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Virtual photon emission from a quark-gluon plasma
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We present phenomenological formulas for virtual photon emission rates from a thermalized quark-gluon
plasma (QGP) that include bremsstrahlung and annihilation with scattering (AWS) mechanisms along with the
Landau-Pomeranchuk-Migdal (LPM) effects. For this purpose we follow the approach of generalized emission
functions (GEF) for virtual photon emission, we showed earlier for a fixed temperature and strong coupling
constant. In the present work, we extend the LPM calculations for several temperatures and strong coupling
strengths, photon energies (q0), photon mass (Q2), and quark energies (p0). We generalize the dynamical scaling
variables, xT , xL, for bremsstrahlung and AWS processes that are now functions of variables p0, q0, Q

2, T , αs .
The GEF introduced earlier, gb

T , ga
T , gb

L, ga
L, are also generalized for any temperatures and coupling strengths.

From this, the imaginary part of the photon polarization tensor as a function of photon mass and energy has
been calculated as a one-dimensional integral over these GEF and parton distribution functions in the plasma.
By fitting these polarization tensors obtained from GEF method, we obtained a phenomenological formula for
virtual photon emission rates as a function of {q0, Q

2, T , αs} that includes bremsstrahlung and AWS mechanisms
with LPM effects.
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Quantum chromodynamics (QCD) calculations on space
time lattice [1] predict a transition from confined state in
hadrons to a deconfined state of quarks and gluons above
a temperature of 170 MeV or an energy density above
1 GeV/fm3. In the relativistic heavy ion collisions at the Rela-
tivistic Heavy Ion Collider at Brookhaven National Laboratory,
where the initial energy density is around 5 GeV/fm3, such a
transition to a deconfined state of matter is formed as shown by
experimental measurements of several observables [2–5]; for
details see the reviews in Refs. [6,7]. It is currently believed that
this deconfined state consists of a strongly interacting quark-
gluon plasma (sQGP), behaving nearly like a perfect liquid [7].
Among many observables, electromagnetic signals such as
photon and low mass dilepton emission have been considered
important as diagnostic tools to identify this state of matter.
Photons and dileptons are emitted at various stages during
the plasma evolution. The experimentally measured yields are
obtained by convoluting the expansion history of the plasma
with all the contributing processes to these signals from QGP as
well as hadron phases. Therefore, understanding the physical
processes in QGP phase that contribute to these signals and
developing a phenomenological formulas that simulate the
rates for these processes is of paramount importance. Study
of thermal dilepton rates has evinced lot of theoretical interest
in recent times. This is because the dilepton contribution can
arise from the hard parton radiating off while traversing the
QGP medium, known as the jet quenching process. It has
been recently shown that this process gives contribution to
dilepton emission and may be above the thermal dilepton
emission rates from the thermalized QGP [8]. The current
interest in dilepton emission comes from the lattice QCD
calculations of the electromagnetic correlators and the lattice
results for dilepton rates [9–13]. The results for zero three-
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momentum at two different temperatures were compared to
the results of hard thermal loops (HTL) [14] method. The
lattice rates are consistent with the HTL results at high energy,
where as at lower energies, the lattice rates show a decrease
as compared to the apparently diverging rates in the HTL
method. If this decrease in lattice rates is due to lattice artifacts,
then it gives a scope to verify agreement between lattice and
perturbative results as well as a scope to verify agreement
between different methods in lattice calculations, see Ref. [11].
Thus, the qualitative difference between these two results
is currently under investigation. Recently, there has been a
renewed interest in the dilepton emission rate in an ultrasoft
energy limit [15]. In the soft limit, electromagnetic correlator
can be related to the electrical conductivity [13,15]. However,
the lattice calculations did not give unique answer to the value
of the conductivity in the soft limit.

