PHYSICAL REVIEW C 76, 045202 (2007)

Phase transitions of nuclear matter beyond mean field theory
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The Cornwall-Jackiw-Tomboulis (CJT) effective action approach is applied to study the phase transition of
nuclear matter modeled by the four-nucleon interaction. It is shown that in the Hartree-Fock approximation
(HFA) a first-order phase transition takes place at low temperature, whereas the phase transition is of second

order at higher temperature.
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I. INTRODUCTION

It is known that one of the most important thrusts of
modern nuclear physics is the use of high-energy heavy-ion
reactions for studying the properties of excited nuclear matter
and finding the evidence of nuclear phase transition between
different thermodynamical states at finite temperature and
density. Such ambitious objectives have attracted intense
experimental and theoretical investigations.

Experiments reveal that with increasing excitation energy
the behavior of excited nuclei can be described in terms
of thermodynamics, and, consequently, in this regime the
statistical concepts turn out to be relevant. Numerous experi-
mental analyses indicate that there is dramatic change in the
reaction mechanism for excited energy per nucleon in the
interval E*/A ~ 2-5 MeV, consistently corresponding to a
first- or second-order liquid-gas phase transition of nuclear
matter [1-5]. In addition, the critical exponents extracted
from experimental data [6,7] are remarkably close to those of
liquid-gas system and significantly different from the values
derived from the mean-field treatment of this system.

In parallel to experiments, a lot of theoretical articles have
been published [8—13], among them, perhaps, the research
based on simplified models of strongly interacting nucleons is
of great interest for understanding nuclear matter under differ-
ent conditions. In this respect, this article aims at considering
nuclear phase transition in the four-nucleon interaction model
developed in Ref. [14] beyond the mean-field approximation.
Here we use the CJT effective action formalism and the
numerical calculation is carried out in the HFA. In Sec. II we
derive the CJT effective potential at finite temperature 7 and
density p. Section Il is devoted to the numerical computations
in HFA. The conclusion and discussion are given in Sec. IV.

II. CJT EFFECTIVE POTENTIAL AT FINITE T AND p

Let us begin with the nuclear matter modeled by the
Lagrangian density

N G, _ G, _
L=qid— Mg+ 7(qq)2 - TU(qV“q)z,
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where M and ¢ are, respectively, the nucleon mass and field
operator and Gy, G, are coupling constants.

Bosonizing
o= g—;ciq, w, = g—gémq
a mw
leads to
A m2
L£=4(0 - M) +8q0q — 847" wuq — 570"
m2
+ Tww“wﬂ, 2.1

in which G, , = gZ,/m? . m,, and m,, are, respectively, the

masses of scalar and vector mesons. Equation (2.1) clearly
resembles the QHD-I Lagrangian of the Walecka model [15]
without the kinetic terms for bosons, which describes the
symmetric nuclear matter. According to Refs. [14,16,17] the
expression for the CJT effective potential reads
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S, C,and D,,, are the propagators of nucleon, o', and w mesons,
respectively;

o = (o) =const, (®,) = wdy, = const

are expectation values of ¢ and @, in the ground state of
nuclear matter.
The physical solution correspond to

%

F:O, F = {o, v}

2.3)

and
sV
G
Equation (2.3) is the gap equation and (2.4) the Schwinger-
Dyson (SD) equation for propagator G.
Inserting Eq. (2.2) into (2.3) yields the gap equations for o
and o, respectively,

0, G={S.C.Dy)}. 2.4)

& [ d'p g

7= _mg_ (27-[)4tr[S(P)] = m_gpxa (25)
_ & [P _ &
=T o TSPl = nz? (2.6)

where p; and p are the scalar and nucleon density, respectively.
The SD equations for propagators S, C, and D,, are
obtained by substituting (2.2) into (2.4) accordingly

iS™' k) =iS; " (k) — 2(k),
2(k) = —gso + gvyﬂwﬂ

(2.7a)
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X Dyy(p + k)], (2.7b)
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d4
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(2.8b)
iD;) (k) = m gy + Moy (k) (2.92)
. d*p
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>, I, and IT,,, are self-energies of nucleon, o', and w mesons,
respectively. Next let us consider the CJT effective potential
V in the bare vertex approximation, in which I' = g, and
I'* = g,y*. To this end, let us first expand X in terms of its
Dirac components

