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Basic K̄ nuclear cluster, K− pp, and its enhanced formation in the p + p → K+ + X reaction
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We have studied the structure of K−pp nuclear cluster comprehensively by solving this three-body system
exactly in a variational method starting from the Ansatz that the �(1405) resonance (≡ �∗) is a K−p bound
state. We have found that our original prediction for the presence of K−pp as a compact bound system with M =
2322 MeV/c2, BK = 48 MeV, and � = 60 MeV remains unchanged by varying the K̄N and NN interactions
widely as far as they reproduce �(1405). The structure of K−pp reveals a molecular feature, namely the K− in
�∗ as an “atomic center” plays a key role in producing strong covalent bonding with the other proton. We have
shown that the elementary process, p + p → K+ + �∗ + p, which occurs in a short impact parameter and with
a large momentum transfer (Q ∼ 1.6 GeV/c), leads to unusually large self-trapping of �∗ by the participating
proton, because the �∗-p system exists as a compact doorway state propagating to K−pp (R�∗p ∼ 1.67 fm).
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I. INTRODUCTION

Recently, exotic light nuclear systems involving a K̄ (K−
and K̄0) as a constituent have been predicted based on
phenomenologically constructed K̄N interactions [1–7]. The
predicted bound states in K−ppn,K−ppnn, and K−8Be with
large binding energies lie below the �π emission threshold
and thus are expected to have relatively narrow decay widths.
Because of the strong K̄N attraction they acquire enormously
high nucleon densities, ρav ∼ 0.5 fm−3, about three times
the normal nuclear density ρ0 ∼ 0.17 fm−3. Such compact
nuclear systems, which can be called “K̄ nuclear clusters”
(KNC), are often those formed with nonexisting nuclei. The
basic ingredient for this new family of nuclear states is the
I = 0 K−p state, which is identified to the known �(1405)
resonance (hereafter, expressed as �∗) in the �π channel
with a binding energy of BK = 27 MeV and a width of � =
40 MeV [8]. Because the �(1405) resonance is largely
populated in the p + K− → �∗ + (ππ )0 channel [9], it is
very likely to be the I = 0 K̄N state. This is also supported
by the large formation of �∗ in the K− absorption at rest on
4He [10] and also in nuclear emulsion [11],

The lightest system following this “�(1405) ansatz” is
K−pp (and its isospin partner K̄0pn), which was predicted
to exist with M = 2322 MeV/c2, BK = 48 MeV, and � =
61 MeV [2]. This species, which can be called kaonic dibaryon
or nuclear kaonic hydrogen molecule, results from a fusion of
�∗ and p, namely �∗ as a bound state of K−p “dissolves”
into a K̄ bound state, K−pp, as

�∗ + p → K−pp, (1)

where �∗ may or may not keep its original structure. The
situation resembles the diatomic molecule case, where the
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hydrogen atom (H = pe−) cannot exist as it is when it merges
with a proton into a p-e−-p (H+

2 ) molecule. The hydrogen
atom, when implanted into a solid, becomes “hydrogen
in solids,” where the hydrogen takes various forms, such
as deep/shallow donors and ionized states. It is extremely
interesting to ask to what extent the �∗ keeps its identity in
nuclear systems. This question is related to the proposal that
the �∗ plays a role as a doorway to form K̄ bound states [2].

In the present article we first study the K−pp composite as
a very unique three-body system in which an exotic particle
(K−) plays an unusually peculiar role in the three-body dynam-
ics through the very strong attractive interaction in K−p. The
study was carried out by solving this three-body system exactly
in a variational method, called amalgamation of two-body
correlations into multiple scattering process (ATMS) [12],
which is a method to construct a realistic wave function of few-
body systems with correlation functions of each constituent
pairs on the basis of Watson’s multiple scattering theory [13].
The correlation functions are variationally determined from
a given Hamiltonian by using Euler-Lagrange’s equation.
We used the elementary K̄N and NN interactions deduced
semiempirically to obtain not only the binding energy and
width but also the spatial and momentum distributions of the
individual particles. We justify our three-body calculations by
showing that the K̄N complex potential, which is transformed
from coupled-channels interactions, has very little energy
dependence. Furthermore, we show that the result remains
unchanged, even when we allow the K̄N and NN interactions
to vary in a wide range, as long as they reproduce the energy
and width of �(1405). Thus we are led to a robust consequence
that the predicted K−pp is a compact nuclear system with a
binding energy around 50 MeV and a root-mean-square (rms)
p-p distance of 1.9 fm. Through this study we have found
that the K−p pair (quasi-�∗) behaves like an atomic unit in
a “molecule” of K−pp, similarly to the mechanism of the
Heitler-London scheme [14]. Namely, a super strong nuclear
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force is caused by a migrating real K̄ meson, as pointed out in
Ref. [15]. This will be the central subject of Sec. II. The decay
property of K−pp has been studied theoretically in Ref. [16],
which showed that, in addition to the dominant decay process
to �πN , the partial decay rate to YN is around 20 MeV.
Recently, Faddeev calculations have been carried out to obtain
the pole of K−pp by Shevchenko et al. [17] and by Ikeda and
Sato [18]. Their pole values are close to our original result.

Some indications for K−pp were reported in the invariant-
mass spectrum of � + p. An old propane bubble chamber
experiment with several GeV proton and neutron beams
showed some peaks around Minv(�p) ∼ 2260 MeV/c2 [19]. A
more recent experiment of FINUDA at DAPHNE on stopped-
K− reactions on light nuclei revealed a peak at Minv(�p) =
2250 MeV/c2 [20]. This result was interpreted by the ex-
perimental group as indicating a bound K−pp state with
BK ∼ 110 MeV, whereas two different theoretical arguments
have been published [21,22]. This issue has to wait for
further confirmation by future experiments. It is important
to produce various K̄ clusters by different nuclear reactions
and thereby to examine their structure, formation and decay
properties. A method to determine the sizes of the K̄ clusters
via the momentum correlation of decay particles has been
proposed [7].

In the second part of the present article we study the
possibility to make use of the elementary process,

p + p → p + �∗ + K+, (2)

in which �∗ and p proceed to K−pp. Because the momentum
transfer in this associated production of �∗ is very large
(Q ∼ 1.6 GeV/c), one would expect that the formation cross
section of K−pp must be very small. This process resembles
the hypernuclear production process, A[Z](p,K+)A+1

� [Z], on
a nuclear target, the cross section of which was evaluated by
Shinmura et al. [23] to be 10−4 of the elementary � production
cross section, even when a short-range correlation is taken
into account. However, with a naive coalescence mechanism
one obtains a sticking probability of the order of 0.1–1.0%
because the internal momentum of the K̄ clusters is very
large [24]. Still, most of primarily produced �∗ are expected
to escape, and the quasifree process dominates. We have
studied this proton-induced associated production process
more realistically and found a surprisingly large production
cross section by a unique mechanism, as described in Sec. V.
Its preliminary description is seen in Ref. [25] in connection
with an experiment proposal at GSI using the FOPI detector
[26]. Short communications of the present results are also seen
in Ref. [15,27].

