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Bound single-particle states and scattering of nucleons on
spherical nuclei with a global optical model
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We present a global spherical optical model for nucleons with incident energies up to 200 MeV containing
dispersive terms and a local energy approximation. This optical model was built from our previous neutron optical
model and is able to reproduce scattering data as well as bound single-particle states for neutrons and protons.
However, for the scattering of protons, the situation is not as satisfactory as for neutrons.
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I. INTRODUCTION

Recently, we succeeded in building a global neutron optical
model potential (OMP) [1] including dispersion relations [2]
and the local energy approximation of Perey-Buck [3]. Then,
we extended it to the negative energy region toward the
shell-model potential for E < 0 (bound states) [4]. This new
global neutron OMP provides a very good description of the
scattering of neutrons by spherical nuclei over a very broad
energy domain (1 keV to 200 MeV) as well as of the bound
single-particle states for neutrons. Because we obtained good
results with this OMP, we decided to extend it for incident
protons. This is exactly the purpose of this paper.

Section II provides a short description of our previous
dispersive OMP for neutrons. In Sec. III we present proton
bound single-particle states and proton cross sections calcu-
lated with this OMP including the Coulomb potential and
the Z/R term. We explain how we succeeded in building
a new nucleon OMP in Sec. IV, starting from our neutron
potential. A second version of the potential is proposed with
a Lane-consistent imaginary surface potential. Comparisons
are made between the calculated and experimental proton and
neutron cross sections (Sec. V) as well as bound single-particle
states (Sec. VI). Finally, Sec. VII contains our conclusions.

II. OPTICAL MODEL

To build a nucleon OMP for spherical nuclei we start from
our previous neutron OMP [1,4] written as

U (r, E) = [VV (E) + iWV (E)]f (r, R, a) − 4a[VS(E)

+ iWS(E)]
df (r, R, a)

dr
− [VSO(E) + iWSO(E)]

×
(

h̄

mπc

)2 1

r

df (r, R, a)

dr
l.σ , (1)

where f is a Woods-Saxon form factor with radius R

and diffuseness a, both independent of energy. The energy
dependence of the imaginary volume (WV ) and spin-orbit
(WSO) terms is taken to be the form suggested by Brown
and Rho [5] whereas the surface imaginary term (WS) is a
Brown-Rho shape modified by an exponential falloff. The

energy dependence of the real surface part (VS) is deduced
from the imaginary surface term owing to the dispersion
relations [2] and the real volume part (VV ) is defined by
the local energy approximation of Perey-Buck [3] plus the
dispersive contribution from the imaginary volume term. The
real spin-orbit potential (VSO) is defined as an exponential
function and is also connected to the imaginary spin-orbit
potential by a dispersion relation. This potential can be easily
used with the ECIS code [6], which includes the calculation
of the dispersive contributions. All the parameters needed to
describe the energy dependencies for this potential can be
found in Refs. [1] and [4]. When we had built our potential,
we did not include the analyzing power angular distributions
Ay(θ ) in the χ2 search. However, we had checked that our
new global OMP provides a good description of the analyzing
powers, as illustrated in Fig. 1.

III. NEUTRON OPTICAL MODEL APPLIED TO PROTONS

The simplest way to obtain a proton OMP from a neutron
OMP is to add the Coulomb term produced by a uniformly
charged sphere [7]:

VC(r) = Ze2

2RC

(
3 − r2

R2
C

)
for r � RC

= Ze2

r
for r > RC,

where Z is the charge of the target and RC is the Coulomb
radius. To calculate the bound single-particle states, the
reaction, and the angular distributions for protons, we have
to solve the Schrödinger equation with the Coulomb potential.
For this purpose, we add the Coulomb functions from the ECIS

code [6] and the calculation of the proton elastic differential
cross sections as well as the proton analyzing powers to the
NUCLEON code [1]. The only extra parameter is the Coulomb
radius RC , which is chosen equal to that of the nuclear radius
used in our previous neutron potential in a first approximation
(RC = rA1/3, where r is the reduced radius of our potential;
see Table I). The proton optical model is now specified and
the first results for the proton bound single-particle states and
selected proton scattering cross sections are now presented.
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TABLE I. Energy dependencies and parameters for the global
nucleon potential “M.R.07a”. It is to be noted that the volume
dispersive contribution (�VV ) and the surface dispersive potential
(VS = �VS) are not repeated here. The z term represents the charge
of the projectile.