In this work, we present a study of virtual photon emission
from thermalized QGP and a phenomenological formulas
that reproduce these results. We concentrate on the Landau-
Pomeranchuk-Migdal (LPM) effects [16,17] that arise due
to the multiple scatterings of quarks in the QGP medium
during a finite photon formation time. The LPM effects on
real photon emission from QGP have been reported [18,19]
and an empirical approach in [20]. For the case of virtual
photon emission in QGP, the processes that contribute at
ααs [21,22] and LPM effects [23] were well studied. (α, αs

are the electromagnetic and strong coupling strengths). In
the HTL method these processes occur at the one-loop, two-
loop, and higher-loop levels. At the one-loop level, Compton
scattering (qg → qγ ) and quark and antiquark annihilation
(q̄q → gγ ) processes contribute to photon emission [21,22].
The processes bremsstrahlung and annihilation with scattering
(AWS) contribute to photon emission at the two-loop level,
as shown in Figs. 1(a) and 1(b). These are represented by
qi → γ qi, q̄qi → γgi, where i represents quark, antiquark,
or gluon. The processes in Figs. 1(a) and 1(b) arise when the
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photon self-energy is cut through the bulb on the exchanged
gluon line in Fig. 1(c) when only a single gluon line is present
in Fig. 1(c). It is expected that these two-loop processes should
be of higher order in strong coupling strength αs (= g2/4π ).
However, these contribute at leading order due to a collinear
enhancement mechanism. For a collinear photon emission,
the angle of internal quark line with the photon emission
direction is of order g. Further, the exchanged gluon is soft
(of momentum ∼gT ), and the internal quark lines are nearly
on shell. In the presence of the QGP medium, the collinear
divergence of photon emission rate is regulated by the thermal
masses. This mechanism of delicate cancellation of powers
of g remains valid for any number of soft gluon exchanges
during photon formation time [18,19] and the scattered quark
lines are nearly collinear with the photon emission direction.
Therefore, each new gluon line in the ladder brings a factor
of O(g2/g2), showing the need to sum the infinite set of such
diagrams. These processes are represented by ladder diagrams
as shown in Fig. 1(c) and these higher loop (ladder) processes
also contribute at the same order ααs . The resummation of
these ladder diagrams leads to integral equations for transverse
and longitudinal parts, whose solutions we will discuss in the
following. In the photon emission calculations, the quantity of
interest is the imaginary part of photon retarded polarization
tensor (��

µ

Rµ). The dilepton emission rates are estimated in
terms of this ��

µ

Rµ, Bose-Einstein factor, and Q2 as given by
Eq. (1).

dN�+�−

d4xd4Q
= α

12π4Q2(eq0/T − 1)
��

µ

Rµ(Q) (1)

��
µ

Rµ = e2Nc

2π

∫ ∞

−∞
dp0[nF (r0) − nF (p0)]

⊗
∫

d2p⊥
(2π )2

[
p2

0 + r2
0

2(p0r0)2
�p⊥·f(p⊥)

+ 1√|p0r0|
Q2

q2
�g(p⊥)

]
, (2)

where nF in Eq. (2) represents the Fermi-Dirac distribution
function of the incoming or outgoing quark energies p0, r0 =
p0 + q0. Here q0 is the photon energy and Q =

√
q2

0 − q2

is the photon mass. The ��
µ

Rµ, including LPM effects,
is determined in terms of a transverse function f(p⊥) and
a longitudinal part g(p⊥), as given by Eq. (2). For the
case of virtual photon emission having small virtuality, the
transverse vector function f(p⊥) is determined by the AMY
integral equation (Eq. (3)) [23]. In this integral equation, δE

is an energy denominator and is interpreted as the inverse
formation time of the photon. This energy transfer function
δE(p⊥, p0, q0,Q

2, T , αs) is given in Eq. (4). Here κeff =
M2

eff/m2
D and M2

eff = M2
∞ + Q2

q2
0
p0r0. M2 = g2

s CF T 2/4 is the

thermal mass of a hard quark in the HTL approximation.
CF (= 4/3) is the Casimir in the fundamental representation
of the gauge group SU (Nc) with Nc = 3. Debye mass is
given by m2

D = g2
s T

2(Nc + NF /2)/3 with NF flavors. A tilde
represents quantities in units of Debye mass; for details see
Ref. [24]. In Eq. (3), C̃(�̃⊥) represents the collision kernel [26]

FIG. 1. Two-loop processes that contribute at order ααs to photon
emission from (a) bremsstrahlung (b) AWS. Higher-loop processes
having a ladder topology that contribute at the same order are shown
in (c).

given in Eq. (5):

2p̃⊥ = iδ̃E(p̃⊥, p0, q0,Q
2)f̃(p̃⊥)

