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The “experimental barrier distribution” provides a parameter-free representation of experimental heavy-ion
capture cross sections that highlights the effects of entrance-channel couplings. Its relation to the s-wave
transmission is discussed, and in particular it is shown how the full capture cross section can be generated
from an l = 0 coupled-channels calculation. Furthermore, it is shown how this transmission can be simply
exploited in calculations of quasifission and evaporation-residue cross sections. The system 48Ca+154Sm is
studied in detail. A calculation of the compound-nucleus spin distribution reveals a possible energy dependence
of barrier weights due to polarization arising from target and projectile quadrupole phonon states; this effect also
gives rise to an entrance-channel “extra-push.”
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I. INTRODUCTION

The complexity of heavy-ion reactions depends to a large
extent on the charge product Z1 Z2 of the colliding nuclei.
However, for all but the very highest-Z1 Z2 reactions, the first
stage in the creation of a composite system is determined by the
crossing of an external Coulomb barrier, or in the case of strong
entrance-channel couplings, a “distribution of barriers.” This
stage of the reaction is referred to as “capture” or sometimes
“barrier crossing.” For very heavy systems such as Pb+Pb,
this will clearly not be true, since there will be a significant
overlap of the nuclear densities before the Coulomb barrier
is reached. This will lead to strong dissipative effects and
an important flow of nucleons between the colliding nuclei.
However, recent experiments have shown [1,2] that even for
systems of the type leading to superheavy-element creation by
cold fusion, the concept of a distribution of external Coulomb
barriers is still valid. The results of this paper should apply to
any collision in which this is the case.

For light- and intermediate-mass reactions, the composite
system will evolve to form an equilibrated, compact compound
nucleus (CN). This we refer to as “fusion.” The CN will then
cool by the emission of light particles (neutrons, protons,
and α particles) to create long-lived evaporation residues
(ER). For heavier composite systems, an increasing fraction
of the capture cross section σcap will undergo quasifission
(QF) before CN formation. Furthermore the CN itself may
fission (fusion-fission; FF). Thus the experimental difficulties
in measuring σcap increase with Z1 Z2; for this reason, the
experiments [1,2] mentioned above determined the capture
barrier distribution from the large-angle quasielastic scattering
[3]. In the present paper, we wish to discuss the properties of
the capture cross section and the extent to which it can be
represented as a distribution of barriers. The consequences of
this on other cross sections will also be explored.

The experimental barrier distribution was introduced in
Ref. [4] as

D(E) ≡ 1

π R2

d2(E σcap)

dE2
, (1)

where E is the center-of-mass energy and R is some average
barrier radius chosen simply to normalize the area of D(E)
to unity. (Note that this was referred to as the “fusion”
barrier distribution, since fusion and capture were identical
in the systems originally discussed. Here we will refer to
it as the “capture” barrier distribution or simply the barrier
distribution.) For the classical capture cross section from a
single barrier, Eq. (1) gives [4,5]

Dclass(E) = δ(E − B), (2)

where B is the barrier height. In the single-barrier quantum
mechanical problem [5], D is more generally a function having
unit area strongly peaked at E = B.

The quantity D(E) frequently possesses detailed structures
[5] that reflect the presence of different barriers generated by
coupling to the collective excitations of the target and projectile
in the entrance channel. Transfer channels may also play an
important role [6]. It can also be shown [7,8] that the first
derivative of E σcap has a physical interpretation in terms of
the total s-wave transmission in the entrance channel, that is,

T tot
0 ≈ 1

π R2

d(E σcap)

dE
. (3)

(We will use the symbol T0 for a single, uncoupled barrier.)
It is important to note here that Eq. (1) is simply a definition.

That is, it defines a function of the experimental data in which
the dynamics is accentuated, and as such it is very useful
for comparisons with theory. However, it contains no more
information than the primary data themselves, though its name
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implies that one can approximately write

σcap ≈
∑

α

wα σcap(E,Bα), (4)

where wα and Bα are the weights (probabilities) and heights of
the barriers contained in the distribution. Indeed this relation
can be proved analytically but only under certain restrictive
conditions. These are essentially [5] the isocentrifugal approx-
imation for the centrifugal potential, zero excitation energies
for the coupled collective states (sudden approximation, where
the intrinsic nuclear states may be considered as “frozen”
during the collision), and the same form factor for all the
couplings. Despite the fact that these conditions are not always
well fulfilled (in particular for phonon excitations, the sudden
approximation is far from valid), the experimental data still
generally present well-defined structures which can often
be fitted by appropriate coupled-channels (CC) calculations.
Therefore, one aim of the present paper is to study the extent
to which the above expression (4) is more generally true and
how it might be further exploited.

We will also examine in detail the relationships between
σcap, T

tot
0 , and D(E) and show that there are various useful

consequences of these. In particular we will show that we can
obtain an excellent approximation to the full capture cross
section from a coupled-channels calculation for just l = 0.
Under certain assumptions, we will also show how this may
be extended to approximate calculations for the quasifission
and evaporation-residue cross sections. However, an attempt
to simplify the calculation of CN spin distributions reveals
that it may sometimes be necessary to account explicitly for
the energy dependence of the barrier weights wα .

II. CAPTURE DYNAMICS AND T tot
0

The interpretation of D(E) in terms of a set of Coulomb
barriers is clear. However, the quantity T tot

0 also has some very
useful properties. This is demonstrated in Fig. 1 for data on
100Mo+100Mo taken by Quint et al. [9]. [Parts (a) and (b)
are the same but shown on logarithmic and linear scales.] It is
important to note that in this, and in many similar experiments,
only the total evaporation-residue cross sections σER were
measured. The data points for the s-wave transmission were
calculated for the Gaussian barrier distribution required to fit
the ER cross section in a HIVAP calculation [10]. Thus it is not
parameter-free as it would be if taken from a derivative of the
capture cross section directly (not known in this case). It is,
nonetheless, a useful way of displaying experimental results.