2(k) = 9 Zok) — PR, (k) — (k).
Due to Eq. (2.7a) the nucleon propagator S(k) is then of the
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form
iS™'k) =iSy (k) — T(k)
= yoko — Bo(k) = FKI1 = Sy(k)] — [M + Zs(k)].
Introducing the effective quantities
ki = ko — Xo(k),
k= k[l = Z,(0],
M = M + (k)

we arrive at
S(k) = (k* + M{)GP, (2.10a)
T
GY = — 180k — E{) + 8k + EDln.
k
nt = 0(koyn’™ + O(—koyn'™,
(2.10b)
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. M= — X,

In Eq. (2.10a) we retain only the density-dependent part of
nucleon propagator, which is dominant at low density [18-20].
Making use of (II.10), respectively, in Egs. (2.5), (2.6), and
(I1.7) it is obtained that
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where x = cos(p*, k*), M?? = m?2 + T, (k),

MP? = m2 + T, (k) and T (k) = (g — &£ 11, (k).
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Finally, after some manipulation we are led to
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and the thermodynamic potential €2 is determined by

QL=V — Vi

with Vyae = V(Myae, 0 =0, T = 0).

In HFA, I1, = I1, = 0, the expressions for (k) and
3 (k) are simplified very much and basing on them we define

*_

po=r 472 0

(2.16)

22NN+ DG, — G, [~ o "
— f / pzdp(np _ np+),
(2.17)
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FIG. 1. Density dependence of binding energy per nucleon at sat-
uration point calculated in Hartree-Fock approximation. The coupling
constants are independently adjusted to reproduce the binding energy
€pin = —15.8771 MeV at normal density kr = 1.4193 fm~!. In this

way, G, = 161.6/M?, G, = 1.076G,.

(n)” + 7).

ANN; + DG, +4G, [* M
M= m— fJ;)Z * ”/ pldp—
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Eventually (2.16) becomes
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III. NUMERICAL COMPUTATION IN HFA

Starting from Egs. (2.17), (2.18), and (2.19) let us perform
the numerical computations for different cases in HFA.

A. Zero temperature
At T = 0 Egs. (2.17)—(2.19) take simpler forms, which are

respectively given by

2(2N:.N NG, — Gy
_ ( f + ) (,LL*Z _ M*Z)S/Z, (31)
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FIG. 2. (Color online) Effective nucleon mass as a function of
the chemical potential u at T = 0, illustrating the first-order phase
transition. At u, = 920 MeV, effective nucleon mass M = 760 MeV.
The phase transition is between p = 914 MeV and p = 940 MeV.
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where pp is the nucleon density,

— 2k3
pB_3n2 s

with kr being the Fermi momentum.
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FIG. 3. (Color online) Thermodynamic potential (x10%) as a
function of the effective nucleon mass M* at T =0 and pu. =
920 MeV (solid line), 800 MeV (dotted line), 1000 MeV (dashed
line).
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FIG. 4. (Color online) Effective nucleon mass as a function of
the chemical potential 1 at 7 = 1 MeV (dotted line), 7, = 20 MeV
(solid line), and T = 40 MeV (dashed line).