+
∫

d2�̃⊥
(2π )2

C̃(�̃⊥)[f̃(p̃⊥) − f̃(p̃⊥ + �̃⊥)] (3)

δ̃E = q0T

2p0(q0 + p0)
(p̃2

⊥ + κeff) (4)

C̃(�̃⊥) = 1

�̃2
⊥

− 1

(�̃2
⊥ + 1)

(5)

In addition to transverse part, one needs to consider the longitu-
dinal mode for the virtual photon emission. The corresponding
longitudinal function is determined by the AGMZ integral
equation [Eq. (6)], as derived in Ref. [23]:

2

√
|p0r0|
m2

D

= iδ̃E(p̃⊥, p0, q0,Q
2)g̃(p̃⊥)

+
∫

d2�̃⊥
(2π )2

C̃(�̃⊥)[g̃(p̃⊥) − g̃(p̃⊥ + �̃⊥)]. (6)

I. GENERALIZED EMISSION FUNCTIONS FOR
PHOTON EMISSION

In the present work, we solved Eqs. (3) and (6) via the
iterations method at a fixed photon energy of q0/T = 50.
Alternatively, these equations can also be solved by variational
approach [25]. In the following calculations, we used two
flavors and three colors. Using the iterations method, we ob-
tained p⊥·f(p⊥), g(p⊥) distributions for different p0, q0,Q

2,
plasma temperatures (T = 1.0, 0.50, 0.25 GeV) and strong
coupling constants (αs = 0.30, 0.10, 0.05). We integrate these
p⊥·f(p⊥), g(p⊥) distributions to derive I

b,a
T ,L as defined in the

Eqs. (7) and (8). The superscripts b, a in these equations
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represent bremsstrahlung or AWS processes depending on the
p0 value used. The subscripts T ,L represent contributions
from transverse [f(p⊥)] or longitudinal [g(p⊥)] parts. I

b,a
T ,L

are the quantities required for calculating imaginary part of
polarization tensor [see Eq. (2)].

I
b,a
T =

∫
d2p̃⊥
(2π )2

p̃⊥·�f̃(p̃⊥) (7)

I
b,a
L =

∫
d2p̃⊥
(2π )2

�g̃(p̃⊥). (8)

In the remaining part of this work, we adopt the formulas
and results of Ref. [24] (presented at T = 1 GeV, αs = 0.30),
by suitably redefining the quantities for all temperatures and
strong coupling constants. In Eqs. (9)–(12) we define four
dimensionless variables. The factor αs/0.3 in these equations
is required to match the definitions in the present work with
those of Ref. [24]. The variable x1 is the real photon dynamical
variable [20]. For virtual photon emission from QGP, we
present two more variables, xT,L, given in Eqs. (13) and (14).

x0 = |(p0 + q0)p0|
q0T

, (9)

x3 = q0T (αs/0.3)

Q2
, (10)

x1 = x0
M2

∞
m2

D

, (11)

x2 = x0
Q2

q0T (αs/0.3)
, (12)

xT = x1 + x2, (13)

xL = x2. (14)

I
b,a
T ,L are in general functions of {p0, q0,Q

2, T , αs} and when
plotted versus any of these p0, q0,Q

2, they exhibit no simple
trends. Following Ref. [24], we define the generalized emission
functions (GEF) g

b,a
T ,L in Eq. (15).

g
b,a
T ,L(xT,L) = I

b,a
T ,Lc

b,a
T ,L. (15)

The GEF are functions of only xT,L variables unlike I
b,a
T ,L.

These GEF (gb,a
T ,L) are obtained from corresponding I

b,a
T ,L

values by multiplying with c
b,a
T ,L coefficient functions given in

Eqs. (16)–(20). The quantities xT,L and c
b,a
T ,L in Eqs. (13), (14),

and (16)–(20) are not definitions and these are found by a
search for dynamical variables:

cb
T = 1

x2
1

, (16)

ca
T = 1

x2
1

x3

1 + x3
for x2 < 2.0, (17)

ca
T = 1

x1x2
for x2 � 2.0, (18)

(a)

(b)

FIG. 2. (a) The dimensionless emission function gb
T (x) versus

dynamical variable xT defined in Eq. (13). Six cases of temperature
and coupling constant values considered are mentioned in figure
labels in different type symbols. The symbols represent the integrated
values of p⊥ distributions as a function of {p0, q0, Q