II. STRUCTURE OF K− pp

A. The bare K̄ N interactions

We start from the ansatz that the �(1405) resonance state
is the I = 0 1s bound state of K̄N . Through the main part of
this article we employ the “classical” experimental values for
the binding energy and width [8,9],

− BK = EI=0
K̄N

= −27 MeV, (3)

� = 40 MeV. (4)

Later, in subsection III D, we will make a fine-tuning, con-
sidering recent values, M = 1406 ± 4 MeV and � = 50.0 ±
2.0 MeV [28].

The �∗ data, in subsection II A, combined with the kaonic
hydrogen shift [29,30] (yielding aK−p) and Martin’s K̄N

scattering lengths (aI=0 and aI=1) [31],

aK−p = (−0.78 ± 0.15) + i(0.49 ± 0.28) fm, (5)

aI=0 = (−1.70 ± 0.07) + i (0.68 ± 0.04) fm, (6)

aI=1 = (0.37 ± 0.09) + i(0.60 ± 0.07) fm, (7)

were used in a coupled-channels calculation to deduce the K̄N

interactions of the following forms [1]

vI
K̄N

= vD exp[−(r/b)2], (8)

vI
K̄N,π�

= vC1 exp[−(r/b)2], (9)

vI
K̄N,π�

= vC2 exp[−(r/b)2], (10)

where

b = 0.66 fm (11)

and vI=0
D = −436 MeV, vI=0

C1
= −412 MeV, vI=0

C2
= none,

vI=1
D = −62 MeV, vI=1

C1
= −285 MeV, vI=1

C2
= −285 MeV.

The two interactions, vI
π�(r) and vI

π�(r), are taken to be
vanishing to simply reduce the number of parameters. This
is justified because they are almost irrelevant in describing the
K̄ bound states.

The above coupled-channels interactions were used to de-
rive equivalent single-channel K̄N potentials with imaginary
parts in energy-independent forms, which is an appropriate
way to obtain the decaying state of Kapur-Peierls [32] as
discussed below. The obtained complex potentials are:

vI=0
K̄N

(r) = (−595 − i83) exp[−(r/0.66)2], (12)

vI=1
K̄N

(r) = (−175 − i105) exp[−(r/0.66)2], (13)

in units of MeV and fm. The same range is assumed for I = 0
and I = 1. The interaction strength (V0) and the range (b)
can be determined simultaneously because B and aK−p have
different dependences on V0 and b, as shown in Fig. 1 (and also
in Table I). Our semiempirical K̄N interaction is consistent
with the theoretically derived ones from meson-exchange [33]
and from chiral dynamics [34–36].

TABLE I. Calculated potential parameters (V0 and W0 in MeV),
energies (EK−pp) and widths (�K−pp) of K−pp in MeV, and the
I = 0 scattering length in fm with varied K̄N range (b in fm), while
reproducing �(1405).

b V0 W0 EK−pp �K−pp aI=0 (fm)

1.0 −316.5 −62.0 −49.5 66.5 −1.95 + i0.45
0.9 −368.7 −67.0 −49.0 65.7 −1.89 + i0.44
0.8 −439.6 −73.0 −48.3 64.4 −1.82 + i0.44
0.7 −540.0 −81.0 −47.3 62.9 −1.75 + i0.43
0.6 −689.5 −91.0 −45.8 60.3 −1.69 + i0.43
0.5 −929.7 −105.0 −44.0 57.4 −1.62 + i0.42
0.4 −1358.0 −128.0 −42.1 54.9 −1.55 + i0.42
0.3 −2250.0 −162.0 −40.1 51.3 −1.48 + i0.42
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FIG. 1. (Color online) Parametric presentation of the K−p

energy, EK−p , and the scattering length, aK−p , in the plane of the K̄N

interaction strength (V0) and the range parameter (b) in the expression
vI=0

K̄N
(r) = (V0 + iW0) exp[−(r/b)2]. The imaginary part is adjusted

to reproduce � = 40 MeV. The experimental values, EK−p =
−27 MeV (blue squares) and aK−p = 1.7 fm (red circles), determine
V0 and b.

Noting that the parameter b in the above Gaussian distribu-
tion is related to the rms distance R as b = √

2/3R = 0.816R,
we find the observed proton rms radius (Rp = 0.862 fm) to
give a range parameter b = 0.70 fm, which is compatible with
our range parameter (0.66 fm). To see further consistency
we have calculated the K̄N scattering amplitude by changing
the range parameter b. The results are shown in Fig. 2. The
real and imaginary parts with b = 0.7 fm reproduce the chiral
dynamics result [34–36] very well, in spite of the strong claim
by Oset and Toki [37] that AY’s scattering amplitudes are too
large compared with those obtained from the chiral unitary
approach of Oset and Ramos [38]. Thus, the interaction range
deduced and used in AY is fully justified.

Now, Let us discuss the energy dependence of the single-
channel complex K̄N potential. We employ Yukawa-type sep-
arable potentials as the original coupled-channels interaction
to treat the problem analytically, which are

〈�k′ | vij | �k〉 = g(�k′)U (0)
ij g(�k), g(�k) = �2

�2 + �k2
, (14)

U
(0)
ij = 1

π2

h̄2

2
√

µiµj

1

�
sij . (15)

where i, j stand for the K̄N channel (1) or the π� channel
(2), and sij are nondimensional strength parameters. The
experimental binding energy and width of �(1405) are
reproduced with s11 = −1.022, s12 = −0.626, s22 = 0, and
� = 770 MeV/h̄c = 3.9 fm−1. This range corresponds to a
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FIG. 2. (Color online) Dependence of the K̄N scattering am-
plitude on the range parameter b. (Upper) The real part with b =
0.7 fm reproduces the known chiral dynamics result [34]. (Lower)
The imaginary part with b = 0.7 fm accounts for the observed total
cross section of �(1405).

Gaussian range, b = 2/� = 0.51 fm, which is consistent with
the Gaussian range b = 0.66 fm we use.

The single-channel complex K̄N potential can be derived
by Feshbach’s projection operator procedure:

vcmp(E) = Pv11P + Pv12Q
1

E − Qh22Q + iε
Qv21P, (16)

namely

scmp(E) = s11 − s12
�2

(� − iκ2)2 + s22�2
s21, (17)

E + �M = h̄2

2µ2
2

κ2
2 , (18)
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where P and Q are the projection operators to the K̄N channel
and the π� channel, respectively, and �M is the threshold
mass difference between the two channels. In case of nonzero
s22 a virtual state sometimes appears on the π� unphysical
sheet, which gives a serious energy dependence of vcmp(E),
when used to obtain the “pole state” of K−pp in three-body
Faddeev calculations [17,18]. However, one should note that
experimental observation is done not for the “pole state” but
for the “decaying state,” as understood from the open-channel
asymptotic behavior of Green’s function of Morimatsu-Yazaki
[39] describing the process of K−pp production reactions. The
energy dependence of the single-channel K̄N potential (real
part) is only a little for the “decaying state” as shown in Fig. 3.
The imaginary part describing the decaying state decreases to
zero toward the �π threshold, as physically expected, whereas
we used the energy-independent potentials in the calculation
of K−pp. This decrease of the imaginary part changes the
width of K−pp from 61 to 43 MeV, whereas the larger width
of �(1405) from 40 to 50 MeV [28] causes a canceling effect,
from 43 to 54 MeV, as shown in subsection III D.

