix the reference values of
the mass-scale parameter and the current-quark masses. In the
absence of electromagnetism we fix the values ofG and the sum
(mu + md ) =: 2m̄ so as to obtain the experimental values of
the ratio mπ0/mρ0 and mρ0 . Moreover, the pseudoscalar variant
of Eq. (49) produces degenerate bound-states associated with
F1 & F2–π±, two others associated with F4 & F5–K±,
another two with F6 & F7–K0,K

0
, etc. This is similarly

true of the vector equation: ρ±,K∗±, etc. We choose to fix the
mass difference (mu − md ) by requiring

[mK∗0 − mK∗+]f = 5.42 MeV, (55)

which is the weighted average of the isospin-only differences
estimated in Ref. [35]. The rainbow-ladder truncation produces
pure s̄s, c̄c, and b̄b vector mesons and ms,c,b are set by
identifying these states with the observed φ-, J/ψ-, and
ϒ-mesons. This procedure yields the following values

G = 0.537 GeV, (56)

mu md ms mc mb

0.0140G 0.0271G 0.323G 2.55G 8.67G
7.51 MeV 14.6 MeV 173 MeV 1.37 GeV 4.65 GeV,

(57)

and they produce the meson masses in Tables I and II. (NB.
In solving BSEs to obtain masses the contribution from all
orders in the current-quark mass splittings are incorporated.)
We remark that the current-quark masses yield the following
dynamical constituent-quark masses via Eq. (47) (in GeV):

MD
u MD

d MD
s MD

c MD
b

0.543 0.548 0.669 1.662 4.771.
(58)

For light quarks, MD
f − mf = MD

0 − mf /4, where MD
0 is the

chiral limit value [31], and we note that in general MD
f − mf is

a monotonically decreasing function of mf , bounded below by
zero as mf → ∞. This result emphasizes that the essentially
dynamical component of chiral symmetry breaking decreases
with increasing current-quark mass, as observed previously
[14,36].

The model we’re employing is ultraviolet finite and the
current-quark masses in Eq. (57) cannot be directly compared
with QCD’s current-quark mass-scales. Nevertheless, the
values are quantitatively consistent with the pattern of flavor-
dependence in the explicit chiral symmetry breaking masses of
QCD. It is notable that so far as isospin breaking is concerned,
mu/md = 0.52, which is compatible with other contemporary
estimates, e.g., Ref. [37].

TABLE I. Vector meson masses calculated from the BSE defined
by Eqs. (3), (42), (43), (44) and (48), using the parameter values
in Eqs. (56) and (57). The experimental values are taken from
Ref. [37]. The three parameters and current-quark masses were fitted
as described in connection with Eqs. (56) and (57). See Sec. IV C5
for further discussion of ρ0 and ω.

Expt. (GeV) Calc. (GeV) Th/Ex-1 (%)

“ρ0” 0.7755 0.7704 −0.66
ρ± 0.7755 0.7755 0
“ω” 0.7827 0.7806 −0.27
K∗± 0.8917 0.8915 −0.02
K∗0 0.8960 0.8969 0.10
φ 1.0195 1.0195 0
D∗0 2.0067 1.8321 −8.7
D∗± 2.0100 1.8387 −8.5
D∗±

s 2.1120 1.9871 −5.9
J/ψ 3.0969 3.0969 0
B∗± 4.8543
B∗0 4.8613
B∗0

s 5.0191
B∗±

c 6.2047
ϒ 9.4603 9.4603 0

Only ξ and θξ in Eqs. (43) and (44) remain unknown. To fix
these parameters we consider the neutral pseudoscalar mesons.
In this instance Eq. (49) is modified to the extent that KL →
KL + KA; i.e., it reads

�H (k; P ) =
∫

q

[S(q+)�H (q+, q−)S(q−)]sr

× (KL + KA)rstu(q, k; P ). (59)

As noted in connection with Eq. (48), the gap equation is
unmodified. It might be necessary here to emphasize that

TABLE II. Pseudoscalar meson masses calculated from the BSE
defined by Eqs. (3), (42), (43), (44), and (48), using the parameter
values in Eqs. (56) and (57). The experimental values are taken from
Ref. [37]. The three parameters and current-quark masses were fitted
as described in connection with Eqs. (56) and (57).