2, T , αs} values.
These are transformed by cb

T coefficient function given in Eq. (16).
Essentially, various symbols merge and cannot be distinguished. The
solid curve is an empirical fit given by Eq. (21). (b) The dimensionless
emission function ga

T (x) versus dynamical variable xT for x2 < 2.0.
The transformation coefficients ca

T and empirical fits are given by
Eqs. (17) and (22).

cb
L = Q2

T 2(αs/0.3)

[
T 2

p0(p0 + q0)

] 3
2

⊗
(
1.5 + x0.75

3

)
x

1/3
2

√
αs

0.3
, (19)

ca
L = x0.10

2

x1.40
1

√
q0/T

(
1 + √

x3
)√

αs

0.3
. (20)

Figure 2 shows the results for GEF for bremsstrahlung
[Fig. 2(a)]. The calculations are performed for a fixed
photon energy (q0/T = 50) but include six different cases
of temperatures and coupling strengths mentioned in figure
labels. The solid curve in Fig. 2(a) is the empirical fit to
this emission function, given by Eq. (21).1 The required cb

T

coefficient function is given in Eq. (16). It has been observed
that for low Q2, i.e., x2 < 2.0, transverse part of AWS process
behaves similar to the transverse bremsstrahlung function.
Therefore, we transform the low Q2 transverse part of AWS
process as given by Eq. (17). The resulting emission function
is shown in Fig. 1(b). The solid curve is the fit given in

1The fit given in Eq. (21) is an improvement over the result reported
in Ref. [24].
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AWS,

FIG. 3. The dimensionless emission function ga
T (x) versus dy-

namical variable xT . The symbols are as in Fig. 2. Six different
temperature and coupling constant values considered are mentioned
in figure labels. The required ca

T coefficient function is given in
Eq. (18). The solid curve is an empirical fit given by Eq. (23).

Eq. (22), which is same as solid curve in Fig. 1(a).

gb
T (x) = 10.0

5.6 + 2.5
√

x + x
, (21)

ga
T (x) = gb

T (x) for x2 < 2.0, (22)

ga
T (x) = 0.80

(1 + 3/x1.2)
for x2 � 2.0, (23)

gb
L(x) = 0.0876

1 + (x/3.7727)1.18 , (24)

ga
L(x) = 0.299803x0.5772 for x < 1.45, (25)

ga
L(x) = 1.04344 ln (x) for x � 1.45. (26)

The emission function for high Q2 values (x2 > 2.0) for
transverse part of AWS process is shown in Fig. 3. The ca

T and
the emission function are given in Eqs. (18) and (23). Similarly,
Figures 4(a) and 4(b) show the longitudinal components of
GEF for bremsstrahlung [Fig. 4(a)] and AWS [Fig. 4(b)]. The
coefficient functions and GEF are given in Eqs. (19), (20),
(24), (25), and (26). These transformation functions are very
complex.2

II. GEF AND PHOTON RETARDED POLARIZATION
TENSOR

In the previous section, we used the results from the
iterations method to obtain the I

b,a
T ,L values. We transformed

these into GEF (gb,a
T ,L) functions shown in Figs. 2–4. We fitted

these by empirical functions given in Eqs. (21)–(26). Using
the empirical functions, for any p0, q0,Q

2, T , αs values, we
can generate the I

b,a
T ,L values. Hence, using GEF and the c

b,a
T ,L,

the imaginary part of photon retarded polarization tensor of

2The Eqs. (19), (20), (25), and (26) are slightly different from the
corresponding equations presented in Ref. [24].

(a)

(b)

FIG. 4. (a) The dimensionless emission function gb
L(x) versus

dynamical variable xL defined in Eq. (14). The symbols repre-
sent the integrated values of p⊥ distributions as a function of
{p0, q0,Q

2, T , αs} values. These are transformed by cb
L coefficient

function given in Eq. (19). The solid curve is an empirical fit given
by Eq. (24). The temperature and coupling constant values are shown
in different type symbols, as mentioned in figure labels. (b) The
dimensionless emission function ga

L(x) versus dynamical variable
xL. The transformation coefficients ca

L and empirical fit are given by
Eqs. (20), (25), and (26).