One can immediately read off the energy of the average
or “dynamical” barrier Bdynam, at which T tot

0 = 0.5, and
the energy of the “adiabatic” barrier Badiab for which a
single-barrier cross section reproduces the data at the lowest
energies. The difference between the dynamical barrier and
some expected nominal barrier (for example, the Bass barrier
BBass [11]) shows that there is an “extra-push” energy Ex =
Bdynam − BBass in this and similar systems. On the other hand,
the quantity Dinf = Bdynam − Badiab provides a useful measure
of the width of the barrier distribution.
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FIG. 1. Experimental T tot
0 of Quint et al. [9] for 100Mo+100Mo

demonstrates the concepts of the dynamical and adiabatic barriers,
and of Dinf and the extra-push energy Ex. The solid curve shows the
fit of Ref. [12] to these data, and the dashed curve shows a single
barrier cross section which fits the lowest energy points. Parts (a) and
(b) show the same curves on logarithmic and linear scales, respec-
tively.

The data shown in Fig. 1 have recently been reanalyzed in
terms of the multiphonon couplings in the entrance channel for
this and other symmetric, or almost symmetric, systems [12].
The overall shape of T tot

0 , thus Dinf , can be fitted with such
calculations, and the couplings also account for most of the
extra-push energy (see Sec. VI) without invoking extra internal
barriers [13]. The calculations are difficult, since for high
Z1 Z2 and many channels, they become numerically unstable
at low E. The situation is helped by the fact that the data had
been represented simply as T tot

0 , since this allows one to solve
the coupled-channels equations for a single partial wave. We
wish to show how the full capture cross section can be rather
well obtained from such a calculation.

III. RELATING T tot
0 , σ , AND D

A. Single barrier

Henceforth we will simply use the symbol σ for the capture
cross section. The symbol σl will refer to the partial capture
cross section for a given l value (particularly, σ0 for the s

wave). Other physical cross sections will take an appropriate
suffix.

For a single barrier, we may write the s-wave transmission
coefficient very generally as

T0 ≡ T0(E − B). (5)
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For a system of reduced mass m, the partial cross section for
l = 0 is related to T0 by

E σ0 =
(

π h̄2

2m

)
T0(E − B), (6)

and the total cross section given by

E σ =
(

π h̄2

2m

) ∞∑
l=0

(2l + 1) Tl(E − B). (7)

We may now follow the steps of Wong [14], used to derive
the total cross section from the transmission through a
parabolic barrier. Note, however, that we make no assumption
concerning the particular form of the transmission function T

which will depend on the shape of the potential.
First we replace Tl by T0(E′ − B), with

E′ = E − l(l + 1) h̄2

2mR2
. (8)

That is, we approximate the centrifugal potential by its value
at the barrier radius R. Thus

E σ ≈
(

π h̄2

2m

) ∞∑
l=0

(2l + 1) T0(E′ − B). (9)

Replacing the sum by an integral, we have

E σ ≈
(

π h̄2

2m

) ∫ ∞

0
(2l + 1) T0(E′ − B) dl, (10)

and using the expression (8) for E′ we may write the rather
general relation between the s-wave transmission and the total
cross section σ

E σ ≈ π R2
∫ E

0
T0(E′ − B) dE′, (11)

where the radius R is taken to have its s-wave value, but
no reference has been made to the particular shape of the
barrier. In particular, the barrier “curvature” h̄ ω does not occur
explicitly in this equation.

If, however, we use the Hill-Wheeler approximation for a
parabolic barrier with this curvature,

T0 = 1

1 + exp[2 π (B − E)/h̄ω]
, (12)

then Eq. (11) yields the well-known Wong cross section [14]

E σ = 1
2h̄ ω R2 ln{1 + exp[2 π (E − B)/h̄ω]}. (13)

Equation (11) should, however, be more generally applicable,
and we will first test it with an optical-model calculation.

Figure 2 shows the results of (uncoupled) optical-model
calculations with a real potential which is essentially ex-
ponential in the tail and having a diffuseness of (a) a =
0.6 fm and (b) a = 1.2 fm. In both cases, the barrier height
is B = 202.4 MeV and the Coulomb potential corresponds
to 100Mo+100Mo. The imaginary potential is confined to the
nuclear interior to simulate a pure ingoing-wave boundary
condition. The dashed curves show the Eσ0 obtained by a
solution of the Schrödinger equation. The solid curve shows
the corresponding Eσ . (Throughout this paper, cross sections
will be represented as E σ in units of MeV mb.) The cross
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FIG. 2. For 100Mo+100Mo and a single barrier with B =
202.4 MeV, we show Eσ0 and Eσ , where σ0 and σ are the exact
optical-model s-wave partial cross section (dashed curve) and total
capture cross section (solid curve), respectively. The results of
Eq. (11) are practically indistinguishable from the exact results on
this scale: (a) corresponds to a surface diffuseness a = 0.6 fm and
(b) to a = 1.2 fm. Note the significant deviations in the Wong cross
sections below the barrier (dotted curves) using a curvature calculated
at the barrier top.

section derived from Eq. (11) is indistinguishable from the
exact result on this scale. The dotted curves show the Wong
cross section (13). One can see that the cross section falls more
rapidly for the larger diffuseness and that the discrepancies
between Wong and the exact calculation become very large
at deep subbarrier energies [15]. This discrepancy is probably
best quantified by the logarithmic derivative of the low-E cross
section (see Sec. III D). In both cases, however, the relation
(11) gives excellent results. The integration in that equation
was performed using Simpson’s rule. We use an integration
step of 0.2 MeV throughout the paper.