W
n, p

S (E) = AS (E−E
n,p
F

)2

(E−E
n,p
F

)2+B2
S

exp[−CS(E − E
n, p

F )]

neutron proton
AS −17.5 + 19 N−Z

A
−17.5 − 19 N−Z

A

BS 13 18.2
CS 0.025 0.027 − 7 10−5A

W
n, p

V (E) = AV (E−E
n,p
F

)2

(E−E
n,p
F

)2+B2
V

neutron and proton
AV −11.21 − 0.017A

BV 62 + 0.15A

W
n, p

SO (E) = −1.5(E−E
n,p
F

)2

(E−E
n,p
F

)2+502

neutron and proton

VV (E) = VV H.F. exp{−µβ2/2h̄2 [E − VV (E)]}
× exp{+4µ2γ 2/h̄4 [E − VV (E)]2} + 1.15zZ/R

neutron and proton
VV H.F. −82.8
β 1.114
γ 0.1165 − 10−4A

VSO(E) = VSO H.F. exp{−µβ2/2h̄2 [E − VH.F.(E)]}
× exp{+4µ2γ 2/h̄4 [E − VH.F.(E)]2}

neutron and proton
VSO H.F. −6.5

neutron and proton
r 1.3 − 2.7 10−4A

a 0.566 + 5 10−9A3

A. Proton bound single-particle states

The single-particle and hole state energies calculated with
the real part of this OMP (including, of course, the dispersive
contributions deduced from the imaginary potentials) are
shown in Fig. 2 for 208Pb, 90Zr, and 40Ca. The experimental
energies of the various single-particle and hole states for
those three nuclei, labeled “Exp.” in Fig. 2, can be found in
Refs. [8–10], respectively. For each nucleus, the left column,
labeled “M.R.04 + 1/r,” displays the value calculated from
this proton potential. The sequential ordering of the states is
rather good for 90Zr and 40Ca even though it is not possible
to obtain the two first-particle states for 90Zr, and there is
poor agreement between data and calculations. However,
the single-particle and hole states calculated for 208Pb are
completely different from experimental energies. To improve
the agreement between theory and experiment, we add to the
factor VV (E) a Z/R term (R = rA1/3) to increase the depth of
the real potential. This term is similar to the 0.4Z/A1/3 term
used by Perey [7]. The single-particle and hole proton states
predicted with this modified potential are shown in Fig. 2 (over
the heading “M.R.04+1/r + Z/R”). This potential produces a
clear improvement.

B. Reaction and selected scattering cross sections

The reaction cross section (left panel) and selected elastic
angular distributions (right panel) for protons on 208Pb cal-
culated with the “M.R.04 + 1/r” potential (blue long-dashed
lines) are compared with experimental data (black circles) in
Fig. 3. The calculated reaction cross section underestimates
the experimental data widely and the calculated angular
distributions are not in phase with the experimental ones. The
results obtained with the “M.R.04 + 1/r + Z/R” potential are
shown in Fig. 3 by the red dashed-dotted lines. The discrepancy
between the calculated and the experimental reaction cross
section decreases but the discrepancy between the calculated
and the experimental elastic angular distributions increases.
However, it should be noted that the angular distributions
calculated with this new potential are now nearly in phase with
the experimental data. We have tried to modify the Coulomb
radius RC and to apply a coefficient different from one for
the Z/R term with the two potentials (“M.R.04 + 1/r” and
“M.R.04 + 1/r + Z/R”), but the results were not much closer
to the experimental data.

IV. NEW OPTICAL MODEL

In the light of these first results, the real potential must
be deeper for negative and positive energy to improve
the agreement between the calculated and the experimental
proton data. We sought new parameters for the local energy
approximation in the real volume potential to avoid the Z/R