Eq. (2) can be written as [24]3

��
µ

Rµ = e2Nc

2π

∫ ∞

−∞
dp0[nF (r0) − nF (p0)]

⊗ (
T m2

D

) [
p2

0 + r2
0

2(p0r0)2

(
gi

T (xT )

ci
T

)
+ 1√|p0r0|

Q2

q2

(
1

mD

)(
gi

L (xL)

ci
L

)]
. (27)

Here, the superscript i denotes {b, a} depending on the value
of the integration variable p0. We have calculated imaginary
photon polarization tensor and dilepton emission rates using
Eq. (27) and made a detailed comparison with the results of
Ref. [23]. For this comparison, we generated reference results
using the program provided in Ref. [27], which interpolates
from a table of precompiled exact numerical results. The
agreement of the GEF method [Eq. (27)] with the results of Ref.
[27] was observed to be very good. As an example, we show
the dilepton emission rates in Fig. 5. Figure 5(a) shows the
GEF results represented by symbols compared with the results
of Ref. [27] represented by solid lines at two photon energies.
The GEF results for q0/T = 20.0 (circles) were generated
using αs = 0.05, T = 1.0 GeV and for q0/T = 10.0 (trian-
gles) results were generated using αs = 0.30, T = 0.25 GeV.
Similarly in Fig. 5(b) we show the rates from GEF method for

3The factor T in (T m2
D) in Eq. (27) is arising from the tilde

transformation. This extra T cancels the temperature in mD/T factor
coming from tilde transformation of f, g functions. This T was
missing in Ref. [24].
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(a)

(b)

FIG. 5. (a and b) Dilepton emission rates using GEF method
shown in symbols and compared with results of Ref. [27] represented
by solid lines. All the details are mentioned in figure labels and text.
The rates plotted are divided by T 2.

q0/T = 0.50 (circles) generated using αs = 0.30, T = 0.25
GeV and for q0/T = 1.0 (triangles) using αs = 0.05, T = 1.0
GeV. The agreement of GEF method with lines is seen to be
very good, except at the highest values of Q/T . This deviation
is caused because for the longitudinal part in Eq. (27), we used
photon momentum Q2/q2. When this is replaced with photon
energy Q2/q2

0 as shown in Eq. (28), the agreement of our
results with those of Ref. [27] is very good in the full range
of Q/T . In the remaining part of this article, we use only Eq.
(28).

��
µ

Rµ = e2Nc

2π

∫ ∞

−∞
dp0[nF (r0) − nF (p0)]

⊗ (
T m2

D

) [
p2

0 + r2
0

2(p0r0)2

(
gi

T (xT )

ci
T

)
+ 1√|p0r0|

Q2

q2
0

(
1

mD

)(
gi

L (xL)

ci
L

)]
. (28)

We will present more results in a different way by
defining reduced quantities. After obtaining the ��

µ

Rµ versus
Q2, q0, T , αs by using Eq. (28), we define Qred and reduced
polarization tensor as in Eqs. (29) and (30). The reduced po-
larization tensors are calculated for different photon energies,
different coupling strengths and temperatures. We plotted these
results in black circles in Figs. 6 and 7 (also in Figs. 10 and
11, to be discussed later) versus Qred. For comparison, results
from Ref. [27] are shown in triangles. The agreement of these
two symbols is seen to be very good from low to very high
photon energies, q0/T ∼ 0.05–50.0.

Qred = Q

T

√
0.3

αs

(29)

��red = ��
µ

Rµ(Q2, q0, T , αs)

T 2

(
0.30

αs

)
(30)

��red = F
(
Qred,

q0

T

)
. (31)

(a)

(b)

(c)

FIG. 6. ��red plotted as a function of Qred = Q

T

√
0.3
αs

for various

photon energies (q0/T ) mentioned in figure. The imaginary polariza-
tion tensor includes all contributions from transverse components of
bremsstrahlung, AWS, and also from the corresponding longitudinal
parts. The black circles represent the GEF method in Eq. (28). The
triangles represent the results of Ref. [27]. The solid lines represent
the results using Eq. (36).

(a)

(b)

(c)

FIG. 7. ��red plotted as a function of Qred for low q0/T values
mentioned in figure. The details are as in the Fig. 6.
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FIG. 8. The reduced imaginary part of polarization tensor defined
in Eq. (30), versus q0/T . We have taken Q ∼ 10−4q0. Solid curves
are fits given in Eqs. (33) and (34). Symbols represent the results
from GEF method using Eq. (28).