Now the numerical calculation is readily implemented as
follows. At first the masses of nucleon and mesons in vacuum
are fixedtobe M = 939 MeV, m, = 550 MeV, and m,, = 783
MeV. The next step is to solve numerically Eq. (3.2), the
solutionM* (k) of which is then substituted into the nuclear
binding energy €pin,

&
€bin = —M + —,
PB
where ¢ = Q + pupp is the energy of system. Two parameters
gs and g, are adjusted to reproduce the nuclear saturation
point as is shown in Fig. 1. We obtain G, = 161.6/M? and
G, = 1.076G;.
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FIG. 5. (Color online) Phase diagram in the 7'-u plane. The solid

line corresponds to first-order phase transition and the dashed line to
second-phase transition.
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FIG. 6. (Color online) Thermodynamic potential (x10%) as a
function of the effective nucleon mass M* at {T =1, u = 923}
(dashed line), {7, = 20, u. = 910} (solid line), and {7 = 40, u =
880} (dotted line).

By means of Egs. (3.1) and (3.2) the i dependence of M*
is depicted in Fig. 2, which gives evidence of first order phase
transition at p. >~ 920 MeV.

A better understanding of phase transition is highlighted in
Fig. 3, where the M* dependence of 2 is plotted for several
values of .

B. Finite temperature and chemical potential

Equations (2.17) and (2.18) determine the  dependence of
M* at finite temperature. This dependence is given by several
graphs in Fig. 4, which correspond to 7 = 1 MeV, 20 MeV,
and 40 MeV, respectively.

Itis clear that for 7 < 20 MeV a first-order phase transition
occurs and begins to smear out at 7 =20 MeV. For T >
20 MeV asecond-order phase transition emerges. Itis observed
that for T raising from low to sufficiently high temperature
near 7 =20 MeV, the pair of points M{, M5 will move
toward a common point, where the first-order phase transition
disappears. This point is close to M. Therefore, basing on
this observation and adopting the definition of critical point
proposed in Ref. [21] we are led to the assumption that critical
line in the 7T -u plane is defined by the equation

M*(/Lm Tc) = M:

PHYSICAL REVIEW C 76, 045202 (2007)

the graph of which is depicted in Fig. 5, where the solid line
corresponds to first order phase transition and dashed-line
second phase transition.

More detailed information on phase transition is provided
in Fig. 6, which shows the M* dependence of 2 for different
temperatures.

IV. CONCLUSION AND DISCUSSION

In the preceding sections the phase transition in nuclear
matter was considered in detail beyond the mean-field theory
by means of the four-nucleon model. Our major success is
that in addition to the familiar first-order phase transition
in symmetric nuclear matter, which in our model occurs at
low temperature 7 < 20 MeV, there still exists a second-order
phase transition, which comes to emerge for 7 > 20 MeV.
It is worth emphasizing that in the mean-field approximation
the model reproduces exactly the mean-field results of the
Walecka model [15] for bulk nuclear matter. The dramatic
change arises when we go beyond this approximation then
large fluctuations of order parameters together with their
interactions are incorporated into consideration. In our model
this nonperturbative effect contributes significantly to critical
phenomena. This fact is in contrast to the nonperturbative
calculation [22] in the Walecka model, which involves only a
first-order phase transition at 7 &~ 19 MeV.

To conclude this article three important remarks are in order.

(1) For describing the bulk nuclear matter properties in
the nonperturbative regime the results of both models,
four-nucleon and Walecka models, are basically in
agreement with each other [14,17,23].

(i) Lacking chiral symmetry is a serious shortcoming of
both models. However, due to Refs. [24,25] the four-
nucleon Lagrangian exhibits as the low momentum
realization of a nonlinear SU(2) x SU(2) chiral La-
grangian for strong interactions of pions and nucleons.
As a consequence, chiral symmetry can be treated as
asymptotic symmetry of nuclear matter described by
four-nucleon model. However, it was mentioned [26]
that the mean-field QHD-I model is consistent with
chiral symmetry that is realized by the nonlinear o
model, but now we are forced to consider the scalar field
as an effective degree of freedom and the Lagrangian
as a nonrenormalizable effective Lagrangian.

(iii) Starting from the simple model studied earlier a more
realistic consideration would be proceeded [27].
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