term. However, it was not possible to find parameters that
increase the real volume potential by about 10 MeV (for 208Pb)
and to avoid convergence problems in the iterative process (see
Eq. (7) of Ref. [1]). For this reason, we keep the Z/R term
in the proton potential and we did not modify the parameters
of our previous real volume potential. In our past study of
the neutron single-particle and hole states [4], we had found
better agreement with the experimental levels when the real
spin-orbit potential was deeper. Following this remark and to
unify the different terms of the potential we have used the
local energy approximation of Perey-Buck to define the real
spin-orbit potential. The nonlocality ranges β and γ are exactly
the same as for the real volume potential (β = 1.114 fm and
γ = 0.1165 − 10−4A fm [1,4]) but the depth VSO H.F. is chosen
to obtain a better agreement between theory and experiment
(VSO H.F. = −6.5 MeV). Energy dependencies of the depths
of the old (“M.R.04”) and new (“M.R.07”) real spin-orbit
potentials (with and without the dispersive contribution �VSO)
are shown in Fig. 4. This new real spin-orbit potential does
not modify the calculated neutron analyzing powers, as one
can see in Fig. 1. The reaction and elastic differential cross
sections for protons on 208Pb calculated with this new real
spin-orbit potential are compared with experimental data and
previous potentials (black dotted line) in Fig. 3. There is a clear
improvement beyond 100 MeV but the calculated reaction
cross section is still much lower than the experimental data.
Because the calculated differential cross sections are larger
than the experiments and consequently the calculated reaction
cross section is smaller than the experiments, we might try to
modify the imaginary part of the potential without changing
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FIG. 1. (Color online) Comparison of an-
alyzing powers and experimental data for 10-
and 17-MeV neutrons scattered from 27Al, 40Ca,
58Ni, 65Cu, 54Fe, 58Ni, 89Y, 93Nb, 120Sn, 208Pb,
and 209Bi. The blue dotted line represents our
neutron OMP [1] and the red solid line shows
the results obtained with the modified spin-orbit
potential (see Sec. IV).

the real part and the geometrical parameters (radius R and
diffuseness a).

A. Imaginary potentials

The energy dependence of our surface imaginary neutron
potential is

Wn
S (E) = AS

(
E − En

F

)2

(
E − En

F

)2 + B2
S

exp
[ − CS

(
E − En

F

)]
, (2)

where En
F denotes the neutron Fermi energy. The parameter AS

increases with the nuclear mass A (AS = −17 + 0.018A) and
the parameters CS and BS are constant. When we defined our
neutron potential, we had not needed a (N − Z)/A dependence
to reproduce the experimental data because we were building a
global optical potential for neutrons only. If we want to extend
it for proton we have to include this isospin dependence (the
Lane term [11,12]) in the AS parameter. It was rather easy to
fit the nuclear mass dependence of the AS parameter on the
isospin dependence and this led to a very good description
of the neutron total and differential elastic cross sections.
The expression of AS is listed in Table I for neutrons. For
protons, the modified expression of AS listed in Table I cannot
reproduce perfectly the experimental data. However, better

results are obtained when the BS parameter is increased and
the CS parameter decreases with the nuclear mass, as is shown
in Table I.

When the volume imaginary potential (WV ) is modified,
there are no many changes to the calculated cross sections,
but a little improvement is observed for neutrons and protons
when the BV parameter (see the expression for WV in Table I)
is increased up to 25%. For the same reason the imaginary
spin-orbit potential is reduced by a factor of 2. All the
needed parameters and the energy dependencies to define the
imaginary neutron and proton potentials noted “M.R.07a” are
listed in Table I.

B. Real potentials

The real volume potential is the same for neutrons and
protons with the exception of the Z/R term, which exists
only for protons. A slight improvement is observed on the
proton single-particle energies if the Z/R term is increased
by 15%. The energy dependence and the parameters for the
real volume as well as for the real spin-orbit potentials have
been brought together with the imaginary potentials in Table I.
Let us specify that En

F and E
p

F represent the Fermi energy for
neutrons and protons, respectively. The last part of the real
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FIG. 2. Proton single-particle ener-
gies in 208Pb, 90Zr, and 40Ca. For each
nucleus, the first column displays the
values calculated from our neutron po-
tential including the Coulomb potential
(“M.R.04 + 1/r”), the column labeled
“Exp.” displays the experimental values,
and the third column shows the results
when the Z/R term is added to the real
volume potential (“M.R.04 + 1/r + Z/R”).

potential comes from the imaginary volume (�VV ), surface
(�VS), and spin-orbit (�VSO) potentials through the dispersion
relation [2].

C. Geometrical parameters

The neutron and proton potentials share the same geomet-
rical parameters (radius R = rA1/3 and diffuseness a), which
are mass dependent but independent of energy. To improve the

quality of the fit to the data, the reduced radius is increased
by 0.3% compared to the previous neutron potential [1]. Mass
dependencies for the geometrical parameters are listed at the
end of Table I.