Thus, our energy-independent potentials of Eqs. (12) and
(13) are justified with sufficient accuracy, demonstrating that it
is just a proper way of treating the experimentally observable
decaying state of K−pp. Nevertheless, we will examine in
the next section (III) how the K−pp structure depends on
different choices of the K̄N and NN interactions by varying
the interaction parameters widely.

B. The bound state of K− pp

The presence of a deeply bound dibaryonic K̄ system,
K−pp, was first predicted as a natural extension of K−p in
Ref. [2]. A variational method (ATMS) developed in Ref. [12]
was employed together with the bare K̄N interaction of AY [1]
and the bare NN interaction of Tamagaki [40],

vNN (r) = 2000 exp[−(r/0.447)2] − 270 exp[−(r/0.942)2]

− 5 exp[−(r/2.5)2]. (19)

In these expressions we have employed the length units in fm
and the energy units in MeV.

The three-body variational wave function of K̄NN with a
number definition (1, 2, 3) = (K̄,N,N ) is given as

	 = [
12 + 
13] |T = 1/2〉 (20)

where


12 = [
f I=0(r12)P I=0

12 + f I=1(r12)P I=1
12

]
fNN (r23)f (r31),

(21)


13 = f (r12)fNN (r23)
[
f I=0(r31)P I=0

31 + f I=1(r31)P I=1
31

]
,

(22)

with

P I=0
12 = 1 − �τK · �τN

4
, (23)

P I=1
12 = 3 + �τK · �τN

4
. (24)

The functions f I=0(rij ) and f I=1(rij ) are scattering corre-
lation functions of the particle pair (i, j ) for the I = 0 and
I = 1 K̄N interactions, respectively, and fNN (r23) is that for
the NN pair, and f (rij ) is for the off-shell case. The T = 1/2
state consists of three isospin eigenstates as

|T = 1/2〉 =
√

3

4

[
(K̄1N2)0,0p3

]

+
√

1

4

[
−

√
1

3
(K̄1N2)1,0p3 +

√
2

3
(K̄1N2)1,1n3

]
,

(25)

where (K̄1N2)I,Iz is for the isospin (I, Iz). Among these the
first term corresponds to �∗p.

The binding energy and width of K−pp thus obtained are:

−BK = EK̄NN = −48 MeV, (26)

� = 61 MeV. (27)

For the estimate of the width we have taken into account
only the pionic decay modes of K̄N → Yπ . The width
will be larger if we consider other decay modes such as
K−pp → YN , which have been studied theoretically
[16].

The predicted structure of K−p and K−pp is shown in
Fig. 4. The wave function of �∗ = K−p in our treatment
is expressed by φ�∗ (r) with r being the K−-p distance. Its
density distribution is shown in Fig. 4. The rms distance of
K−-p is 1.36 fm. The “nucleus” pp does not exist, but the K−
can combine two protons into a strongly bound system, when
they are in a spin-singlet state. The predicted state is expressed
as K−(pp)S=0,T =1, and its isospin partner is K−(pn)S=0,T =1

or, more generally, [K̄(NN )S=0,T =1]T =1/2. It was shown in
Ref. [1] that the normal deuteron (S = 1, T = 0) does not
form a deeply bound state with K−, but a nonexisting “excited
deuteron” of I = 1 can do. These results come from the three-
body variational calculation but can easily be understood in
terms of the different weights of the I = 0 and I = 1 K̄N
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FIG. 4. (Color online) (Upper) Structure of K−p and K−pp, as
calculated in Ref. [2]. (Middle) The effective potentials for relative
motions of N -(K̄N ) and K̄-(NN ), deduced from the exact variational
wave function for K−pp. The K−-p potential for �(1405) is also
shown. (Lower) Density distributions of various coordinates in K−pp

as well as in �(1405) = K−p together with its density reduced by
a factor of 3/4 (brown dots). The values of the rms distances and
momenta are also given.

interactions in the dibaryonic configurations:

[K− × (nn)S=0]T =3/2 : 2 [vI=1], (28)

[K− × (d)S=1]T =1/2 : 2
[

1
4vI=0 + 3

4vI=1
]
, (29)

[K− × (pp)S=0]T =1/2 : 2
[

3
4vI=0 + 1

4vI=1
]
. (30)

Namely, the third one, K−pp (and its isobaric analog state),
has the deepest energy level.

C. Density distributions in K− pp

Here we show and discuss the calculated density distribu-
tions of K−pp in details. The effective potential energies as
functions of the relative distances of K̄-(NN ) and N -(K̄N )
are extracted from the obtained total wave function, as shown
in Fig. 4 (middle). The distributions of the relative distances
and the momenta of the constituent particle pairs, namely
K̄-N, K̄-(NN ), (K̄N )-N , and N -N , were calculated. Figure 4
(lower) shows their density distributions, ρ(r). The calculated
rms distances and rms momenta are also presented. The N -N
rms distance is 1.90 fm, which is significantly smaller than
the average internucleon distance in normal nuclei (2.2 fm
[15]) and is much smaller than the rms distance of p-n in
d (3.90 fm). The N -(K̄N ) potential has a core followed by
a strong attactive part, and the N -(K̄N ) distribution yields a
rms distance of 1.67 fm. The rms radius of K̄ with respect
to (NN ) is 1.35 fm, close to the rms distance of K̄-N in
�(1405).

It is interesting to see how the original structure of
the K−-p binding in �(1405) persists in K−pp. For this
purpose, we compare in Fig. 4 and Fig. 5 the K̄-N distance
distributions of the K̄N pair in K−pp, ρK̄−N (K−pp), with
that in �(1405), ρK̄−N (�∗). Most naively, we would expect
that ρK̄−N (K−pp) = (3/4)ρK̄−N (�∗), as shown by brown
dots in Fig. 4 (lower), if K− were bound by one of the two
protons, resulting in a free �(1405) and a proton, whereas
the realistic calculation indicates that the former (Rrms

K̄−N
=

1.57 fm) is significantly broader than the latter (1.36 fm).
This can be qualitatively understood, because the original K̄N

pair is dissolved into the three-body system of K−pp. To
investigate this difference more deeply, we decompose the
density distribution into the K̄NI=0 and K̄NI=1 parts, as
shown in Fig. 5. The I = 0 pair distribution has a shape closer
to ρK̄−N (�∗), whereas the I = 1 part is widely distributed due
to the smaller attractive interaction.