Thus we have reduced the calculation of a full capture cross
section to solving the Schrödinger equation for a single l value.
This is not a particularly important achievement for a simple
optical-model calculation, but it could be of enormous benefit
if it can be extended to coupled-channels calculations, where
the time taken for each l value may be relatively long, and
the calculation may become numerically unstable for large
angular momentum values.

Figure 3 shows Eσ for the two values of diffuseness on a
linear scale at energies well above the barrier. For a = 0.6 fm,
the integral is still almost indistinguishable on this scale from
the exact results. For the larger diffuseness, the curve has a
smaller slope since the barrier radius must be smaller if we
are to maintain the same barrier height of 202.4 MeV [R0.6 =
11.91 fm and R1.2 = 10.72 fm; see Eq. (22)]. Now a small
discrepancy shows up between the integral and the exact results
since the barrier position is l dependent, and this dependence
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FIG. 3. Same quantities as in Fig. 2, but on a linear scale and at
higher E. For a = 0.6 fm, the integral (11) is almost indistinguishable
from the exact results and is not shown. For a = 1.2 fm, there are
small differences because the barrier for high l values shifts to smaller
radii. In this respect, the Wong cross section gives a very similar result
to the integral.

increases with increasing diffuseness [16]. We note that the
s-wave barrier is a dependent and that this essentially gives
a first-order correction to the cross section. This is correctly
accounted for by the above formalism. In addition, however,
there is a second-order effect which depends on l as well as the
diffuseness. This is not accounted for, and we will not pursue
this further in the present paper.

B. Several barriers: Variation of the barrier radius

Equation (4) implies that we can write a similar weighted
sum for the total s-wave transmission T tot

0

T tot
0 (E) =

∑
α

wα T0(E − Bα). (14)

Following the above derivation of Eq. (11), we now find

E σ ≈ π
∑

α

∫ E

0
R2

αwα T0(E′ − Bα) dE′, (15)

and if one sets all the Rα equal to a common value R, one
recovers Eq. (11), which now relates the total capture cross
section (summed over all l) to the total s-wave transmission
(summed over all barriers):

E σ ≈ π R2
∫ E

0
T tot

0 (E′) dE′. (16)

For small deformations of target and projectile, the above
approximation of a fixed R is reasonable. However, for large
deformations, there may be relatively large differences in
the positions of the different Coulomb barriers, and this
may lead to some errors in extracting the total cross section
from a calculation with l = 0. We can, however, circumvent
this problem by noting that the derivative of the s-wave
transmission coefficient is strongly peaked at E = B for each

barrier. Thus if we have an analytic expression for Rα ≡ R(Bα)
we may write

d

dE′
∑

α

wαR2
αT α

0 (E′) ≈ R2(E′)
dT tot

0 (E′)
dE′ , (17)

with T α
0 (E′) ≡ T0(E′ − Bα). Thus the integrand of Eq. (15)

may be written

∑
α

wαR2
αT α

0 (E′) ≈
∫ E′

0
R2(B)

dT tot
0 (B)

dB
dB, (18)

where we use the integration variable B to emphasize the fact
that this integral is equivalent to the sum over the barriers α.
Finally this gives

E σ ≈ π

∫ E

0

∫ E′

0
R2(B)

dT tot
0 (B)

dB
dB dE′, (19)

and we have again achieved our aim of expressing the total
capture cross section for all l in terms of that simply for l = 0.
The integral over E′ is equivalent to the sum over l as in
Eq. (11).

In both expressions (16) and (19), all the information on
the channel couplings [that is, on the barrier distribution
(wα,Bα)] is contained in the single function T tot

0 , which can
be obtained from a single calculation with l = 0. We have
passed from the single integral of Eq. (16) to the double
integral (19) to account for the variation of Rα for the different
barriers, since dT0/dE is peaked for each barrier. However,
more importantly, this will also allow us to introduce into
the integrand of Eq. (19) any other function of the barrier
position B. In particular, we will later introduce the possibility
of a quasifission component of the reaction which is barrier
dependent due to the “compactness” [17] of the configuration
at the barrier.

Since the Coulomb barrier will almost always occur in the
region where the nuclear potential is approximately exponen-
tial, it is relatively easy to obtain an expression for R(B). At
the barrier V ′

C + V ′
N = 0, and since VN is exponential,

VN (R) = −a
Z1 Z2 e2

4πε0R2
≡ −a

Z

R2
, (20)

and thus V ′
C + V ′

N = 0 yields

B = Z

R

(
1 − a

R

)
. (21)

Solving this quadratic equation for R we obtain

R(B) = Z

2 B

[
1 +

(
1 − 4a B

Z

)1/2
]

. (22)

For small a, the approximation R(B) = Z/B − a may be
adequate, but in mapping from an l = 0 calculation to the
full cross section, we will use the more exact relation (22) in
the double integral of Eq. (19).

Of course we have again achieved little in the case where we
have an expression in the form of Eq. (14) and know the values
the the barrier heights Bα and their weights wα . However,
Eq. (19) contains no reference to these, which are in any
case not a natural output of a coupled-channels calculation.
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Indeed the very existence of eigenchannels assumed in Eqs. (4)
and (14) can be proved only under the very restricted
conditions mentioned in the Introduction. However, we note
that in Eq. (19) there is no reference to eigenchannels, weights,
or barrier heights, and we may hope that it will, therefore, apply
more generally to results from coupled-channels calculations.

