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Detailed determination of the nuclear fusion radius by a simultaneous optical model calculation of
elastic scattering and fusion cross sections in reactions involving weakly bound projectiles
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Within the optical model for direct reactions, simultaneous calculations of elastic scattering, complete fusion,
and total reaction cross sections for energies around the Coulomb barrier are presented for reactions involving
the weakly bound projectile 9Be on 64Zn. Volume (WF ) and surface (WDR) Woods-Saxon optical potentials are
used such that the former is responsible only for complete fusion reactions while the latter for all direct reactions
plus incomplete fusion. Simultaneous fits can be obtained with several sets of potential parameters, but if we
impose the condition that the strength of WF is smaller than the strength of WDR at the tail region of the potential
(this condition is discussed in detail), then values are required for rF and rDR of around 1.6 and 1.7–1.9 fm,
respectively. These values are much larger than those frequently used in barrier penetration model calculations.
Through the energy dependence of the real and imaginary parts of the polarization potentials, we show that the
usual threshold anomaly does not show up for this system, but instead there is evidence of the presence of a
breakup threshold anomaly.
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I. INTRODUCTION

The study of heavy ion collision mechanisms at near
barrier energies has been extensively developed in the last
decades. One of its main motivations is concerned with the rich
interplay between different reaction processes and how they
influence one another. A theoretical challenge has always been
to describe simultaneously fusion, quasielastic reactions, and
elastic and inelastic scattering. Discovering a unique nuclear
potential that describes simultaneously different reaction
mechanisms is, therefore, a goal of nuclear physicists and may
be quite important for the understanding of the complexity of
collision processes at low energies.

The more widely used nuclear interacting potential is the
optical potential with a Woods-Saxon form for its real part and
imaginary potentials corresponding to a volume part, which is
responsible for the absorption of flux into the fusion channel,
and a surface potential responsible for the direct reaction
channels. It is well established that the energy dependences
of the real and total imaginary potentials follow the dispersion
relation [1,2], and that the so-called threshold anomaly (TA)
[2,3] is present in most of the systems studied. It is well known
that the TA is related to the decreasing behavior with the energy
of the absorptive part of the nuclear polarization potential
around the barrier energy. Through the dispersion relation,
this fact is connected to an increase in the strength of the real
part of the polarization potential just around the barrier energy.

In the late 1980s, a controversy spread in the literature
concerning two different approaches for the simultaneous fit of
elastic and fusion processes. Udagawa and collaborators [4–7]
proposed to divide the total imaginary potential W into an
inner potential WF , responsible for fusion, such that WF = W
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for r < RF and WF = 0 for r > RF where RF = rF (A1/3
1 +

A
1/3
2 ) and rF was treated as an adjustable parameter to fit

simultaneously fusion and elastic scattering data. This group
found that for a large variety of systems, good simultaneous
fits could be obtained for rF around 1.4 fm, corresponding to
a long-range fusion potential. On the other hand, Satchler and
collaborators [3,8–10] argued that a much smaller rF could be
used if the energy dependence of the optical potential due to
the coupling to direct reaction channels is taken into account.
In fact, this last group obtained simultaneous fits of fusion
and elastic scattering, within a coupled-channels calculations
approach, for a short-range fusion potential with rF = 1.0 fm
and diffuseness of the order of 0.25 fm.

A few years ago, a Brazilian group developed a global
parameter-free optical potential known as the Sao Paulo po-
tential (SPP) [11,12], based on the Pauli nonlocality involving
the exchange of nucleons between projectile and target. Within
this model, the nuclear interaction is connected with the folding
potential and an extensive systematics of nuclear densities is
made. This model provided good overall data description for
the elastic scattering and reaction cross sections of several
systems in a wide energy range [11,12]. The SPP has also been
used in the description of the fusion process in the context of
the barrier penetration formalism [13]. Very recently [14], it
was shown that the SPP is able to predict the global behavior of
fusion and reaction cross sections for hundreds of systems in
a wide energy range. Extensive coupled-channels calculations
were performed using the SPP as the bare potential [15,16],
and reasonably good descriptions of the data were obtained
for several reaction channels, without any parameter search.