Although the shape of ρK̄−N (K−pp) is similar to that
of ρK̄−N (�∗), their intensities are different. This can be
understood as follows. When K− (1) resides with Proton
(2) with a probability of 0.5, the I = 0 component of the
wave function 
12 in Eq. (21) dynamically increases to 1
due to the strong K̄NI=0 interaction. We also expect an
additional intensity (0.5 × 1/4 = 0.125) from Proton (3), and
the total intensity becomes 0.625ρK̄−N (�∗), which accounts
for ρK̄−N (K−pp) very well. This means that K− (1) in K−pp

resides partially around Proton (2) in a form of �(1405)
and partially around Proton (3), as given by the total wave
function. This indicates that the structure of �(1405) is nearly
unchanged when it dissolves into this “nucleus.” In other
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FIG. 5. (Color online) Comparison of the density distributions,
r2 ρ(rKN ), of the K̄-N distance in the K̄N pair in �(1405) and in
K−pp. The latter is decomposed into the I = 0 and I = 1 pairs. The
density distribution in �(1405) after multiplication of a factor 0.625
is also shown.

words, the �(1405) state, though modified, persists in a nuclear
system. This aspect justifies the �(1405) doorway model [2].

In analyses of the Jülich group [33], the K̄N interaction in
the relevant energy region was found to be mainly of the t-
channel type, where ω-, ρ-, and σ -meson exchanges coherently
contribute to the strong I = 0 attraction which is enough to
accommodate a bound state assigned to �(1405). By taking
into account the dominance of this interaction we describe the
K−pp and K−pn subsystems as �∗p and �∗n, and thus the
decay interaction as �∗p → �p (“proton participant” case)
and �∗n → �n (“neutron participant” case), respectively.

D. Molecular aspect of K− pp

The persistency of �∗ in K−pp reminds us of a molecular-
type binding, similar to that in the hydrogen molecule, p +
e− + p (H+

2 ), and the muonic hydrogen molecule, p + µ− + p

(µ−H+
2 ). The interatomic distance scale is given by the Bohr

radius, aB = 0.53 nm, and the scale of the muonic molecule
is by aµ = 256 fm. The present kaonic nuclear cluster K−pp

can be interpreted as a kaonic hydrogen molecule in the sense
that K− traverses between the two protons, producing “strong
covalency” through the strongly attractive K̄NI=0 interaction.
This is essentially the mechanism of Heitler and London [14]
for the hydrogen molecule, though the nature of the interaction
is totally different and the mass of the migrating particle is
much heavier.
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FIG. 6. (Color online) The adiabatic potential when a proton
approaches a �(1405) as a function of the p-p distance. For
comparison the Tamagaki potential vNN [40] is shown.

This aspect is more clearly seen when the density dis-
tribution is plotted with a fixed axis of the two protons.
Figure 6 shows the adiabatic potential, when a proton ap-
proaches a �(1405) particle, as a function of the p-p distance.
The p-p potential caused by the migrating K− is much deeper
than the bare p-p interaction. This can be called “super strong
nuclear force,” as compared with the ordinary nuclear force.
When a �∗ is produced in a close proximity with a proton, it
easily binds the proton. This leads to a �∗p doorway situation
following the �∗ doorway, as will be discussed later.

Figure 7 shows the projected distribution of K− along the
p-p axis and the contour distribition of K−, when the p-p
distance is fixed to 2.0 fm. This case resembles the ground
state of K−pp, as the calculated rms distance is 1.9 fm. From
these figures we recognize the distinct character of K−pp as a
“diatomic molecule.” Namely, the K− is distributed not around
the center of p-p but around each of the two protons. The K−
distribution is composed of the “atomic” part, as shown by
curves of red open circle chain, and the exchange part by
green broken curve.

It is interesting to see how the individual energy terms
behave in the light of the Heitler-London picture. The
“atomic” system, K−p, has E = −27.8 − i 20 MeV, 〈TK〉 =
115.3 MeV, and 〈vK̄N 〉 = 143.1 − i20.0 MeV. The K−-(pp)
part in the molecular system, K−pp, has 〈TK〉 =
118.3 MeV, 〈2vK̄N 〉 = −195.5 MeV and thus, E = −77.2 −
i30.6 MeV. However, the p-p interaction part has 〈TNN 〉 =
48.8 MeV, 〈vNN 〉 = −19.0 MeV, and E = 29.8 MeV. Thus,
the energy difference attained when the molecular state is
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FIG. 7. (Color online) The molecular structure of K−pp. (Mid-
dle) The projected density distributions of K− in K−pp with a fixed
p-p distance (= 2.0 fm). (Lower) The corresponding K− contour
distribution.

formed from the atomic state is as follows:

�E = −47.5 + 27.8 = −19.7 MeV, (31)

�TK̄ = 118.3 − 115.3 = 3.0 MeV, (32)

�ENN = 48.8 − 19.0 = 29.8 MeV, (33)

�VK̄N = −195.5 + 143.1 = −52.4 MeV. (34)

Because the massive K− causes a shrinkage of pp, the
pp energy increases together with the K− kinetic energy.
Nevertheless, the strong I = 0 K̄N attraction produces a large
exchange integral,∑
{i,j}={2,3},{3,2}

〈
1i |vK̄N (12) + vK̄N (13)|
1j 〉 = −52.6 MeV,

(35)

which is the source for the deeper binding of K−pp as
compared with K−p.

E. Super strong nuclear force caused by a migrating real K−

Despite the drastic dynamical change of the system caused
by the strong K̄N interaction the identity of the “constituent
atom,” �∗, is nearly preserved because of the presence of a
short-range repulsion between the two protons. This extremely
dense “molecule” can be called a “subfemto minimolecule.”
In the same sense, the previously predicted K−K−pp [5]
corresponds to the two-electron neutral hydrogen molecule
(H0

2).
Historically, Heisenberg [41] tried to explain the origin of

the strong nuclear force in terms of “Platzwechsel,” namely,
n ↔ p + e−, as in the molecular bonding, originating from
Heitler and London [14], but had to abandon this idea for
obvious reasons. Then, Yukawa introduced a mediating virtual
meson [42]. This hypothetical meson was later discovered, and
Yukawa’s idea of a “mediating boson” was established as the
fundamental concept in the contemporary particle physics, the
most notable being the W and Z weak bosons. It is to be
noted that the K−pp system (and subsequent kaonic clusters)
is regarded as a revival of the Heitler-London-Heisenberg
scheme, where a superstrong nuclear force is produced by
a migrating real boson, K−, as emphasized in Ref. [15], where
the volume integral of the superstrong nuclear force is larger
than that of the ordinary nuclear force by a factor of 4.1.

III. VALIDITY TEST AGAINST VARIOUS POTENTIAL
PARAMETERS

One may raise a question: how robust are these predictions
on K−pp? In the following we study comprehensively the
effect of the K̄N and NN interactions by varying them to wide
extent, while reproducing the energy and width of �(1405).