Expt. (GeV) Calc. (GeV) Th/Ex-1 (%)

π 0 0.13498 0.13460 −0.3
π± 0.13957 0.13499 −3.3
K± 0.49368 0.41703 −15.5
K0 0.49765 0.42662 −14.3
η 0.54751 0.45499 −16.9
η′ 0.95778 0.91960 −4.0
D0 1.8645 1.6195 −13.1
D± 1.8693 1.6270 −13.0
D±

s 1.9682 1.7938 −8.9
ηc 2.9804 3.0171 1.2
B± 5.2790 4.7747 −9.6
B0 5.2794 4.7819 −9.4
B0

s 5.3675 4.9430 −7.9
B±

c 6.286 6.1505 −2.2
ηb 9.300 9.4438 1.5
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this single equation describes all neutral pseudoscalar bound-
states; namely, and for example, the only difference between
the π0, η, and η′ is that they are expressed by solutions of the
BSE at different values of P 2. From this perspective there is
no mixing, as such, but one can pose the question: what is
the quark content of each separated state. As we illustrate in
Sec. IV C1, the answers can be used to define mixing angles,
all of which are in general different.

The eigenvector for neutral pseudoscalars can be written

�H 0
5
(P ) =

∑
d=0,3,8,...

2Faγ5
[
ipa

1 + γ · Ppa
2

]
, (60)

with the index selecting all Nf diagonal generators of U (Nf ).
Following the steps described above in connection with
Eqs. (51) and (52), one can obtain the masses and Bethe-
Salpeter amplitudes for the neutral bound-states. At this
point we can fix ξ and θξ through a least-squares fit to the
experimental values of mη′ and mη/mη′ . This procedure yields

ξ = 0.076, θξ = 0, (61)

and the masses in Table II.

C. Discussion of results

1. η–η′ mixing

We’ll begin with this topical issue and first consider solving
the BSE with an eigenvector of the form in Eq. (60) but with
the sum running only over d = 0, 8; viz.,

�80(P ) = 2F8g8(P ) + 2F0g0(P ), (62)

with gj (P ) = γ5(ipj

1 + γ · Pp
j

2 ). This eigenvector splits off
from that associated with F3 and the π0 in the isospin
symmetric limit.

The case ξ = 0 provides a readily understood illustration.
In this case one obtains two bound-state solutions:

mass (GeV) p8
1 p8

2 p0
1 p0

2
mn̄n = 0.135 0.575 0.047 0.814 0.067
ms̄s = 0.622 −0.786 −0.219 0.556 0.155.

(63)

Focusing on the eigenvectors, we rewrite Eq. (62) in the form

�80(0.135) = cos θ12F8ĝ1
8 − sin θ12F0ĝ1

0, θ1 = −54.7◦,
(64)

with ĝ = γ5(ip̂1 + γ · P p̂2), where p̂2
1 + p̂2

2 = 1. This is
plainly a solution with ideal-mixing; namely, the lightest
solution contains no s-quarks and is composed of an equal
mixture of u- and d-quarks. The Bethe-Salpeter amplitude for
the heaviest solution can be written

�80(0.622) = sin θ22F8ĝ2
8 + cos θ22F0ĝ2

0, θ2 = −54.7◦,
(65)

which is a pure s̄s state. For ξ = 0 the dynamics decouples
from the flavor structure and hence the mixing angles for the
two separated states are identical.

With our preferred value of ξ = 0.076, Eq. (61), we obtain

mass (GeV) p8
1 p8

2 p0
1 p0

2
mη = 0.455 0.939 0.219 0.250 0.090
mη′ = 0.924 −0.260 −0.077 0.876 0.400,

(66)

from which we infer

θη = −15.4◦, θη′ = −15.7◦. (67)

Thus, while the Dirac structure of the η and η′, described by g8

and g0, is different, there is near equality between the mixing
angle at each bound state. For comparison, from a recent single
mixing angle analysis one can extract [38] θ = −13.3◦ ± 1.0◦.
The angles in Eq. (67) correspond to the flavor contents:

|η〉 ∼ 0.55(ūu + d̄d) − 0.63s̄s, (68)

|η′〉 ∼ 0.45(ūu + d̄d) + 0.78s̄s. (69)

2. Chiral limit

In the case of Nf = 3 massless quarks, Eqs. (3), (48),
and (59) produce, without fine tuning, eight massless pseu-
doscalar mesons—the Goldstone modes—and one massive
state. The massive state is solely associated with F0 and

mη′
M=0= 0.852 GeV, (70)

from which follows the model’s value of
νη′

f 0
η′

= (0.770 GeV)2. (71)

The chiral limit mass in Eq. (70) is 93% of the calculated value
in Table II.