Because of the availability of very high precision fusion
excitation functions at near barrier energies [17–22], the
concept of the simultaneous fit of elastic angular distributions,
fusion, and total reaction cross sections has somehow changed.
With the new high precision fusion data, one realizes that in
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order to fit fusion excitation functions, diffuseness parameters
of the Woods-Saxon nuclear potential ranging between 0.75
and 1.5 fm are required [21,22]. These values are much larger
than the usual value around 0.63 fm widely adopted to describe
elastic and inelastic scattering. A possible explanation for the
failure of simultaneous fits of fusion and elastic scattering
[21,22] is the fact that double folding potentials are valid only
in regions of very small density overlap, and therefore neither
this kind of potential nor the phenomenological Woods-Saxon
potential (equivalent to folding potentials at the region of the
tail of the potential) can be used to describe the fusion process.
The discrepancies of the fits usually can only be observed
using linear scale plots of high precision fusion data, especially
when plotting the derivative of the fusion cross sections as a
function of energy [21,22]. Furthermore, high precision fusion
excitation functions cannot be very well fitted with the same
potential in the whole energy range, since different values of
diffuseness are required to fit different energy regions of the
excitation function [22]. However, all these discrepancies have
still to be further investigated before definitive conclusions are
drawn.

In the last decade, reactions involving weakly bound
projectiles have become a subject of intense research [23].
Special interest has been focused on the role that the breakup
coupling of such nuclei has on the fusion channel and other
reaction mechanisms. Similarly, particular attention has been
paid to the effect that breakup reactions have on the threshold
anomaly around the Coulomb barrier. From the fact that
weakly bound nuclei have small breakup threshold energies,
it is expected that when these nuclei are used as projectiles,
the breakup mechanisms should have a strong effect on fusion,
particularly at low bombarding energies. It has recently been
proposed that reactions with very weakly bound stable nuclei
show a different type of anomaly called the breakup threshold
anomaly (BTA) [24–26] for which, contrary to the usual
threshold anomaly, the energy-dependent absorptive nuclear
polarization potential does not show the tendency to decrease
as the energy becomes lower around the Coulomb barrier, but
rather it increases as the energy decreases. As a consequence,
the corresponding real potential counterpart, which is derived
from the dispersion relation, becomes repulsive and does not
show the usual bell shape around the barrier energy. This
breakup threshold anomaly has been suggested to be a direct
consequence of the strong coupling between the elastic and
breakup channels for energies around the barrier energy.

Several studies have recently been done on reactions with
weakly bound projectiles such as 9Be, 6Li, and 7Li on medium
and heavy targets. The case of 9Be is rather interesting, since
this nucleus, being weakly bound, has no bound excited states.
It is a Borromean nucleus, since once the valence neutron
is removed (En = −1.48 MeV), the remaining nucleus 8Be,
being unstable, breaks up into two α particles and a neutron.
Besides, due to its α-α structure, 9Be is strongly deformed with
a ground state built on a K−3/2 rotational band. Therefore,
a very interesting research subject that up to now has not
been sufficiently studied is how the small neutron threshold
energy and strong deformation of the 9Be ground state
intervene in determining the absence of the usual threshold
anomaly.

In the present work, we analyze the available data [27–30]
for scattering and reactions between the weakly bound
projectile 9Be and the medium size target 64Zn and make a
theoretical study of them within the direct reaction framework
where optical potentials are used. A simultaneous χ2 analysis
of elastic scattering, total complete fusion, and total reaction
cross sections is performed. We aim to investigate the behavior
of the optical potential and the threshold anomaly for a system
which involves the weakly bound projectile 9Be and compare
it with the well-known behavior for tightly bound nuclei.
In the calculations, a Woods-Saxon optical potential Ua =
Va + Wa for the entrance channel a is used. The imaginary
part Wa is split into volume and surface parts, that is, Wa =
Wa,F + Wa,DR. It is assumed that the volume partWa,F is solely
responsible for the total complete fusion (TCF) process, while
the surface part Wa,DR is responsible for all other absorption
processes. That is, Wa,F accounts for the complete fusion (CF)
plus the sequential complete fusion (SCF) processes. As is well
known, CF is the fusion process in which the whole projectile
9Be fuses to the target, and SCF is the fusion mechanism that
results after the breakup reaction 9Be → α + α + n, where
all the fragments fuse to the target. On the other hand, Wa,DR

must include not only the elastic breakup process (EBU) in
which none of the fragments is captured by the target but also
the incomplete fusion mechanism. There is absorption from
excited channels of the projectile and/or target, but because of
the small neutron threshold energy of 9Be and the fact that 8Be
is unstable, these contributions are regarded to be negligible.
The calculated relative motion distorted waves χ (+)

a obtained
with the Woods-Saxon potential Ua are used throughout the
calculations. In this sense, all of the calculated results are
consistent with elastic scattering. The same procedure has been
done previously [31] for the 6He+209Bi system.