A. Dependence on the N N hard core

First, one may wonder how the NN hard core will affect
the binding of K−pp. To examine this effect we introduce an
unrealistically large hard core by adding

�Vcore

1 + (r/0.4 fm)20
(36)

with �Vcore = 2000, 4000, and 6000 MeV to the original
Tamagaki potential G3RS [40],

vG3RS
NN = 2000 exp[−(r/0.447)2] + v2 exp[−(r/0.942)2]

− 5 exp[−(r/2.5)2] (37)

with r in fm, as shown in Fig. 8. For reference the Argonne
potential AV18 [43] is also shown. To assure self-consistency
the midrange attractive strength (v2), the original value of
which is −270 MeV, was adjusted so as to reproduce the
NN -scattering length. Namely v2 = −270,−284,−291, and
−295 MeV for �Vcore = 0, 2000, 4000, and 6000 MeV,
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FIG. 8. (Color online) The artificially increased hard core in the
NN potential, while keeping the NN scattering lengths to empirical
values. The calculated energy and width of K−pp with varied hard
core values Vcore are listed in inset.

respectively. Then, the binding energy and width turned out
to change only slightly: BK = 47.7, 46.6, 46.2, and 45.9 MeV
for respective �Vcore.

B. Dependence on the K− N interaction range

To examine the effect of the interaction range let us vary
the range (b) of the K̄N interaction in a form of

vI=0
K̄N

= (V0 + iW0) exp

[
−

( r

b

)2
]

(38)

drastically from 0.3 to 1.0 fm while reproducing the K−p

binding to the observed BK and � of �(1405). The results are
shown in Table I. Obviously, |V0| (and also |W0|) increases with
the decrease of b. However, the energy and width of K−pp do
not change much. This situation is shown in Fig. 9. Table I also
shows a gradual change of the I = 0 scattering length with b,
which clarifies and confirms our statement in connection with
Fig. 1 that B and aK−p have different dependences on V0

and b.
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FIG. 9. (Color online) Dependence of the K−pp energy and
width on the range parameter b in the present treatment (red curves),
where the interaction strength is varied so as to reproduce the energy
and width of �(1405). For comparison is shown the case of the chiral
dynamics treatment with a fixed “LO” term (black curves).

In a chiral dynamics derivation of the K̄N interaction [34]
the interaction range in the expression of the form factor as

v(k; b) = C“LO” exp[−b2k2/4] (39)

is chosen so as to be consistent with the energy and width of
�(1405). This means that the constant C“LO” is determined
according to the chosen b. When the range parameter b

is varied, the C“LO” parameter is kept constant in usual
treatments. Then, the derived potential strength is varied so
as to fulfill the relation: V0b

3 = const. Such a treatment does,
however, not reproduce the �(1405) as K−p and yield a totally
different b dependence in the energy and width of K−pp, as
shown in the same figure. To reproduce the �(1405) energy the
interaction strength should fulfill a different relation, V0b

1.6 ≈
const.

To examine whether the EK−pp and �K−pp depend on the
functional form of the interaction we take the Yukawa type
form:

vI=0
K̄N

= (V0 + iW0)
bY

r
exp

[
− r

bY

]
, (40)

where the range parameter bY is related to the Gaussian
parameter b as

bY = 0.5b. (41)

For each value of bY the parameters V0 and W0 were
determined so as to reproduce �(1405). The results are shown
in Table II. Here again, the EK−pp and �K−pp do not change
much. They are found to be close to those obtained with the
Gaussian type interaction.
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TABLE II. Calculated potential parameters (V0 and W0 in MeV)
and energies (EK−pp) and widths (�K−pp) of K−pp in MeV with
varied K̄N Yukawa range (bY in fm), while reproducing �(1405).

bY V0 W0 EK−pp �K−pp

0.50 −593.3 −60.7 −45.1 57.0
0.45 −709.8 −67.7 −44.4 56.2
0.40 −869.5 −76.6 −43.7 55.3
0.35 −1098.0 −88.0 −43.0 54.3
0.30 −1444.0 −103.2 −42.4 53.4
0.25 −2006.0 −124.8 −41.9 52.5
0.20 −3021.0 −157.5 −41.8 52.0

C. Dependence on the K− N hard core

No hard core has been imposed so far for the K̄N

interaction. Here, we attempt to invoke the following K̄N

interaction with a hard-core part to examine its effect on K−pp

binding:

vK̄N = VY− RC exp

[
−

(
r

b1

)2
]

+ (V0 + iW0) exp

[
−

(
r

b2

)2
]

(42)

with b1 = 0.3 fm and b2 = 0.7 fm. The K̄N potential was
changed with various VY− RC values from 0 to 2000 MeV so
as to reproduce �(1405), as shown in Fig. 10. The calculated
potential parameters (V0 and W0) and the energy and width of
K−pp are listed in its inset. This result also indicates that the
energy and width depend only slightly on the assumed hard
core in the K̄N interaction. This behavior is unchanged for a
different value of b2.

D. Beyond the original prediction of K− pp

We showed in Fig. 3 that the imaginary part of the K̄N

interaction for the decaying state decreases to zero as the
energy approaches the �π emission threshold, whereas our
original value (61 MeV) for � of K−pp does not include this
effect. Now, after taking into account the energy dependence
of the imaginary part, we obtain a corrected value, � ≈
43 MeV. If we adopt the PDG value (50 MeV) for the width
of �(1405) instead of the earlier value of 40 MeV, we end up
with a value � ≈ 54 MeV. This is close to our original value
of 61 MeV.

Thus, we have confirmed that the original prediction for
K−pp is quite robust against any change of the two-body
interactions involved, as far as the interactions are constrained
by �(1405). If our prediction turns out to be different
from future observation, it will indicate anything beyond the
present model. In fact, the recent FINUDA experiment [20]
suggested the presence of a bound state deeper than the original
prediction, and we should keep our eyes open to unknown
effects which may come into the three-body system. As such
we list the following.

(i) Validity of the �(1405) ansatz. Because our treatment
depends entirely on this ansatz, the result would be
substantially changed, if this ansatz were not right (even
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FIG. 10. (Color online) The K̄N potentials with artifi-
cially introduced hard core values, VRC = 0, 500, 1000, 1500, and
2000 MeV, while keeping the energy and width of K−p to the �∗

values. The calculated potential parameters and energy and width of
K−pp with varied hard core values VRC are listed in inset.

partially). Nonobservation of K−pp would cast a serious
question on the so far believed nature of �(1405),
requiring a totally new physics regarding this resonance.

(ii) Presence of a p-wave K̄N interaction, which is not
relevant to �(1405), but may be pertinent to three-body
(or more) systems [44].

(iii) The K̄N interaction modified in three-body (or more)
systems, such as due to chiral symmetry restoration or
other quantum chromodynamics effects.