III. PHENOMENOLOGY USING GENERALIZED
EMISSION FUNCTIONS

The two-loop processes along with the LPM effects
contribute significantly to dilepton emission rates from QGP,
at low as well as high photon Q2 values. This aspect was
discussed in detail in Refs. [23,24] by comparing the contribu-
tions (to ��

µ

Rµ) from the one-loop and higher-loop processes.
Further as mentioned in the Introduction, dilepton emission
from the radiating jets also contributes to experimental dilep-
ton yields [8]. There are simple empirical formulas available
for the dilepton emission rates at the one-loop level [21]. In this
section, we obtain the phenomenological fits to virtual photon
emission rates from QGP for ladder processes with LPM
effects. We will provide simple phenomenological formulas
that will be useful in model calculations for experimental
dilepton yields. We will show a comparison of ��

µ

Rµ from
our phenomenological formulas with the numerical results of

(a)

(b)

(c)

FIG. 9. The A, B, and C parameters versus q0/T . The curves
represent fits by suitable functional forms in Eqs. (37), (40), and (42)
discussed in text. These are useful to generate �red using Eq. (36).

(a)

(b)

(c)

(d)

FIG. 10. ��red plotted as a function of Qred for low q0/T values
mentioned in figure. The details are as described in the caption to
Fig. 6.

Ref. [27]. From Figs. 6 and 7, it is clear that the reduced
quantities depend on only two variables, i.e., instead of
{Q2, q0, T , αs}, we need only {Qred, q0/T } to generate �red as
in Eq. (31). This observation was already reported in Ref. [23].
To study this F (Qred, q0/T ) in detail, we use Eq. (28) to
generate imaginary part of polarization tensor for various
values of Q2, q0, T , αs . We observed that in the limit of
Qred → 0; F (Qred,

q0

T
) → F0( q0

T
) as given by Eq. (32) and

this limit is true for any q0/T . Further, as given by Eq. (33),
for q0/T < 0.020; F (Qred,

q0

T
) ≈ F0( q0

T
) for any allowed Qred.

Therefore, F0(x) is an important function for virtual photon
emission, as this function arises in two different limits [see
Eqs. (32) and (33)].

F (Qred, x) → F0(x) as Qred → 0 (32)

F (Qred, x) ≈ F0(x) for x � 0.020
(33)

x = q0

T
.

To obtain this F0(x), we generate the �� at a very low Q2

for various values of q0/T , αs . Using the results, we construct
Qred,��red. The results are shown in Fig. 8 by symbols labeled
GEF method. We fitted this data by suitable functions as given
in Eqs. (34) and (35) (along with their parameters). These are
two different fits, for q0/T <200 and for q0/T >100, with an
overlap between 100 and 200 (where both fits are good). These
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(a)

(b)

(c)

(d)

FIG. 11. ��red plotted as a function of Qred for low q0/T values
mentioned in figure. The details are as in the Fig. 6.

fits are represented by solid curves and labeled F0 in figure.

F0(x) = a + bxp1 + c√
xp2

for x � 200,

a = −2.99077,

b = 0.0791399,

c = 2.93755, (34)

p1 = 0.371976,

p2 = 0.0288541,

F0(x) = a + b
√

xp for x � 100.0,

a = −0.474129,
(35)

b = 0.255163,

p = 0.419646.

For the case of finite Q, we made empirical fits by choosing
a function given in Eq. (36). In this equation, the A, B, and
C parameters are functions of q0/T . These parameters are
determined by fitting the Q plots for various q0/T , obtained
from Eq. (28). The parameters values for various q0/T are
tabulated and the results are shown in Fig. 9 by symbols. It is
very important to have an empirical formula to generate A, B,
and C values.

F (Qred, x) = F0(x)
1 + A(x)Qred + B(x)Q4

red

1 + C(x)Q2
red

. (36)

TABLE I. Values of the a, b, c, p1, p2 parameters are listed for
A(x), B(x), C(x) of Eqs. (37)–(44) in different x regions.