3. π 0–η–η′ mixing

With three flavors of quark, each with a different mass, all
the neutral pseudoscalar mesons “mix”; i.e., there is no neutral
pseudoscalar solution of Eq. (59) that is associated solely
with a single generator of U (Nf ). In this case the eigenvector
assumes the form

�H 0
5
(P ) = 2F3g3(P ) + 2F8g8(P ) + 2F0g0(P ) (72)

and the BSE gives the solutions

mass p3
1 p3

2 p8
1 p8

2 p0
1 p0

2
(GeV)
0.135 0.996 0.081 0.023 0.002 0.009 0.001
0.455 −0.026 −0.006 0.939 0.219 0.249 0.090
0.922 −0.004 −0.001 −0.260 −0.077 0.876 0.400.

(73)

From these Bethe-Salpeter amplitudes one infers the following
flavor contents:

|π0〉 ∼ 0.72ūu − 0.69d̄d − 0.013s̄s, (74)

|η〉 ∼ 0.53ūu + 0.57d̄d − 0.63s̄s, (75)

|η′〉 ∼ 0.44ūu + 0.45d̄d + 0.78s̄s. (76)

In the presence of a sensible amount of isospin breaking the π0

is still predominantly characterized by F3 but there is a small
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admixture of s̄s. A glance at Eq. (68) shows that mixing with
the π0 has a similarly modest impact on the flavor content of
the η and η′. It’s effect on their masses is far less.

4. π 0–η mixing

There is merit in explicating the nature of the flavor-
induced difference between the π0 and π± masses. If we
ignore mixing with mesons containing other than u, d-quarks;
viz., work solely within SU (Nf = 2), then the masses in
Eq. (57) give mπ0 − mπ+ = −0.04 MeV. On the other hand, it
is apparent from Tables I and II that the full calculation yields
mπ0 − mπ+ = −0.4 MeV, a factor of 10 greater. When one
considers only SU (Nf = 3); i.e., a so-called 3–8 mixing, then
the π0 mass is 0.1 MeV larger than in Table II: mπ0 − mπ+ =
−0.3 MeV, and one obtains a mixing angle at the neutral pion
mass shell of

θπη

(
m2

π0

) = 1.2◦. (77)

For comparison, Ref. [39] infers a mixing angle of 0.6◦ ± 0.3◦
from a K-matrix analysis pd →3He π0. Plainly, mixing with
the η-meson is the dominant nonelectromagnetic effect. Within
this subspace, mη is 5% larger than in Table II and

θπη

(
m2

η

) = 1.3◦. (78)

[Two mixing angles can be introduced to parametrize the
complete problem of π0–η–η′ mixing, e.g., Ref. [40]. How-
ever, that approach contains no information in addition to
Eqs. (74)–(76).]

It is noteworthy that

θπη

(
m2

η

) − θπη

(
m2

π0

)
m2

η − m2
π0

= r2
πη θπη

(
m2

π0

)
, (79)

rπη = 0.582 GeV−1. (80)

Our DSE framework describes mesons explicitly as bound
states of a dressed-quark and -antiquark. Hence, it is sensible
to compare the result for this mixing angle and its momentum
dependence with that, e.g., of Ref. [41]. They are commen-
surate: our mixing angle is <∼20% smaller and the slope in
Eq. (80) is <∼20% larger. The slope in Eq. (80) is smaller than
that which has been calculated in connection with ρ0–ω mixing
but of the same order of magnitude, e.g., Refs. [42–44].