(iv) The NN repulsion relaxed by the presence of K̄ . If
the short-range NN repulsion results from the uud-uud

interaction, the intruding K− = sū brings a ū in between,
and the N -N repulsion may be weakened by a kind of
shielding, namely uud-sū-uud.

In view of these unknown effects we have to be prepared
to predict the effect of widely varied K̄N interaction [without
constraint by �(1405)]. Specifically, we consider the following
three different cases for the K̄N interaction: (A) the original
AY interaction, (B) enhanced interaction strength by 1.17, and
(C) enhanced interaction strength by 1.25.
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Cases (B) and (C) were adopted when we discussed
the possible change of the K̄N interaction corresponding
to different observations of the tribaryonic K̄ bound states
[6]. The bound-state energies and widths, and mutual rms
distances, momenta, and densities of the three bodies, K̄,N

and N , in K−pp are presented in Table III. In the next sections
we employ cases (A) and (B) for production reactions.

IV. ORDINARY K̄ TRANSFER REACTIONS-�∗ DOORWAY

The conventional methods to produce kaonic bound
states are to use strangeness-transfer reactions of
(K−, π−), (π+,K+), (K−, N) and (γ,K+). We treat the
formation of K̄ clusters by a �∗ doorway model [2], in which
a �∗ produced in elementary processes, typically,

K− + n → �∗ + π−, (43)

π+ + n → �∗ + K+, (44)

merges with a surrounding nucleon (or nucleus) to become a
K̄ state.

We describe the case of the d(π+,K+)K−pp reaction. In
this case, we use case (B) with revised binding energy and
width for K−pp (BK = 86 MeV and � = 58 MeV). In the
elementary process, Eq. (44), the produced �∗ interacts with
a proton in the target d, proceeding to K−pp, as shown in
Fig. 11 (upper left). The momentum transfer at a typical
incident momentum of pπ ∼ 1.5 GeV/c is Q ∼ 600 MeV/c.

TABLE III. Calculated energies and widths in units of
MeV of K−pp with three different K̄N interactions. 〈KE〉:
average kinetic energy. 〈PE〉: average potential energy. The
rms distances, momenta and densities among the three bodies
are also shown.

K̄-(NN ) N -(K̄N ) N -N

(A) Original AY
E = −48 − i30, 〈KE〉 = 162, 〈PE〉 = −210

rms R (fm) 1.35 1.67 1.90
rms P (MeV/c) 233 193 183
ρ(0) (fm−3) 0.24 0.062 0.007

(B) 17% enhanced
E = −86 − i27, 〈KE〉 = 208, 〈PE〉 = −294

rms R (fm) 1.14 1.44 1.65
rms P (MeV/c) 270 218 205
ρ(0) (fm−3) 0.35 0.079 0.012

(C) 25% enhanced
E = −106 − i29, 〈KE〉 = 228, 〈PE〉 = −333

rms R (fm) 1.08 1.37 1.58
rms P (MeV/c) 285 228 214
ρ(0) (fm−3) 0.42 0.086 0.014

The energy spectrum involving both the bound and un-
bound regions was calculated following the Morimatsu-Yazaki

FIG. 11. (Color online) (a)
Diagram for the d(π+, K+)K−pp

reaction. (b) Calculated spectral
shape of the d(π+, K+)K−pp

reaction. (c) Diagram for the
p(p,K+)K−pp reaction. (d)
Forward cross sections of the
p(p,K+)K−pp reaction for
different rms distances R(�∗p).
The cases (A) and (B) of the K̄N

interaction correspond to 1.67 and
1.44 fm, respectively.
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procedure [39]. It is given by

d2σ

dEK+d�K∗
= α(kK+ )

dσ elem
�∗

d�K+

∣∣〈φ�∗
∣∣vI=0

K̄N

∣∣φ�∗
〉∣∣2

Ẽ2 + 1
4�2

�∗
S(E) (45)

with a spectral function

S(E) =
(

− 1

π

)
Im

[ ∫
d�rKd�r ′

Kf̃ ∗(�rK )

×〈�rK | 1

E − HK−pp + iε
|�r ′

K〉f̃ (�r ′
K )

]
, (46)

where Ẽ is the energy transfer to the �∗-p relative motion
in doorway states, E is the energy transfer to the K−-pp

relative (internal) motion in the K−pp system, and α(kK+ ) is
a kinematical factor. The function f̃ (r) is

f̃ (�r) = 23ei2β �q�rC(r)
∗
pp(2r)	d (2r)/|φ�∗(0)|, (47)

with �q = �kπ+ − �kK+ , β = Mp/(M�∗ + Mp), and C(r) = 1 −
exp[−(r/1.2 fm)2] and 
pp is the p-p relative wave function
in K−pp. In this derivation we have used a zero-range
approximation for vI=0

K̄N
and closure approximation to doorway

states.
The calculated spectral function is shown in Fig. 11 (upper

right). The dominant part is the quasifree component, in which
the produced �∗ escapes, and only a small fraction constitutes
a bound-state peak. The peak intensity of the bound K−pp

state depends on the size of the �∗p system, but not so
drastically.

V. K− pp PRODUCTION IN N N COLLISIONS

A. Formulation

Now we consider the following �∗p doorway process with
a projectile proton and a target proton,

p + p → K+ + (�∗p),

which proceeds to the bound-state formation with two-body
final states as well as to free �∗ emission (called “quasifree”
process):

→ K+ + K−pp, (48)

→ K+ + �∗ + p. (49)

The formed K−pp decays not only via the major channel

K−pp → � + π + p, (50)

but also in nonpionic decay channels:

K−pp → � + p → p + π− + p, (51)

K−pp → �0 + p → p + π− + γ + p, (52)

K−pp → �+ + n → n + π+ + n. (53)

The reaction diagram is shown in Fig. 11 (lower left). When the
incident proton interacts with a neutron in a deuteron target, an
analogous process takes place, namely p + n → K+ + �∗ +
n with an isodoublet partner �∗n [= K−(pn)I=1,S=0] as well
as p + n → K0 + �∗ + p. Hereafter, we take the p + p case
without loss of generality.