An important feature of the present calculations is that
we are not interested in just obtaining a simultaneous fit of
elastic scattering, total reaction, and total complete fusion cross
section data [27–30], but we assume that acceptable parameters
of the optical potential must satisfy the condition that the
strength of the fusion imaginary potential Wa,F must be smaller
than the direct reaction imaginary potential Wa,DR at the tail
region of the potentials. This assumption is supported by the
following facts: (1) The works by B. T. Kim et al. [31] for the
system 6He+209Bi and W. Y. So et al. [32] for 6Li+208Pb and
9Be+209Bi show that |Wa,F | < |Wa,DR| at the strong absorp-
tion radius Rsa is consistently satisfied for energies around the
Coulomb barrier. As a matter of fact, within the direct reaction
model where fusion and direct reaction absorption processes
are described by the separation of the potential Wa into Wa,F

and Wa,DR, the condition |Wa,F (E,Rsa)| < |Wa,DR(E,Rsa)|
has to be satisfied for nuclear systems that present the breakup
threshold anomaly. (2) Besides the pure breakup of the
projectile, which is the main component of direct reactions
particularly around the barrier energy, and absorption from
the excited states of the target and/or projectile, the potential
Wa,DR in this study also accounts for the incomplete fusion
absorption process that is less than 10% of the total fusion
cross section [30]. This fact, however, does not affect the
assumption that |Wa,F | < |Wa,DR| at the tail region, since the
incomplete fusion process (fusion of an α particle to the target)
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occurs at smaller distances where the breakup of the projectile
happens.

Thus, with this condition, the simultaneous χ2 analysis of
the data reveals that the reduced radius parameters rF and rDR

of the fusion (Wa,F ) and direct reaction (Wa,DR) potentials
take larger values than those commonly used in calculations
between weakly bound projectiles with spherical targets [27,
29,33,34].

Also, in this work, the threshold anomaly is studied by
the conjugate energy dependence of the fusion and direct
reaction polarization potentials at the strong absorption radius
Rsa. That is, we make a detailed analysis of the behavior of
the different parts of the imaginary potential, Wa,F (E) and
Wa,DR(E), and the corresponding real potentials Va,F (E) and
Va,DR(E), which are obtained from the dispersion relation [31].
We arrive at the conclusion that for the system 9Be+64Zn, the
absorption process is dominated by the potential Wa,DR for
energies around the Coulomb barrier energy, while the total
absorption potential Wa varies very slowly in this region. This
is a sign that the usual threshold anomaly is not present in
this system but instead the breakup threshold anomaly shows
up. As a final calculation, the effect of breakup reactions
(represented by Wa,DR) on complete fusion cross sections is
analyzed by studying the relative effect of the potentials VDR

and WDR on fusion. A repulsive (attractive) VDR will suppress
(enhance) fusion, while Wa,DR always suppresses fusion since
it represents a loss of flux from the incident channel.

II. BASIC EQUATIONS

The Schrödinger equation whose solution is the distorted-
wave function χ (+)

a for the problem of elastic scattering from
an optical potential reads

(Ta + Va)χ (+)
a = Eaχ

(+)
a , (1)

with

Va(r, E) = VCoul(r) − Va,0(r) − Ua(r, E), (2)

where VCoul(r) is the Coulomb potential between the reacting
ions, Va,0(r) is the energy-independent nuclear average po-
tential felt by the nucleons [35] and Ua(r, E) is the nuclear
polarization potential given by [36–38]

Ua(r, E) = Va(r, E) + iWa(r, E). (3)

The imaginary part Wa(r, E) is related to the total reaction
cross section by

σR(E) = 2

h̄va

〈χ (+)
a |Wa(E)|χ (+)

a 〉. (4)

Here, va is the relative velocity between the colliding ions.
Since the distorted-wave function can be written in expanded
form as

χ (+)
a (kar) = 1

kar

∞∑
la=0

(2la + 1)χla (r)Pla (θ ), (5)

the reaction cross section can be written in the form

σR(E) = π

k2
a

∞∑
la=0

(2la + 1)Tla (E), (6)

where the penetration factor is

Tla (E) = 4

h̄va

∫ ∞

0
|χla (r)|2Wa(r, E) dr. (7)

Now, Wa(r, E) is assumed to be composed of two parts, a
fusion part and the direct reaction part [31], i.e.,

Wa(r, E) = Wa,F (r, E) + Wa,DR(r, E), (8)

where Wa,F is responsible for fusion absorption and Wa,DR

for all other absorption processes. According to Eq. (3),
the corresponding real polarization potentials Va,F (r, E) and
Va,DR(r, E), where Va(r, E) = Va,F (r, E) + Va,DR(r, E), are
determined by the dispersion relation [2]. The fusion (σF )
and direct reaction (σDR) cross sections are given by equations
similar to Eq. (4), where Wa should be replaced by Wa,F (E)
and Wa,DR(E), respectively. It is important to notice that the
distorted-wave function used to calculate σF and σDR is exactly
the same as in Eq. (4); that is, χ (+)

a is the solution of Eq. (1)
with the full potential Ua = Va + iWa .