A(x) x � 0.1 0.1 < x � 3.5

a −4.84554727516 0.33219586043
b 1.478772613744 1.34926189543
c 0.4963049612794 1.82125018461
p1 −0.93213485133 −1.0422409717
p2 −1.1101191721 −0.86799168105

A(x) = A(3.5) for x > 3.50

B(x) x � 0.20 0.2 < x � 1.0 x > 1.0
a −0.132747 0.012385 −0.0454930477
b 0.0661859 0.0924141 0.1940150437
c 0.0642336 0.0878252 0.1372510415
p1 −4.76869 −4.18536 −0.237037465
p2 −4.77762 −4.25575 −0.42563026

C(x) x � 0.15 x > 0.15
a 7.48658946052 0.0692890486
b 13.1687711578 0.945340977
c 19.9115694165 0.8057948943
p1 −1.0750505095 −1.4427187803
p2 −0.8514587339 −1.2054627582

Therefore, these A, B, C parameters were fitted by different
functional forms as given in Eqs. (37), (40), and (42). The fits
are given for different q0/T regions as shown in Eqs. (37)–(44)
and these parameters are listed in Table I for convenience.
Depending on the requirement, one can select the relevant
parameter set to generate A, B, and C values.4 Apparently
in Fig. 9, at high q0/T (beyond 0.10), these parameters
are constant, however this is very misleading. The present
fits generate quite well even the small variations of these
parameters over full region. Good quality A, B, C fits are
required because the Q plots are sensitive to these parameters.
Further, the A, B, C parameter fits are given only up to
q0/T = 50.0. Therefore, extrapolation beyond this q0/T may
not be valid unless confirmed using Eq. (28). Using these
formulas we get A, B, C coefficients (up to q0/T = 50.0) and
we get F0(x) from Eqs. (34) and (35). We use these in Eq. (36)
to generate ��red. These phenomenological results are shown
by solid curves in Figs. 6, 7, 10, and 11.

A(x) = a + (bxp1 − cxp2 ) for x � 0.1,

a = −4.84554727516,

b = 1.478772613744,
(37)

c = 0.4963049612794,

p1 = −0.93213485133,

p2 = −1.1101191721,

4It should be noted that for A, B, C fits, the functional forms
have difference of power law and hence demand high precision of
their parameters. Therefore, one should not truncate these parameters,
especially the power exponents given by p, p1, p2.
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A(x) for 0.1 < x � 3.5,

a = 0.33219586043,

b = 1.34926189543,

c = 1.82125018461, (38)

p1 = −1.0422409717,

p2 = −0.86799168105,

A(x) = A(3.5) for x > 3.50. (39)

C(x) = a + (bxp1 − cxp2 ) for x � 0.15,

a = 7.48658946052,

b = 13.1687711578,

c = 19.9115694165, (40)

p1 = −1.0750505095,

p2 = −0.8514587339,

C(x) for x > 0.15,

a = 0.0692890486,

b = 0.945340977,

c = 0.8057948943, (41)

p1 = −1.4427187803,

p2 = −1.2054627582,

B(x) = a + (bxp1 − cxp2 ) for x � 0.20,

a = −0.132747,

b = 0.0661859,

c = 0.0642336, (42)

p1 = −4.76869,

p2 = −4.77762,

B(x) for 0.2 < x � 1.0,

a = 0.012385,

b = 0.0924141,

c = 0.0878252, (43)

p1 = −4.18536,

p2 = −4.25575,

B(x) for x > 1.0,

a = −0.0454930477,

b = 0.1940150437,

c = 0.1372510415, (44)

p1 = −0.237037465,

p2 = −0.42563026.

In conclusion, the photon emission rates from the quark-
gluon plasma have been studied as a function of photon
mass, considering LPM effects at various temperatures and
strong coupling strengths. We defined generalized dynamical
variables xT , xL for transverse and longitudinal compo-
nents of bremsstrahlung and AWS mechanisms. In addition,
we defined generalized emission functions (GEF), namely
gb

T (xT ), ga
T (xT ), gb

L(xL), ga
L(xL). We have obtained empirical

fits to these GEF. In terms of the GEF, we have calculated
the imaginary part of retarded photon polarization tensor as a
function of photon energy and mass, plasma temperature, and
strong coupling strengths. For phenomenological applications,
we fitted the reduced imaginary polarization tensor by simple
functions and provided necessary parameters. These empirical
formulas will be useful in model calculations for experimental
dilepton yields.
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