Throughout the rest of this paper, we will present a number
of coupled-channels calculations to demonstrate our results.
They all use a nuclear potential which is essentially exponential
in the barrier region with a surface diffuseness a = 0.6 fm. The
potential is, therefore, uniquely specified by quoting the barrier
height Bnc with no coupling. For the channel couplings, we will
take throughout a coupling radius r0 = 1.20 fm. Couplings are,
therefore, completely specified by the excitation energies EIπ

of the states concerned (spin I and parity π ), the corresponding
deformation parameters of the states βL, and by the number
of excited states (rotational or vibrational) included in the
calculations. These are denoted [Nprojectile, Ntarget]. Thus an
uncoupled calculation would be denoted [0,0].

It can be seen in Figs. 4 and 5 that the expression
(19) works extremely well. Figure 4 shows results for the
vibrational system 100Mo+100Mo with coupling to the first
quadrupole-phonon state (E2+ = 0.53 MeV; β2 = 0.23) in
each nucleus and Bnc = 202.4 MeV. (This [1,1] coupling
scheme is a truncation of the more physical couplings used
in Ref. [12], and whose results are shown in Fig. 1. This
clearly will not fit the experimental data, but the fact that
it gives rise to discrete barriers will facilitate some of our
later discussions.) The dashed curve in part (a) of the figure
shows Eσ0 calculated using the program CCFULL [18]. The
open circles show the full Eσ calculated using the same
program but including up to l = 100. The solid curve shows
the Eσ generated from the s-wave calculation using Eq. (19),
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FIG. 4. For 100Mo+100Mo with coupling to the first quadrupole-
phonon state in each nucleus [1,1], we show (a) Eσ0 (dashed curve)
and Eσ (circles), both calculated with CCFULL, and the results of
Eq. (19) (solid line), and (b) the corresponding barrier distribution
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FIG. 5. Same as in Fig. 4, but for the system 48Ca+154Sm with
quadrupole couplings to the first six excited states [0,6] of the 154Sm
ground-state rotational band (0+ to 12+).

which can be seen to give excellent results. Part (b) of the
figure shows the barrier distribution defined as dT tot

0 /dE (see
Sec. III C).

Figure 5 shows all the same quantities as Fig. 4 but now
for the system 48Ca+154Sm with quadrupole coupling (β2 =
0.30, β4 = 0.05) to the first six excited rotational states of the
154Sm ground-state rotational band (that is, up to the 12+ state)
and an inert 48Ca (coupling [0,6]). The 2+ state has energy
82 keV and the other energies were taken to follow an I (I + 1)
law. Equation (19) is again seen to give excellent results. This
system is discussed in more detail in Sec. IV.

For very heavy ions, one may have to consider hundreds
of partial waves to obtain convergence of the capture cross
section, and some problems of stability of the CC calculations
may arise, since for the higher partial waves the energy in
question may be very far below the total potential barrier. Fur-
thermore, the performance of coupled-channels calculations
becomes time consuming for many channels and reducing this
to a single calculation for l = 0 has very obvious benefits. The
calculation of the double integral in Eq. (19) is very rapid, even
when compared with solving the coupled equations for just a
single l. This is especially important when trying to optimize
parameters to fit experimental data. Note also that we need to
calculate only up to energies where dT tot

0 /dE becomes 0, even
if we require cross sections above this energy.

C. Defining the barrier distribution

The most natural mathematical definition of the barrier
distribution is dT tot

0 /dE since for a single barrier it gives a
function normalized to 1 and peaked at E = B. Thus for many
barriers, we obtain a sum of functions each having a weight
wα and peaked at Bα . From Eq. (19) we see that this is equal
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to

D(E) = d

dE
T tot

0 (E) = 1

π R2(E)

d2(E σ )

dE2
. (23)

Apart from the E dependence of R (actually a B dependence),
this is of course the usual definition [4] of the experimental
barrier distribution (1).

We do not, however, suggest the inclusion of such an energy
dependence in the experimental results, since this involves
introducing an unknown theoretical parameter a. Dividing the
second derivative by a fixed πR2 merely introduces a harmless
overall normalization.

Of course, whatever one does to the data should also been
done to a calculation before a comparison is made. So the
second derivative of the theoretical Eσ of Eq. (19) should
be treated in the same way as its experimental equivalent.
However, in this paper we wish to advocate simplified CC
calculations using only l = 0. In that case, we simply note that

d2(E σ )

dE2
= π R2(E)

dT tot
0 (E)

dE
. (24)

Now the barrier dependence of R can be simply included, since
the value of the diffuseness used in the calculations is known.

Figure 6 shows the difference between dT tot
0 /dE and the

usual experimental barrier distribution of Eq. (1), with R

chosen so that D(E) is also normalized to unity for the system
16O+238U (calculated with E2+ = 45 keV, β2 = 0.275, β4 =
0.05). The differences are seen to be relatively small, which
means that for most purposes, the single integral of Eq. (16)
will give good results. However, a major advantage of the
double integral of Eq. (19) is that we can also introduce into
it other functions of B. We will demonstrate this in Sec. IV,
where we will introduce quasifission through the notion of
“compactness” [17].
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FIG. 6. For the system 16O+238U, we show the difference
between including the barrier dependence of the radius and ignoring
it [see Eq. (24)]. Both curves are normalized to unity. The insets show
schematically how the high barriers correspond to a more compact
configuration than do the low ones (see Sec. IV B).