From now on we will drop the subindex a used above to
mean the incident elastic channel. The energy-independent
nuclear potential V0(r) and the fusion absorption potential
WF (r, E) are assumed to have the geometrical forms

V0(r) = V0f (r) (9)

and

WF (r, E) = WF (E)f (r), (10)

where

f (r) = 1

1 + exp(xi)
, xi = r − Ri

ai

, i = 0, F. (11)

Here ai refers to the diffuseness parameter and Ri = ri(A
1/3
1 +

A
1/3
2 ), where ri is the reduced radial parameter. The surface

imaginary potential WDR(r, E) is defined by

WDR(r, E) = −4aDRWDR(E)
df (r)

dr
, (12)

where aDR stands for the direct reaction diffuseness and rDR

for the corresponding reduced radial parameter.
For the system under study, we identify the direct reaction

cross section with the pure or elastic breakup plus the incom-
plete fusion cross sections. This is a very good approximation,
because 9Be has no excited states and its core 8Be easily
splits into two α particles. Neutron transfer is comparably less
important than breakup, particularly for energies below the
barrier energy. It should be pointed out that the breakup cross
section may include contributions from Coulomb and nuclear
interactions. This implies that the direct reaction potential
includes both effects. The average potential V0(r) in Eq. (3)
may have an energy dependence due to the nonlocality effect
coming from a knockon-exchange contribution. However, we
will not consider such effects, since they are negligible [39].
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FIG. 1. Calculation of the potentials WF and
WDR when the reduced radial parameters are
rF = 1.40 fm and rDR = 1.50 fm, similar to those
obtained by Udagawa and collaborators [4–7] for
tightly bound nuclei.

III. SIMULTANEOUS χ 2 ANALYSIS OF ELASTIC
SCATTERING, TOTAL REACTION, AND COMPLETE

FUSION CROSS SECTIONS

In the present calculations, we consider the experimental
data of Refs. [27–30] for the 9Be+64Zn system. We start by
performing a simultaneous χ2 analysis of elastic scattering,
total reaction, and total complete fusion data at the laboratory
energies of 21, 23, 26, and 28 MeV in Ref. [30]. It should
be emphasized that the derived complete fusion cross sections
given in Ref. [30] include both complete fusion and sequential
complete fusion.

The Coulomb radius is set at rC = 1.25 fm. Now, the optical
potential parameters of the energy-independent real potential
V0(r) are fixed at V0 = 66.0 MeV, a0 = 0.52 fm, and r0 =
1.22 fm. These potential parameters are obtained by fitting
elastic scattering by considering a volume Woods-Saxon
absorption potential W with a fixed reduced radius rW =
1.4 fm. This real nuclear potential V0(r) so defined will be kept
unchanged throughout the calculations. Now, we proceed to
split the absorption potential W into fusion and direct reaction
parts WF and WDR and determine their parameters by means
of the simultaneous χ2 analyses of the data.

The lowest energy for which there are measurements
of elastic scattering, total reaction, and complete fusion is
21 MeV, so we first tried to fit these data. In a first calculation,
we used the reduced radial parameters rF = 1.40 fm and
rDR = 1.50 fm, similar to those obtained by Udagawa and
collaborators [4–7] for tightly bound nuclei. The agreement
with the experimental fusion and total reaction cross sections
is good for a large value of the diffuseness aF = 0.85 fm. The
WF and WDR potentials obtained in this calculation are shown
in Fig. 1. One can see that these potential parameters lead to
|WF | > |WDR| at the tail region, which is not accepted by us
as a realistic physical situation. So, in the next calculation,

we modify the values of the reduced radii rF and rDR. The
simultaneous fit of the cross sections leads to the following
values: WF = 1.498 MeV, WDR = 0.097 MeV, aF = 0.35 fm,
and aDR = 0.25 fm, with rF = 1.64 fm and rDR = 1.93 fm,
with χ2/N = 0.28. The calculated elastic scattering cross
section is shown in Fig. 2(a), while the radial dependence
of the potentials WF (r) and WDR(r) is given in Fig. 2(b). The
calculated total reaction and complete fusion cross sections
are σR = 416 mb and σCF = 346 mb. These values are
very close to the measured data σR,exp = 424 ± 42 mb and
σCF,exp = 344 ± 35 mb. Therefore, a simultaneous fit to the
data has been achieved. The direct reaction cross section,
which in this case corresponds to pure breakup plus incomplete
fusion, is simply σDR = σR − σCF. From Fig. 2(b) one can
see that for this parameter set, |WF | < |WDR| at the tail
region.