The p → p + K− + K+ process, where a K+K− pair is
assumed to be created at zero range from a proton, is of highly
off-energy shell (�E ∼ 2mKc2). This process is realized only
with a large momentum transfer to the second proton, which
occurs efficiently by a short-range pp interaction. When it is
expressed by a Yukawa type interaction, exp(−r/mB )/r with
mB being the intermediate boson mass, the effective interaction
for the elementary process is written as

〈�rK+(K−pp′), �r(K−p)p′ , �rK−p|t |�rpp′ 〉
= T0

∫
d�rF (�r)δ[�rK+(K−pp′) − η�r)

× δ(�r(K−p)p′ − �r)δ(�rK−p)δ(�rpp′ − �r)], (54)

where

F (�r) = β

r
exp

(
− r

β

)
(55)

with β = h̄/(mBc) and η = Mp/MK−pp. The �∗ is treated as
a quasibound state of K−p, and the interaction matrix element
for �∗ formation is given by

〈�kK+(�∗p′), �r = �r�∗p′ , φ�∗ |t |�kpp′ 〉
= T0φ�∗ (0)F (r)〈�kK+(�∗p′)|η�r〉〈�r|�kpp′ 〉
≡ U0f (�r), (56)

where

U0 = 1

(2π )3
T0φ�∗ (0), (57)

f (�r) = β

r
exp

(
− r

β
+ i �Q�r

)
, (58)

�Q = η0�kp − η�kK+ , (59)

η0 = 1

2
+ mK

MK−pp + mK

η. (60)

The production cross section of �∗p (=K−pp) at energy
E = (M − M�∗ )c2 is given by

d3σ

dEd�K+
= (2π )4

(h̄c)2
|U0|2 kK+Ep

2kp

(
− 1

π

)

× Im

[ ∫∫
d�r ′d�rf ∗(�r ′)〈�r ′| 1

E − H�∗p + iε
|�r〉f (�r)

]
, (61)

where

H�∗p = − h̄2

2µ�∗p
�∇2 + (v0 + iw0)r2 exp

(
− r2

c2

)
(62)

is the L∗-p interaction, represented with v0 = −3770 MeV,
w0 = −880 MeV, and c = 0.3 fm, which are deduced from
the N -(K̄N ) potential in Fig. 4 obtained by the structure
calculation of K−pp.

Then, the spectral function of �∗p (= K−pp) is

S(E) = − 1

π
Im

[∫∫
d�r ′d�rf ∗(�r ′)〈�r ′| 1

E − H�∗p + iε
|�r〉f (�r)

]

= −8µ�∗p

h̄2

∞∑
l=0

(2l + 1) Im

[
1

W
(
u

(0)
l u

(+)
l

)
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×
∫ ∞

0
dr ′

∫ ∞

0
dr exp

(
− r ′

β

)
jl(Qr ′)

× u
(0)
l (r<)u(+)

l (r>)jl(Qr) exp

(
− r

β

)]
, (63)

where u
(0)
l and u

(+)
l are the stationary and outgoing solutions

of the Schrödinger equation and W is the Wronskian of them.
Essentially, the spectral function is composed of the

following three factors:

e−mBr

r
× ei �Q�r × G(r), (64)

where

G(r) =
[
−Im

{
u(0)(r)u(+)(r)

W (u(0)u(+))

}]1/2

. (65)

They are (i) the collision range 1/mB , (ii) the momentum
transfer Q, and (iii) the structure function G(r) depending on
the rms distance R(�∗p) of the �∗-p system. The calculated
wave function of K−pp in case (B) yields R(�∗p) =
1.44 fm. The momentum transfer in the reaction is Q ∼
1.6 GeV/c, depending on the angle. The boson mass in
producing �∗ in pp collision is taken to be the ρ meson mass;
mB = mρ = 770 MeV/c2. (For comparison we also examined
the case of mB = mπ = 140 MeV/c2, and found a similar
result.)

The calculated spectral function at Tp = 4 GeV at forward
angle in the scale of E(�∗p) = 27 MeV − BK is presented
in Fig. 11 (lower right). Surprisingly, in great contrast to the
ordinary reactions, the spectral function is peaked at the bound
state with only a small quasifree component. This means that
the sticking of �∗ and p is extraordinarily large.

B. Unique features of the p- p reaction:
dominance of the �∗ p doorway

This dominance of �∗p sticking in such a large-Q reaction
can be understood as originating from the matching of the
small impact parameter with the small size of the bound state.
For further understanding of the mechanism we examined the
dependence of the spectral function by changing the essential
parameters fictitiously. Figure 11 (lower right) shows that the
bound-state peak decreases when we increase the rms size
R(�∗p) from 1.44 fm [the predicted size in case (B)] to
1.67 fm [case (A)] and further to 1.85 fm. It also shows
that with a hypothetically denser system [R(�∗p) = 1.25 fm]
the peak height increases dramatically. So, we prove that the
dominant sticking of �∗p is the result of the dense K̄ system
to be formed.

As a more analytical way to show the physics behind
we plot in Fig. 12 the radial dependence of each factor
of the transition intensity, Eq. (64), for different cases of
the parameters, column (I) for case (B) and ρ exchange,
column (II) for less bound case, and column (III) for case (B)
and π exchange. The first row (a) shows the p-p interaction
range of the Yukawa type with different boson masses mB .
The second row (b) shows the spherical Bessel function
j0(Qr) corresponding to the momentum transfer of Q =

1.6 GeV/c. The third row (c) shows the structure dependent
function G(r), where the solid (red) and broken (blue) curves
represent the bound [EB(�∗p) = −60 MeV] and the quasifree
[EQF(�∗p) = 100 MeV] regions, respectively. Finally, the
bottom row (d) shows the radial dependences of the spectral
strengths at the bound-state and quasifree (QF) regions. In the
case (I), the structure function is dense for r < 1.5 fm so that
it overlaps with the short-range interaction (a) assisted by the
large momentum transfer (b). The spectral intensity damps
and shows little oscillation after r ∼ 0.5 fm. Thus, the radial-
integrated spectral intensity is large, and the bound/QF ratio
is also large, ∼2.1. If we artificially increase the �∗p distance
to 1.85 fm, as shown in column (II), the initial overlapping
part drops down so that the ratio becomes 0.8. A softened p-p
interaction (mB = 140 MeV), column (III), makes the spectral
intensities more oscillatory, yielding smaller intensities, but the
bound/QF ratio (= 2.3) is unchanged from the case (I).

We also checked that with a fictitiously long-range NN

collision (mB = 10 MeV) the bound-state peak diminishes
and the quasifree component dominates. Under this condition
the bound-state peak is enhanced only when the momentum
transfer is small (so-called recoilless condition). However, the
dominant sticking of �∗p is assisted by the large momentum
transfer (Q ∼ 1.6 GeV/c).

We have thus demonstrated that the dominant sticking of
�∗p occurs as a joint effect of the short-range collision, the
large momentum transfer and the compact size of the K̄ cluster.
It is vitally important to examine our results experimentally.
An experimental observation of K−pp in pp collision will
not only confirm the existence of K−pp, but also proves the
compactness of the K̄ cluster.

C. Production cross sections and kinematics

The reaction we propose is essentially a reaction of two-
body final states,

p + p → K+ + X, (66)

where the unknown object X with a mass MX, can be searched
for in a missing mass spectrum of K+,MM(K+). For a given
MX the K+ momentum in the laboratory frame is a unique
function of the center-of-mass angle. With an incident energy
of Tp = 3.0 GeV we calculated kinematical relations of the
above reaction, as shown in Fig. 13. The laboratory angle
of K+ spans from 0 to a maximum (around 50◦), where the
center-of-mass angle is 75◦. The momentum transfer Q is
around 1.6 GeV/c.