5. Five flavors

The tables present masses calculated with Nf = 5 flavors of
quark. The vector mesons are least complicated and hence we
begin with them. It is a general feature of the rainbow-ladder
truncation that with no two current-quark masses equal, each
neutral vector meson is flavor-diagonal; namely, the kernel
produces the following states, in order of increasing mass:
ūu, d̄d, s̄s, c̄c, b̄b. It is a good approximation for the heavier
quarks and we therefore used this fact to fix the masses of the
s-, c-, and b-quarks.

On the other hand, it is erroneous for the u, d-quark neutral
vector mesons; viz., experimentally ρ0 �= ūu and ω �= d̄d, and
that is why these states are written with quotation marks in

Table I. If one assumes mu = md , then there is no discernible
problem. However, in the real case of mu �= md only an
extended kernel can produce the true flavor content for these
states. Improvements along the lines pursued in Refs. [30–32]
do not ameliorate the situation because they preserve the
flavor structure of the rainbow-ladder truncation. It is probable
that inclusion in the kernel of diagrams that correspond to
two- and three-pion intermediate states is required to provide
the remedy, because the former contribute primarily in the
ūu − d̄d channel and the latter predominantly in the ūu + d̄d

channel. Solving the BSE without these channels but with
forced (ūu − d̄d)/

√
2 and (ūu + d̄d)/

√
2 flavor contents, the

ρ0 and ω are degenerate with ρ±. An analysis of diagrams
corresponding to intermediate states containing pseudoscalar
mesons is capable of lifting the ρ0–ω degeneracy, even for
mu = md [45–48].

Regarding the other entries in Table I, where a determina-
tion is possible the model is evidently accurate to <∼10%. We
therefore hold that it is reasonable to expect that the masses
predicted for the as yet unobserved B∗-mesons are similarly
accurate. Indeed, they are probably an underestimate of the
physical values by no more than this amount.

One can read from Table I that for vector mesons composed
solely of light-quarks the calculated flavor-dependent mass dif-
ferences are well approximated by the differences in dynamical
constituent-quark masses. The accuracy is better than 2%. We
infer from this an estimate of the nonelectromagnetic part of
the neutron-proton mass difference:

[mn − mp]f = 3
4 [md − mu] = 5.3 MeV =: �UD. (81)

This simple projection could be checked via the Faddeev
equation approach to nucleon structure [34], which is kindred
to that employed herein for mesons. For comparison, a
numerical simulation of lattice regularized QCD has been
used to infer a value for this difference of 2.26 ± 0.72 [49];
and the experimentally determined value, which includes
electromagnetic effects, is 1.3 MeV.

Additional context is provided by the observation that this
simple reasoning also entails M�− − M�0 = M�0 − M�+ =
M�− − M�+ = �UD . The experimental values are, respec-
tively: 3.3, 4.8, and 6.5 MeV. We emphasize that pseudoscalar-
meson self-energy diagrams contribute materially to a baryon’s
mass [50]. When dealing with effects of this small magnitude,
differences in mass between the mesons that appear in such
diagrams will contribute to these mass differences. A complete,
accurate calculation as opposed to our estimates will naturally
require precision.

On the other hand, for vector mesons containing at least one
heavy-quark, the difference in current-quark masses provides
a better estimate of the nonelectromagnetic mass difference. It
is apparent from Table II that the same is true of pseudoscalar
mesons containing at least one heavy-quark. Due to DCSB,
the mass-squared of light-quark pseudoscalar mesons rises
linearly with current-quark mass. This explains our result that
for the nonelectromagnetic part

[mK0 − mK+]f = 9.6 MeV > [mK∗0 − mK∗+ ]f = 5.4 MeV.

(82)
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It is noteworthy that for each system our calculated result
for the H 0 − H+ mass difference is larger in magnitude
than the experimental difference. This is a necessary result
and a useful check on this and other calculations that omit
electromagnetic effects. The inclusion of electromagnetism
will act predominantly to increase the mass of the charged
state and hence the mass difference will fall in magnitude.