The determined values of rF = 1.64 fm and rDR = 1.93 fm
are much larger than those commonly used in other optical
potential calculations of reactions involving the weakly bound
projectile 9Be, but they are similar to the ones obtained by Kim
et al. [31] for the 6He+209Bi system, where the projectile is a
halo nucleus. Since for 9Be the optical potential calculations of
neither Ref. [29] nor Ref. [34] try to calculate fusion within the
same theoretical frame, the reduced radius parameters of their
absorption potentials become smaller when compared with
the values just determined. For instance, R. J. Woolliscroft
et al. [34] for the system 9Be+208Pb, used values between
1.34 and 1.37 fm for the reduced radius parameter of the
absorption potential W , while Gomes et al. [29], for the same
system studied in this work, 9Be+64Zn, assumed values of
1.1 fm for the volume potential and 1.25 fm for the surface one.
It is proposed in this paper that within the direct reaction theory
as used here, larger values than those reported are required if
fusion is to be calculated in conjunction with elastic scattering
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FIG. 2. Elastic scattering cross section and
(b) optical potentials WF and WDR when the
reduced radii are rF = 1.64 fm and rDR =
1.93 fm.

with the condition |WF (E)| < |WDR(E)| for radial distances
close to the strong absorption radius [40].

To show this statement, we shall make step-by-step
calculations of the above-mentioned quantities, in which
simultaneous fits are required for several reduced radii rF

and rDR. We begin by trying to find other parameter sets for
which the calculated elastic and fusion cross sections agree
with the data at the same bombarding energy of 21 MeV. If
the values are rF = 1.1 fm and rDR = 1.25 fm as in Ref. [27],
then, WF ,WDR, aF , and aDR are determined in the simultane-

ous χ2 analysis. The following values are obtained; WF =
15.98 MeV, WDR = 0.5 MeV, aF = 0.862 fm, aDR =
0.815 fm, σR = 421 mb, σCF = 344 mb with χ2/N = 0.42.
It is seen that the experimental values for the elastic, total
reaction, and complete fusion cross sections are in good
agreement with this calculation. Figure 3(a) shows the radial
dependence of WF and WDR obtained by these calculations,
while Fig. 3(b) presents the corresponding calculation for the
elastic scattering cross section. However, one can see that
although one obtains good fits to all data, these optical potential

FIG. 3. Radial dependence of the potentials
WF and WDR obtained with rF = 1.1 fm and
rDR = 1.25 fm as in Ref. [27]. (b) Correspond-
ing calculation for the elastic scattering cross
section. The data at Elab = 21 MeV are from
Refs. [27–30].
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FIG. 4. Radial dependence of the optical
potentials WF and WDR for three sets of rF and
rDR values

parameters lead to the situation in which |WF | > |WDR| for all
radial distances. Therefore, as a next step, we try to increase
the radial parameter rDR, keeping rF fixed at 1.1 fm in order
to see whether WDR(r) can be pushed out of WF (r). Table I
shows the results for the potential strengths, diffuseness, and
the fusion and total reaction cross sections.

All these parametrizations have reasonably small χ2/N

values, and all of them fit very well the experimental elastic
scattering, complete fusion, and total reaction cross sections.
In Fig. 4, the radial dependence of the potentials WF and
WDR are shown for the values rDR = 1.4, 1.6, and 1.8 fm.
Figure 5 corresponds to the elastic scattering calculations. Al-
though there are good fits to the data, all these parametrizations
also lead to the situation in which |WF | > |WDR|, particularly
at the farther tail of WDR. We believed that the large values
of the diffuseness aF of the fusion potential might be largely
responsible for this situation. Therefore, as a next step, we
increased rF allowing the diffuseness aF to be reduced.
Table II shows the results in which rDR is kept at 1.9 fm.