D. Logarithmic derivative

It has been noted recently that at deep subbarrier energies,
many heavy-ion fusion cross sections fall off anomalously
rapidly (see, for example, Refs. [19–21]). This phenomenon
is perhaps best displayed through the logarithmic derivative
of the cross section which becomes slowly varying at these
energies, at values consistent with a greater surface diffuseness
than considered normal. For example, Dasgupta [21] shows
that in the system 16O+208Pb, the experimental dln(Eσ )/dE is
consistent with a value of a = 1.65 fm. However, the behavior
of the cross section at high energies appears to require a
different value of a (cf. Fig. 3).

We do not attempt to provide an explanation of this
phenomenon but merely wish to show here that an integral
expression is capable of reproducing the cross section suffi-
ciently well at these low energies if one wishes to study this
property. Using Eq. (11), we may write for a single barrier

dln(E σ )

dE
= d

dE
ln

∫ E

0
T0(E′) dE′ ≡ T0(E)∫ E

0 T0(E′) dE′
. (25)

Figure 7 reproduces the Fig. 7 of Dasgupta from Ref. [21] for
a single uncoupled barrier in 16O+208Pb. There is no attempt
here to fit the data except for the logarithmic derivative at
the lowest energies. We see that the results from the integral
formalism again agree extremely well with a calculation
including all l values. The Wong approximation, however,
fails in this region. One may easily show from Eq. (13) that
the Wong value saturates at 2 π/h̄ω, which is 1.85 MeV−1 in
this case.

For a single potential barrier, certain analytic expressions
exist within the WKB approximation which allow the inversion
of the barrier penetration to yield the barrier thickness, and
thus the form of the potential itself [22]. Early applications
[23] of this technique to heavy-ion fusion cross sections
yielded rather unphysical, often multivalued potentials, since
the cross section actually comes from a distribution of barriers.
It has very recently [24] been shown, however, that in
certain circumstances (essentially where the lowest barrier is
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E
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/d
E
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Data 
All l
Integral
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FIG. 7. Expression (11) reproduces very well the logarithmic
derivative far below the Coulomb barrier. This is an uncoupled cal-
culation for 16O+208Pb with a = 1.65 fm. The Wong approximation
does not reproduce the correct behavior in this energy region.
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dominant), one may take account of this fact and perform
the inversion more correctly. In particular, the above case of
16O+208Pb is susceptible to such a treatment. The potential
thus obtained is well behaved but rather different from most
standard heavy-ion potentials. It remains to be seen if a
theoretical justification for the new shape can be found, or
whether the potential (albeit well behaved) still mocks up some
other missing physical effect.

IV. OTHER PHYSICAL PROPERTIES

A. General comments

We have seen how the total capture cross section

σ = π

k2

∞∑
l=0

(2l + 1) Tl (26)

can be approximately represented in terms of an integral
containing simply the transmission coefficient T tot

0 for the s

wave. Equations (16) contains a single integral over E′ which
replaces the above sum over the partial waves. Equation (19),
however, contains a second integral over B which formally
represents a sum over different Coulomb barriers.

These results can be simply extended to other physical
quantities such as the fusion-fission cross section, the quasi-
fission cross section and the fusion-evaporation cross section.
For example, the quasifission cross section may be written as

σQF = π

k2

∑
l,α

(2l + 1)wα Tl(E,Bα) PQF(l, E, α), (27)

where PQF(l, E, α) is the probability of quasifission, and
we have expressed this cross section as a sum over barriers
since, as pointed out by Hinde et al. [17], PQF may depend
on the compactness of the composite system, which in turn
depends on the barrier configuration. This is schematically
shown by the shaded inserts in Fig. 6, where we see that for
a spherical projectile on a deformed target, the low-energy
barriers correspond to a non-compact collision with the tip of
the target, whereas the high-E barriers correspond to a more
compact collision with the equator.

Since quasifission reduces the compound nucleus cross
section, the total evaporation-residue cross section may be
written as

σER = π

k2

∑
l,α

(2l + 1)wα Tl(E,Bα)

× (1 − PQF(l, E, α))Psur(l, E
∗), (28)

where the survival probability is related to the fusion-fission
probability by Psur(l, E∗) = (1 − Pfiss(l, E∗)), and depends on
the excitation energy E∗ of the compound nucleus, which is
of course just given by E∗ = E + Q, with Q the reaction Q

value. In both of the above cases, the probability functions can
easily be incorporated into the integral formalism (19) so that
again the entrance-channel dependence is given by the single
function T tot

0 .
Since the purpose of the present article is essentially to

demonstrate the principles involved in this concept, we will
limit ourselves to the two simple examples given below, both

are for the system 48Ca+154Sm, where all three cross sections
σcap, σER, and σQF have been measured independently [25,26].

B. Compactness: Cross section for quasifission

Different mechanisms have been proposed for the possible
failure to form a compound nucleus following the crossing
of the potential barrier (see, for example, Refs. [13,27]).
However, to demonstrate the usefulness of the expression (19)
we will discuss here only the compactness notion of Hinde
et al. [17]. In its simplest prescription, the composite system
is assumed to fuse if the angle between the separation vector
and the symmetry axis of the deformed nucleus exceeds a
certain value. This of course means if the barrier height B

exceeds a certain value. This is, however, somewhat extreme.
In the case of the system 48Ca+154Sm, it was noted that at
low energies, σQF is around 20% of σcap. However, at higher
energies, it becomes a smaller fraction of this. Thus we may
retain the spirit of the compactness concept with a more general
parametrization of PQF(α) with the Fermi-function form:

PQF(α) ≡ PQF(B) = γQF
1

1 + exp
(

B−BQF

	QF

) . (29)

That is, there is a fraction γQF of QF for the non-compact
barriers, reducing to zero for the more compact ones.