Parallel to the missing-mass spectroscopy we can perform
invariant-mass spectroscopy of (�p) pair as well. Figure 13
also shows a typical event pattern, where a K+ is emitted at
large angle with a moderate momentum (500–1000 MeV/c).
The corresponding X goes out at a forward angle (both in
center-of-mass and in laboratory) and thus its decay particles,
� + p → p + π− + p, are forward boosted.

The calculated cross sections at Tp = 3 GeV at vari-
ous laboratory angles for an assumed bound-state mass of
MK−pp = 2310 MeV/c2, the original case (A), are presented
in Fig. 14. The upper one is in the scale of MX. The cross
section integrated over the quasifree region [E(�∗p) > 0]
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FIG. 12. (Color online) Effects of various parameters on each factor of the transition amplitude in the p + p → K+ + K−pp reaction.
Columns (I) and (III) for the K̄N interaction case (B) and with ρ and π exchange cases, respectively. Column (II) for the less bound case. The
solid (red) and broken (blue) curves represent the bound [EB(�∗p) = −60 MeV] and the quasifree [EQF(�∗p) = 100 MeV] regions.

corresponds to the free emission of �∗ above 2340 MeV/c2,
which is known to have an empirical cross section of
σ (pp → K+ + �∗ + p) = 20 µb from a DISTO experiment
at Tp = 2.85 GeV [45]. So, we have adjusted our absolute
cross sections so as to give this empirical cross section.

The cross section has substantial angular dependence, but
the bound-state peak is distinct at any angle. Even at large
laboratory angle around 30◦ the cross section is modest and
the peak to background ratio remains large. The cross section
in the scale of K+ energy is shown in the lower part of
Fig. 14.

Figure 15 shows the cases of the original (A) and enhanced
interactions, (B) and (C), as presented in Table III. The peak
position moves toward lower masses and the peak cross section
increases accordingly.

The elementary reaction of type

p + p → K+ + Y 0 + p (67)

was studied experimentally by the DISTO group at SATURNE
[45] and more recently by the ANKE group at COSY [46].
The DISTO experiment identified � from the invariant-mass
spectrum of p + π− and constructed a missing mass spectrum
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FIG. 13. (Color online) Kinematic relations in pp → K+ + X reaction at Tp = 3.0 GeV for MX = 2280 MeV/c2. The momentum vectors
for a typical backward K+ event are also shown.

of K+p from those events involving � at an incident proton
energy of Tp = 2.85 GeV. The missing mass in this case
corresponds to the mass of Y 0,

MM(K+p) = M(Y 0), (68)

and they found peaks associated with the production of
�(1115), �0(1193), and �0(1385) + �(1405). They obtained
a cross section of 20 µb for �(1405), which we have used as
an absolute scale in our calculations.

The ANKE experiment measured the energies and momenta
of four emitted particles, K+, p,X+,− and π−,+, with com-
plete kinematical constraint at Tp = 2.83 GeV:

p + p → K+ + p + Y 0 → K+ + p + X+,− + π−,+. (69)

They constructed MM(K+p) and additionally
MM(K+pπ−), which was equated to M(X). When
MM(K+pπ−) = M(p), it indicates that this Y 0 decays to
p + π− and, thus, it is assigned to �. Thus, the ANKE
MM(K+p) spectrum is similar to the DISTO spectrum.

In these experiments the reaction products were studied in
terms of the elementary processes. Now we propose to examine
the new situation related to the existence of K−pp. We point
out that the formation/decay process of this object, as given
in Eqs. (49), (51), (52), and (53), are hidden in the observed
spectra of MM(K+p). The most important information in
our context is contained in a spectrum of MM(K+), which is

related to the mass of K−pp,

MM(K+) = M(K−pp), (70)

but no such spectrum has been reconstructed yet. Now, a new
experiment of the FOPI group at GSI [26], which is aimed at
measuring the whole products in the p + p reaction at Tp =
3 GeV to reconstruct both the invariant mass Minv(�p) and the
missing mass MM(K+), is in progress.

D. Subsequent �∗ p doorway processes

Once a �∗p doorway is formed, it proceeds to a bound
K−pp state, and thus it is likely to further propagate in a
complex nucleus as

�∗p + “p” → K−ppp, (71)

�∗p + “n” → K−ppn, (72)

where the K− traverses through the three nucleons coherently,
and ultimately a kaonic proton capture reaction may occur,
such as

d(p,K+)K−ppn, (73)

d(p,K0)K−ppp, (74)
3He(p,K+)K−pppn, (75)
3He(p,K0)K−pppp. (76)
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FIG. 14. (Color online) Predicted differential cross sections of
p + p → K+ + X at Tp = 3.0 GeV for the K̄N interaction case
(A). (a) MX spectra at various K+ laboratory angles. (b) K+ energy
spectra at various K+ laboratory angles.

In principle, missing mass spectra, MM(K+) and MM(K0),
may reveal monoenergetic peaks.

VI. CONCLUDING REMARKS

In this article we presented the results of our comprehensive
three-body calculations on the structure of the basic K̄

cluster, K−pp. First, we showed that the single-channel
complex potential of K̄N , transformed from coupled-channels
interactions, has very little energy dependence, which justifies
our three-body calculations. The binding energy and width of
K−pp, which were obtained in our original prediction, are
found to be robust against any change of the K̄N and NN

interaction parameters, as far as they account for �(1405)
as a K−p bound state. It is also shown that the structure
of K−pp can be interpreted as a covalent state of p-K−-p,
in which the K− migrates over the two protons coherently,
yielding a “superstrong” nuclear force. In this sense, the
K−pp cluster may be called a “mini sub-femtometer dense
diatomic molecule” with a quasi �(1405) as the “atom.”
This structure justifies our �∗ doorway treatment of the
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FIG. 15. (Color online) Predicted differential cross sections of
p + p → K+ + X at Tp = 3.0 GeV at forward angle in the three
cases of the K̄N interaction: cases (A), (B), and (C), as given in
Table III. The E(�∗p) = 0 value corresponds to the �∗ emission
threshold.

formation reaction. The K−pp as a dissolved state of �∗ + p is
predicted to be formed with extraordinarily large enhancement,
because the �∗ produced in a short-range collision with the
participating proton spontaneously forms a �∗p doorway,
which is nearly equivalent to the dense K−pp system. This
anomalous dominance of �∗p sticking is shown to result from
the unusual matching of the short collision range (1/mB ∼
0.3 fm) and the small radius of the produced K−pp, assisted
by a large momentum transfer. Experimental confirmation of
this effect will simultaneously prove the compact character of
the K̄ cluster.

Finally, we comment on our earlier proposal to make use
of hot fireball in heavy-ion collisions as sources of various K̄

clusters [5]. If the formation of �∗p doorway toward K−pp

is really enhanced in NN collisions, the successive formation
of K̄ clusters, K−pp,K−ppp, etc., in heavy-ion reactions is
expected to be enhanced as well, because a heavy-ion reaction
involves lots of primary NN collisions and subsequent �∗N
production processes.
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