TABLE I. Optical potential parameters with rF = 1.1 fm.
Potential strengths in MeV, diffuseness in fm, cross sections in
mb.

rDR WF WDR aF aDR χ 2/N σR σF

1.3 17.02 0.434 0.853 0.775 0.41 421 344
1.4 16.67 0.392 0.858 0.634 0.4 421 344
1.5 9.46 0.48 0.962 0.411 0.39 423 342
1.6 35.56 0.082 0.737 0.755 0.4 420 347
1.7 39.52 0.063 0.722 0.663 0.39 419 347
1.8 39.6 0.057 0.719 0.498 0.38 419 347
1.9 3.55 0.136 1.122 0.169 0.57 424 344

As before, acceptable fits to the total reaction and fusion
data are obtained; however, for the cases rF = 1.2 and 1.4 fm,
|WF | > |WDR| in the farther tail of the WDR potential as can
be seen in Figs. 6(a) and 6(b). Only in the last calculation,
where rF = 1.6 fm and rDR = 1.9 fm [Fig. 6(c)], we observe
that |WF | < |WDR| at the tail region. Corresponding elastic
scattering calculations are shown in Fig. 7.

Therefore, we see that the only parametrization that si-
multaneously gives good predictions for the elastic scattering,
complete fusion, and total reaction cross sections, and in which
direct reactions start before fusion, is that where rF and rDR

have values greater than 1.6 and 1.9 fm, respectively. These
values are similar to the ones derived for the 6He+209Bi system
[31]. The large values of both rF and rDR should therefore be
connected to fusion and breakup reactions occurring at larger
distances, probably because of the high deformation and low
breakup threshold energy of the projectile; however, this point
should be further investigated.

Now, we performed calculations at other energies for which
complete fusion, total reaction, and elastic scattering have
been measured, that is 23, 26, and 28 MeV. It should be

TABLE II. Optical potential parameters with rDR = 1.9 fm.
Potential strengths in MeV, diffuseness in fm, cross sections in
mb.

rF WF WDR aF aDR χ 2/N σR σF

1.2 3.219 0.105 1.007 0.215 0.55 423 344
1.3 3.1 0.085 0.867 0.258 0.49 421 344
1.4 2.98 0.075 0.72 0.283 0.4 420 344
1.5 2.277 0.067 0.598 0.31 0.37 418 345
1.6 2.16 0.048 0.379 0.48 0.32 419 340
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FIG. 5. Corresponding elastic scattering
cross section calculations for the cases in
Fig. 4. The data at Elab = 21 MeV are from
Refs. [27–30].

pointed out that because there are no available complete
fusion data at 17 and 19 MeV, we estimated these by a
Wong calculation [41]. By fitting the existing data at 21, 23,
26, and 28 MeV, with the parameters VB = 17 MeV, RB =
10.0 fm, and h̄ω = 4.0 MeV, the estimated values at 17 and
19 MeV are σCF = 4.9 and 46 mb, respectively. Table III shows
the results, where the diffuseness parameters of WF and WDR

have been fixed at aF = 0.35 fm and aDR = 0.25 fm as in the
21 MeV calculation. Figure 8 shows the corresponding elastic
scattering calculations.

As seen in Table III, the calculated total reaction and fusion
cross sections are very close to the measured values. For all
the parametrizations of Table III, the condition |WF | < |WDR|
is satisfied in the tail region.

We inquire then about the role that the energy-independent
real average potential V0(r) of Eq. (2) might play in the
determination of the large values for rF and rDR. To see this,
we have to redo the calculations at 21 MeV. As before, we
begin by fitting the elastic scattering with a volume absorption
potential W with a shorter radial parameter, say rW = 1.1 fm.
The parameter values obtained for V0(r) are V0 = 99 MeV,

TABLE III. Optical potential parameters. Energies and strengths
in MeV, radii in fm, and cross sections in mb. Data taken from
Refs. [27–30]. Experimental errors are estimated at 10%.

Elab WF WDR rF rDR χ 2/N σF σR σF,exp σR,exp

17 0.552 0.096 1.55 2.03 0.9 5.0 70.0 4.9 68
19 0.465 0.23 1.54 1.87 0.68 47 190 46 199
21 1.498 0.097 1.64 1.93 0.28 346 416 344 424
23 2.9 0.185 1.57 1.7 0.39 524 603 530 590
26 2.487 0.185 1.56 1.7 0.71 774 876 800 871
28 2.36 0.11 1.58 1.74 0.74 976 1049 1000 1013

r0 = 1.22 fm, and a0 = 0.4725 fm; and for the absorption
potential W = 15.06 MeV, aW = 0.9253 fm. Now, we keep
fixed the parameters of V0(r) and do the simultaneous fit of
all the cross sections with the assumption W = WF + WDR,

requiring that |WF | < |WDR| at the tail region. We find that up
to large values of rDR (around 1.6 fm), close fits to the data are
obtained, but still |WF | > |WDR| at the tail region. We find the
same behavior if rW = 1.2 fm is assumed. We conclude then
that a sufficiently large rW (rF ) around 1.4 fm is required so
that a simultaneous fit to all the cross sections is achieved with
potentials WF and WDR that satisfy |WF | < |WDR| at the tail
region of the potentials.