The solid line in Fig. 8 shows our calculated capture barrier
distribution; and in Fig. 9, we compare the corresponding
capture cross section with the experimental data. The fit uses
the same parameters as in Fig. 5, but a slightly better fit at
the lowest energies is obtained by taking up to seven excited
states of the 154Sm rotational band (that is, up to the 14+
state). Furthermore, there is a relatively important effect of
the inclusion of the 3− octupole phonon state in the 48Ca,
which introduces an additional barrier at around 151 MeV
(cf. Fig. 5) and pushes the previous barriers down slightly in
energy (cf. Fig. 5). With this latter state included, we require
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FIG. 8. Calculated capture barrier distribution for the [1,7]
48Ca+154Sm calculation. The dot-dashed line shows the part of this
distribution which contributes to quasifission, and the dashed curve is
the QF barrier distribution used, including the factor γQF = 0.2 (see
text and Fig. 9).
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FIG. 9. The measured and calculated capture, quasifission, and
evaporation-residue cross sections for 48Ca+154Sm (see text and
Figs. 8, 10 for more details).

an uncoupled barrier Bnc = 140.9 MeV, just 1.8 MeV higher
than BBass = 139.1 MeV, to obtain a reasonable fit to the data.

The dashed line in Fig. 8 shows the part of the distri-
bution corresponding to quasifission with γQF = 0.2, BQF =
138.5 MeV, and 	QF = 1.0 MeV. The corresponding cross
section is shown in Fig. 9, and is simply obtained by inserting
the expression (29) into Eq. (19). [Eq. (11) is of no use here
since we must integrate over all barriers.] The procedure is
seen to give a good fit to the experimental data, whereas
a constant fraction of 20% QF (dashed curve in Fig. 9)
greatly overpredicts the cross section at higher energies. The
parameters BQF and 	QF describe the way that the QF is cut
off for the compact barriers (dot-dash curve in Fig. 8) which
proceed essentially to CN creation. While the values of these
parameters are not precisely determined by the experiment, the
data may certainly be said to require around 20% QF for the
low barriers and very little from the highest ones, confirming
the compactness notion in this system.

High above a particular barrier, we may write Eσ ≈
π R2 (E − B), so that at energies above all the barriers, this
model gives a constant ratio of the QF and capture cross
sections: σQF/σcap ≈ ∫

DQF dB (around 6% in the present
calculation). This theoretical estimate may of course be refined
by taking account of the different average values of R and B

for the two processes (see Fig. 8).

C. Critical l for fission; the evaporation-residue cross section

Of course, an E dependence and/or an l dependence can
equally well be introduced into Eq. (19), and we consider
here a second simple application of our results for the same
system (compound nucleus 202Pb). The survival probability
Psur(l, E∗) appearing in Eq. (28) can be calculated using a
statistical-model code such as the HIVAP code of Reisdorf [10].
We use here a simple version of this program in which the level
densities at the ground state and at the fission saddle point are

0 10 20 30 40 50 60
 Angular momentum l

0

0.25

0.5

0.75

1

P
su

r(l
)

E*=51.25 MeV  
E*=53.75 MeV
E*=56.25 MeV

FIG. 10. Psur(l, E∗) as a function of l for the 202Pb compound nu-
cleus at three different excitation energies E∗(202Pb)= 51.25, 53.75,
and 56.25 MeV (corresponding to E = 142, 144.5, and 147 MeV
in the 48Ca+154Sm reaction). The symbols come from the HIVAP

calculation described in the text. The solid curves are from the
parametrization (30) with [γsur, Lsur, 	L] = [0.91, 37.4, 21.7]; [0.89,
35.4, 21.7]; [0.87, 33.2, 21.7] in order of increasing energy. The upper
and lower curves are used in the integral expression for σER, below
142 MeV and above 147 MeV, respectively, with a linear interpolation
between these energies.

fixed by the Toke and Swiatecki model of Ref. [28] and the
l-dependent fission barrier is given by the liquid-drop model
of Cohen, Plasil, and Swiatecki [29], modified by an overall
factor k in order to fit the experimental behavior of the critical
angular momentum for fission. A satisfactory description of
the data presented here is obtained with a typical value of
k = 0.7.

The symbols in Fig. 10 show the HIVAP values of Psur(l, E∗)
as a function of l for 202Pb at three different excitation energies:
E∗ = 51.25, 53.75, and 56.25 MeV, corresponding to incident
center-of-mass energies of 142, 145.5, and 147 MeV in the
48Ca+154Sm system. We see that this function changes with
the excitation energy, though its overall shape remains the
same. The solid curves show that the HIVAP results can be
rather well fitted by the parametrization:

Psur(l) = γsur
1

1 + exp
( l2−L2

sur

	2
L

) , (30)

with [γsur, Lsur,	L] = [0.91, 37.4, 21.7]; [0.89, 35.4, 21.7];
[0.87, 33.2, 21.7] in order of increasing energy. We have,
therefore, fitted the 48Ca+154Sm evaporation residue by using
this form of curve in Eq. (19).

In order to do so, we must transform to the variable E′,
whereupon we find

Psur(E
′) = γsur

1

1 + exp
(

E−E′−Esur
	sur

) , (31)

with

Esur = L2
sur

/
2mR2 (32)

044612-8



CAPTURE BARRIER DISTRIBUTIONS: SOME INSIGHTS . . . PHYSICAL REVIEW C 76, 044612 (2007)

and

	sur = 	2
L

/
2mR2. (33)

Note that the parameters Esur and 	sur now mix the properties
of the CN with entrance-channel properties through the factor
mR2. We take here a fixed value of R = 11.96 fm, which is
just its value at the Bass barrier.