We have described above the quark-flavor content of neutral
pseudoscalar mesons as calculated in subspaces of the full
flavor group. This analysis can be repeated for U (Nf = 5)
with the resulting flavor probability amplitudes:

ūu d̄d s̄s c̄c b̄b

|π0〉 0.72 −0.69 −0.014 0.000 0.0000
|η〉 0.53 0.57 −0.63 −0.022 −0.0057
|η′〉 0.44 0.45 0.78 −0.060 −0.0141
|ηc〉 0.06 0.06 0.05 0.995 −0.0037
|ηb〉 0.02 0.02 0.01 0.005 0.9996.

(83)

As one might have anticipated, for states not much affected
by KA the probability of finding a particular type of “hidden
flavor” drops as the mass of the quark flavor increases. This
table indicates that the commonly used approximation of
writing neutral light-flavor mesons in the form c1(ūu + d̄d) +
c2s̄s is accurate at the level of <∼5%.

6. Vector–pseudoscalar mass splitting

As remarked in the Introduction, it is natural to examine
the manner by which the 1−– 0− mass splitting evolves with
current-quark mass and mass difference. It is apparent from
Fig. 2 that without exception the mass splitting, m̌H = mH ∗ −
mH , decreases with increasing m̄H = (1/2)(mH ∗ + mH ). The
gross behavior of the evolution is described well by a 1/m̄H

FIG. 2. Vector–pseudoscalar meson mass splitting calculated
from our results in Tables I and II, namely, m̌H as a function of
m̄H , where m̌H = mH∗ − mH and m̄H = (1/2)(mH∗ + mH ). For the
purpose of this figure, we compared φ with the s̄s pseudoscalar
described in connection with Eq. (63). The solid curve is µ/m̄H

with µ = 0.309 GeV2.

dependence, which entails

m2
H ∗ − m2

H ∼ const. = 2µ = 0.62 GeV2. (84)

This outcome is consistent with observation. It is plain that
because m̄H is a measure of the dynamical constituent-quark
mass, the global picture is not consistent with a simple, single
hyperfine interaction between constituent-like quarks. That is
not too surprising owing to the Goldstone boson nature of
light pseudoscalar mesons. Our calculations show that such a
picture only becomes reasonable for bound states containing
at least one c- or b-quark.

V. SUMMARY

In connection with pseudoscalar mesons, the axial-vector
Ward-Takahashi identity is a powerful tool whose import
should not be ignored. Following from this and resting upon
the empirical observation that the η′ is not a Goldstone mode,
we demonstrated exact chiral-limit relations that connect the
dressed-quark propagator to the topological susceptibility.
Furthermore, we extended the mass formulas derived in
Refs. [3,13] to the case of electric-charge-neutral pseudoscalar
mesons, for which flavor symmetry breaking entails nonideal
flavor content. Our development confirms that in the chiral
limit the η′ mass is proportional to the matrix element that
connects the η′ to the vacuum via the topological susceptibility.

To illustrate the implications of the mass formulas we
introduced an elementary dynamical model. This involved
an ansatz for that part of the Bethe-Salpeter kernel related
to the non-Abelian anomaly which assumes the most general
internally consistent form. It is a key and novel feature of
our study that an anomaly contribution is included within
the Bethe-Salpeter kernel to yield meson masses. We thereby
avoid the oft used expedient of enforcing anomaly constraints
a posteriori at the level of a matrix of masses of unphysical
mesons.

In addition to the current-quark masses our model involves
only two parameters, one of which is a mass-scale. It was
employed in a wide-ranging analysis of pseudoscalar- and
vector-meson bound-states with an emphasis on the effects
of SU (Nf = 2) and SU (Nf = 3) flavor symmetry breaking.
Section IV C details our findings, which are too numerous
to recapitulate here. Suffice it to report that, despite its sim-
plicity, the model proved elucidative and phenomenologically
efficacious. Our results, both their qualitative and quantitative
aspects, should serve as a valuable guide in the future
study of neutral pseudoscalar mesons using more realistic
interactions.

Note added in proof. After completing this work we learnt
of additional relevant research. In connection with Sec. II, a
relationship between the mechanism underlying DCSB and
the absence of a ninth Goldstone boson was discussed in
Ref. [51]. Related to Sec. III, aspects of the interplay between
the non-Abelian anomaly and flavor symmetry breaking were
described in Ref. [52]. Finally, Ref. [53] examines a large-Nc

effective Lagrangian approach that complements Ref. [23].
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