IV. STUDY OF THE THRESHOLD ANOMALY

Finally, the threshold anomaly is studied by observing the
energy dependence of the potentials. This is presented in
Fig. 9, where WF and WDR have been evaluated at the strong
absorption radius [40] at each energy, and the strengths VF (E)
and VDR(E) are calculated with the dispersion relation [2].
Figure 9(a) shows that VT is strongly dominated by VDR. As
a matter of fact, VDR becomes repulsive for energies around
the Coulomb barrier energy VB,c.m. = 16.9 MeV. On the other
hand, WDR increases as the energy decreases around the barrier.
It has been observed that the total reaction cross section keeps
appreciable values in this energy region [28–30], and in fact it
is basically composed of breakup reactions, since incomplete
fusion is unlikely to happen at subbarrier energies [23]. The
fact that the imaginary potential increases as the energy is
lowered to below the natural barrier threshold, and therefore
the “threshold” ceases to be the barrier itself, was pointed out
by Hussein et al. [24,42] as a characteristic of the breakup
threshold anomaly. So, from the present results, one might
say that the BTA is present for the nuclear system 9Be+64Zn,
although measurements farther below the barrier energy are
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FIG. 6. Radial dependence of the optical
potentials WF and WDR for three more sets of
of rF and rDR values.

necessary to achieve a definite conclusion. The effect of
breakup coupling on fusion can be seen from Fig. 9(a). We
observe that the potential VDR suppresses complete fusion
around the barrier energy, since this potential is repulsive in
this region and consequently raises the potential barrier. On
the other side, WDR always represents flux absorption into
reactions other than complete fusion and thus also should
suppress complete fusion. We conclude that the net effect of
the potentials VDR and WDR consists in suppressing complete
fusion around the barrier energy.

V. SUMMARY

In this work, we have presented a simultaneous calculation
of elastic scattering, total reaction, and complete fusion cross
sections for the system 9Be+64Zn around the Coulomb barrier.
In the model, the optical polarization potential has been split
into a fusion part and a direct reaction part, the former
is responsible for the complete fusion process, while the
latter accounts for direct reaction and incomplete fusion
mechanisms. A detailed step-by-step determination of the
fusion and direct reaction radius parameters rF and rDR of the

FIG. 7. Corresponding elastic scattering
cross section calculations for the cases in
Fig. 6. The data at Elab = 21 MeV are from
Refs. [27–30].
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FIG. 8. Elastic scattering cross section cal-
culations at energies of 17, 19, 21, 23, 26, and
28 MeV where the optical potential param-
eters are those of Table III. Data are from
Refs. [27–30].

fusion and direct reaction absorption potentials is performed
by a simultaneous χ2 analysis of elastic, total reaction and
complete fusion cross section data. We have shown that
simultaneous fit of all data may be reached with several
potential parameter sets. But, if we impose the condition that
|WF | < |WDR| at the tail region of the potentials, then the
simultaneous fit requires that the reduced radius parameters
rF of WF and rDR of WDR should take values around 1.6

and 1.9 fm, respectively. The large values of both rF and
rDR are therefore connected to fusion and breakup reactions
occurring at larger distances. Similar values of radii were
obtained previously for the 6He+209Bi system, but contrary
to 6He, 9Be is not a halo nucleus, and therefore the present
result is more difficult to understand.

Through the energy dependence of the polarization poten-
tial, it is concluded that the usual threshold anomaly currently

FIG. 9. Energy dependence of the nuclear polarization potential. (a) Real parts VF , VDR, and VT = VF + VDR obtained from the dispersion
relation. (b) Imaginary parts WF , WDR, and WT .
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found in reactions with tightly bound nuclei is absent in the
present reaction. In its place, the breakup threshold anomaly
may show up, although in order to strengthen this finding,
more measurements are needed below the Coulomb barrier.
The effect of the surface potential VDR and WDR on complete
fusion is found to be a net suppression around the barrier. This

is due to two effects: first, VDR becomes repulsive in this region
and therefore increases the height of the potential barrier;
second, WDR always deviates incident flux into reactions other
than complete fusion. Thus, the net effect of the breakup
channel coupling to complete fusion is suppression around the
barrier.
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[2] C. Mahaux, H. Ngû, and G. R. Satchler, Nucl. Phys. A449, 354
(1986).