The theoretical curve in Fig. 9 shows that a good fit
to the ER data can be obtained with a Psur(Eg) having
[γsur, Esur, 	sur] = [0.87, 4.4, 1.88] above E = 147 MeV
and [0.91, 5.6, 1.88] below 142 MeV, with a linear variation
of these parameters between these two energies. These values
correspond to the solid curves in Fig. 10 at the corresponding
excitation energies. We see that the energy variations from
this simple HIVAP calculation fit the data rather well. However,
our main point here was to show how the entrance channel
can be easily coupled to CN effects through a simple integral
containing T tot

0 .
Of course, it may be possible to create the same compound

nucleus via several different reactions. In this case, Psur(l, E∗)
will be the same for each reaction but will have a different
interplay with the different entrance channels. These effects
will be discussed in detail elsewhere [30], in particular for
more fissile systems.

V. SPIN DISTRIBUTIONS

In the absence of quasifission, the spin distribution of the
compound nucleus is simply given by the partial capture cross,
and in the spirit of this work we might write

σl ∝ (2l + 1)Tl ≈ (2l + 1)T tot
0 (E′), (34)

with E′ = E − l(l + 1)/2mR2. However, the main object of
this paper has been to show how to reduce the size of coupled-
channels calculations by performing them over a given energy
range (up to where dT tot

0 /dE becomes 0) for a single angular
momentum l = 0. This simplification is somewhat redundant
if one wants a spin distribution at one or a few energies, when
it is simpler to perform the calculations for all relevant l at
the E in question, rather than to calculate T tot

0 at the same
number of values of E′. Furthermore, each barrier will have a
different Rα associated with it, whereas the above expression
for E′ incorrectly assumes a single value. (Note that we were
able to account for the different Rα in Sec. III B only because
we integrated over l.) Furthermore, high above the barriers,
the l dependence of the barrier position may also become
important. Thus a direct coupled-channels calculation of Tl is
recommended.

Although there is no real advantage in using an expression
such as Eq. (34) to evaluate the spin distribution quantitatively,
it is still useful to think of this qualitatively in terms of arising
from a barrier distribution. For example, we show in Fig. 11
the (2l + 1)Tl corresponding to the 100Mo+100Mo calculation
of Fig. 4. The solid lines are the CCFULL calculations at the
energies indicated. It is clear that the steps in these functions
arise from the different barriers in the distribution. High above
a barrier, we may write the corresponding critical angular
momentum as l2

crit ≈ 2 m R2(E − B), from which it is clear

0 100 200
Angular momentum l

0

100

200

300

(2
l+

1)
T

l

CCFULL  
Sum

E=220 MeV

E=240 MeV

E=260 MeV

E=300 MeV

FIG. 11. Solid lines are exact CCFULL calculations of the spin
distribution (2l + 1)Tl of the compound nucleus. Dashed lines are the
sums of uncoupled optical-model calculations with barrier heights
and weights defined for l = 0 (see Fig. 12 and Sec. VI). The
discrepancies are relatively small for critical l values typical of
high-spin state experiments, but they show a significant variation
of the barrier weights at high E (see Sec. VI).

that the highest spins at any given E will always come from the
lowest barrier, and that channel couplings will always increase
the maximum attainable spin of the CN at a given incident
energy.

Such considerations can be important when trying to form,
for example, a hyperdeformed compound nucleus [31]. The
hyperdeformed state will generally be formed only at rather
high angular momenta, where there will be strong competition
with fission. Coupling effects (giving rise to lowered barriers)
allow us to attain the same high l at a lower excitation energy
where this competition will be less severe.

VI. ENERGY DEPENDENCE OF THE WEIGHTS

Until now we have avoided the use of expressions like
Eq. (4), since the (wα,Bα) are not natural outputs of the
CC equations. However, it is instructive here to try to use
such an expression, since it will bring to light an important
additional physical point. That is, in certain circumstances,
the weights associated with the barrier distribution may have
a significant energy dependence. We will illustrate this for the
[1,1] calculation for 100Mo+100Mo shown in Fig. 4. In Fig. 12,
the solid line shows the exact T tot

0 for this calculation and the
dashed line shows T tot

0 parametrized as a sum over barriers. The
values of (wα,Bα) used are (0.038, 193.80), (0.295, 202.96),
and (0.667, 212.30). For this case, the extraction of the weights
is relatively simple, since the peaks from each barrier do
not strongly overlap. For more complicated couplings, for
example, higher phonon numbers, their extraction becomes
more difficult; see solid curves of Fig. 1. This can also be
appreciated from the rotational calculation of Fig. 6, where
the overlapping barriers also wash out the individual peaks.
However, having obtained the relevant values, one can use
them to generate the full cross section, which is essentially
indistinguishable from the solid curve in Fig. 4(a). We might,
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FIG. 12. Exact T tot
0 (solid line) which corresponds to the system

of Fig. 4, along with the sum of uncoupled calculations (dashed line)
with the barrier weights and heights (wα, Bα) = (0.038, 193.80),
(0.295, 202.96), and (0.667, 212.30).

therefore, expect that the corresponding expressions

(2l + 1)Tl ≈ (2l + 1)
∑

α

wα Tl(E,Bα) (35)

will give a reasonable approximation to the spin distribution
at an energy E.

Here, we could use the parabolic approximation for the
Tl(E,Bα), employing appropriate values of Rα and ωα .
Alternatively, we could calculate the Tl(E,Bα) directly with
uncoupled potentials having the same diffuseness a as the
original calculation, since this will reproduce more correctly
the properties of each barrier (for example, the variation with
l). We choose to do the latter, and the results of this procedure
are shown by the dashed lines in Fig. 11. We see that while
the positions of the steps are reproduced reasonably well, the
heights of the steps are incorrect at higher energies. In other
words, the barrier weights appear to change as a function of
the incident energy. Although this has a marked effect on the
spin distribution, it has little effect on the total cross section
which is summed over l.