[3] G. R. Satchler, Phys. Rep. 199, 147 (1991).
[4] T. Udagawa and T. Tamura, Phys. Rev. C 29, 1922 (1984).
[5] T. Udagawa, B. T. Kim, and T. Tamura, Phys. Rev. C 32, 124

(1985).
[6] S. W. Hong, T. Udagawa, and T. Tamura, Nucl. Phys. A491, 492

(1989).
[7] B. T. Kim, M. Naito, and T. Udagawa, Phys. Lett. B237, 19

(1990).
[8] M. A. Nagarajan and G. R. Satchler, Phys. Lett. B173, 29

(1986).
[9] G. R. Satchler, M. A. Nagarajan, J. S. Lilley, and I. J. Thompson,

Ann. Phys. (NY) 178, 110 (1987).
[10] I. J. Thompson, M. A. Nagarajan, J. S. Lilley, and B. R. Fulton,

Phys. Lett. B157, 250 (1985).
[11] L. C. Chamon et al., Phys. Rev. C 66, 014610 (2002).
[12] M. A. G. Alvarez et al., Nucl. Phys. A723, 93 (2003).
[13] L. R. Gasques, L. C. Chamon, D. Pereira, M. A. G. Alvarez,

E. S. Rossi, C. P. Silva, and B. V. Carlson, Phys. Rev. C 69,
034603 (2004).

[14] L. R. Gasques, L. C. Chamon, P. R. S. Gomes, and J. Lubian,
Nucl. Phys. A764, 135 (2006).

[15] J. J. S. Alves et al., Nucl. Phys. A748, 59 (2005).
[16] D. Pereira et al., Phys. Rev. C 74, 034608 (2006).
[17] C. L. Jiang et al., Phys. Rev. Lett. 93, 012701 (2004).
[18] C. L. Jiang, B. B. Back, H. Esbensen, R. V. F. Janssens, and

K. E. Rehm, Phys. Rev. C 73, 014613 (2006).
[19] C. R. Morton, A. C. Berriman, M. Dasgupta, D. J. Hinde,

J. O. Newton, K. Hagino, and I. J. Thompson, Phys. Rev. C
60, 044608 (1999).

[20] J. O. Newton, R. D. Butt, M. Dasgupta, D. J. Hinde, I. I.
Gontchar, C. R. Morton, and K. Hagino, Phys. Rev. C 70, 024605
(2004).

[21] J. O. Newton et al., Phys. Lett. B586, 219 (2004).

[22] M. Dasgupta et al., AIP Conf. Ser. 853, 21 (2006); A. Mukherjee,
D. J. Hinde, M. Dasgupta, K. Hagino, J. O. Newton, and R. D.
Butt, Phys. Rev. C 75, 044608 (2007).

[23] L. F. Canto, P. R. S. Gomes, R. Donangelo, and M. S. Hussein,
Phys. Rep. 424, 1 (2006).

[24] M. S. Hussein, P. R. S. Gomes, J. Lubian, and L. C. Chamon,
Phys. Rev. C 73, 044610 (2006); 76, 049902(E) (2007).

[25] P. R. S. Gomes, I. Padron, and J. Lubian, J. Radiol. Nucl. Chem.
272, 215 (2007).

[26] P. R. S. Gomes et al., Rev. Mex. Fis. S52, 23 (2006).
[27] S. B. Moraes et al., Phys. Rev. C 61, 064608 (2000).
[28] I. Padron et al., Phys. Rev. C 66, 044608 (2002).
[29] P. R. S. Gomes et al., Phys. Rev. C 71, 034608 (2005); 73,

064606 (2006).
[30] P. R. S. Gomes et al., Phys. Lett. B601, 20 (2004).
[31] B. T. Kim, W. Y. So, S. W. Hong, and T. Udagawa, Phys. Rev.

C 65, 044616 (2002).
[32] W. Y. So, S. W. Hong, B. T. Kim, and T. Udagawa, Phys. Rev.

C 69, 064606 (2004).
[33] R. J. Woolliscroft et al., Phys. Rev. C 68, 014611 (2003).
[34] R. J. Woolliscroft, B. R. Fulton, R. L. Cowin, M. Dasgupta,

D. J. Hinde, C. R. Morton, and A. C. Berriman, Phys. Rev. C
69, 044612 (2004).

[35] A. deShalit and H. Feshbach, Theoretical Nuclear Physics,
Vol. 1 (Wiley, New York, 1974).
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