It is clear from Fig. 12 that the weights and heights of the
barrier distribution can be readily obtained from the steps in
T tot

0 [32]. The Bα occur where T tot
0 rises most steeply, and

the wα are given by the differences between the steps in
the function. (As noted above, this is less clear for smoother
distributions.) How then can we define the weights at a higher
energy, where T0 has already become unity? The answer is
to look at the same function but for a higher l value, for
which the total potential barrier will occur around the energy in
question.

This is demonstrated in Fig. 13 for the above system.
Figure 13(a) shows T tot

0 calculated for the physical excitation
energy of 0.53 MeV (dashed curve). One sees that the weights
are very different from their adiabatic values (E∗ = 0; solid
curve). If one calculates the same function for an octupole
phonon with the same E∗ and β (not shown), the weights are
close to their adiabatic values. The major difference between
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E*=0.53 
βC=0

(a)

l=0
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FIG. 13. (a) For a quadrupole phonon with E∗ = 0.53 MeV, T tot
0

(dashed line) is very different from its adiabatic value (solid line)
for l = 0, in particular the weight of the lowest barrier is greatly
reduced. With no Coulomb coupling (dot-dashed line), however, the
lowest barrier is actually enhanced relative to the adiabatic value. (b)
For higher l, the barrier occurs at higher energy where the weights
come closer to their adiabatic values. Calculations for l = 170 and
200 h̄ show that the weights vary little over a limited range of angular
momenta/energy.

these two cases is the importance of the Coulomb coupling
at large distances. In the quadrupole case, the range is long
enough for the Coulomb coupling to strongly polarize the
entrance channel before the barrier is reached [33]; clearly this
coupling will favor the barrier for which the Coulomb field is
lowest, that is, the highest of the barriers. This assertion can be
confirmed by performing a calculation in which the Coulomb
coupling is switched off. This is shown by the dot-dash curve
in Fig. 13(a). Now we see that the weight of the lowest barrier
is actually enhanced (due to the nuclear couplings) relative to
the adiabatic value.

In Fig. 13(b), we show Tl for l = 200, for which the
barrier in the total potential (including the centrifugal term)
occurs at around 325 MeV. The steps now give the barrier
weights in this energy region. They are seen to be closer to
their adiabatic values but still far from converged to these.
We also show here the same quantity for l = 170 and see
that the nonadiabatic weights do not vary significantly over
the corresponding energy range. The reason for the slow
convergence of the weights is that although the time scale
associated with a 0.53 MeV excitation is relatively long, the
long range of the quadrupole Coulomb field gives sufficient
time for a strong polarization to take place even with an
incident energy of more than 300 MeV.

Another interesting feature of Fig. 13(b) is that the
energy difference between the highest and lowest barriers is
significantly larger for l = 200 than for l = 0: around 53 MeV
compared with 18 MeV. The reason for this is that the barriers
for high l occur at a smaller radius than for l = 0, and in this
region the nuclear coupling form factor is correspondingly
larger. We note that this effect is specifically l dependent rather
than E dependent.

The variation of the quadrupole Coulomb polarization is
the origin of the discrepancies seen in the spin populations
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calculated with fixed weights in Fig. 11. We note that variations
of the weights that we report here are larger than those
discussed in Ref. [32]. However, there is no contradiction with
these results, since the authors of that paper did not consider
the long-range quadrupole Coulomb couplings and did not, in
any case, study such a large energy range as here.

At energies near the l = 0 barrier, the quadrupole Coulomb
field is the origin of the entrance-channel extra-push energy
described in Ref. [12], where the energy at which T tot

0 = 0.5
is increased by this polarization. For the present simplified
[1,1] coupling scheme, the shift is around Ex = 9 MeV [see
Fig. 13(a)] relative to the uncoupled barrier (a higher value
is produced if multiple-phonon states are included in the
coupling), significantly reducing the anomaly between the
Bass barrier and the dynamical barrier observed in many
symmetric heavy-ion reactions [12].

VII. CONCLUSIONS

We have presented new results relating to nuclear reactions
which are governed by strong couplings in the entrance
channel and, therefore, to the existence of a distribution of
barriers. In some cases, these effects can be easily incorporated
into calculations of quasifission and evaporation-residue cross
sections. This was achieved without the need to extract the
heights and weights of the corresponding barrier distribution
but simply by exploiting the the s-wave transmission coming
from a standard coupled-channels calculation.

The only occasion on which we explicitly introduced barrier
weights was to show that they may change with incident

energy. But even in this case, the effect is important only
for quadrupole-phonon states, only at energies high above
the barrier, and only in calculating the spin distribution of
the compound nucleus rather than cross sections, which are
summed over l. However, even at near-barrier energies, highly
collective target and projectile quadrupole-phonon states can
give rise to an important extra-push energy, that is, a significant
shift of the average (dynamical) barrier to higher energies.

The reaction 48Ca+154Sm was studied in some detail; and,
from a single T tot

0 , good results were obtained for the capture,
quasifission, and evaporation-residue cross sections, all of
which have been measured in this system. While the functions
coupled with T tot

0 to give the ER cross section have a good
theoretical basis in the statistical-decay model, the function
used to describe the quasifission was simply a generalization of
the compactness parametrization suggested in Ref. [17]. The
data studied strongly suggest the correctness of this notion.
It would, therefore, be good to have a theoretical model for
this effect, especially since it appears to play a major role in
systems leading to superheavy element creation by hot fusion
[34].
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