D. Energy dependencies

Energy dependencies of the depths of the imaginary volume
(WV ) and surface (WS) potentials are shown in Fig. 5 for

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

25 50 75 100 125 150 175 200 225 250 0 20 40 60 80 100 120 140 160 180

 12 MeV

 16 MeV

 65 MeV

100 MeV

MR07a

MR04 +1/r+Z/R+s.o.

MR04 +1/r+Z/R

MR04 +1/r

p+208Pb 208Pb(p,p)208Pb

a b

Θc.m. (deg)E (MeV)

σ(
Θ

)/σ
R

ut
h.

σ R
 (

b)

FIG. 3. (Color online) Proton reaction cross sections σR (left panel) and selected proton scattering cross sections on 208Pb (right panel).
Experimental data are shown by black circles. For the blue long-dashed lines, the neutron potential including the Coulomb potential
(“M.R.04 + 1/r”) is used; if the Z/R term is added to the real potential, we obtained the red dashed-dotted line (“M.R.04 + 1/r + Z/R”); the
black dotted line shows the results when the new real spin-orbit potential is used (“M.R.04 + 1/r + Z/R + s.o.”). The red solid line represents
our final proton potential (“M.R.07a”).
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FIG. 4. Depths of spin-orbit real potential for 208Pb. Curves
labeled “M.R.04” represent our spin-orbit real potential used in 2004;
those labeled “M.R.07” represent our spin-orbit potential with a local
energy approximation. The solid curve gives the variation of the total
spin-orbit potential and the dashed curve gives the variation without
the dispersion contribution.

neutrons (upper panel) and protons (lower panel) for three
nuclei: 32S, 93Nb, and 209Bi. There are small differences
between neutrons and protons for the imaginary volume
potential owing to the Fermi energy. However, the surface
imaginary potential of the heaviest nuclei is much deeper
for the proton potential than for the neutron potential. For
the lightest nuclei, the opposite is true. It was necessary to
increase the surface imaginary potential for the heaviest nuclei
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FIG. 5. Depths of neutron (upper panel) and proton (lower panel)
volume [WV (E)] and surface [WS(E)] imaginary potentials for
32S, 93Nb, and 209Bi.
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FIG. 6. Depths of neutron (upper panel) and proton (lower
panel) volume [V n

V (E) = VH.F.(E) + �V n
V (E), V

p

V (E) = VH.F.(E) +
�V

p

V (E) + 1.15Z/R] and surface [VS(E) = �VS(E)] real potentials
for 32S, 93Nb, and 209Bi. The scale for the surface potential is on the
left and that for the volume potential on the right.

to provide a good description of the proton differential elastic
cross sections.

The depths of the real volume (VV ) and surface (VS)
potentials are represented in Fig. 6 between −50 and 200 MeV
for neutrons (upper panel) and protons (lower panel) for
the same three nuclei (32S, 93Nb, and 209Bi). The volume
potential contains the volume dispersive contribution �VV

when the surface potential represents directly the surface
dispersive contribution VS = �VS . The differences between
nuclei for the surface part are due to the variations of the
surface imaginary potentials for 32S, 93Nb, and 209Bi. The only
variation between neutrons and protons for the real volume
potential is the Z/R term, which is much bigger for 209Bi.

E. Volume integral

The volume integral and the root mean square (rms)
radius are useful means of comparison between potentials.
To calculate the volume integral per nucleon of the real
potential, one must take into account all the real parts of the
central potential [VV (E) + �VV (E) + �VS(E)]. Let [rn](E)
(n = 2, 4) denote the radial moments:

[rn](E) = −4π

A

∫ ∞

0
rn[VV (E) + �VV (E)

+ 4e
r−R

a f (r)�VS(E)]f (r)dr.
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The real volume integral per nucleon JV (E) is written

JV (E) = [r2](E),

the imaginary volume integral per nucleon JW (E) is given by

JW (E) = −4π

A

∫ ∞

0
r2[WV (E) + 4e

r−R
a f (r)WS(E)]f (r)dr ,

and the rms radius is defined by
√

〈r2〉 =
√

[r4](E)/[r2](E).

Energy dependencies of the volume integrals [JV (E) and
JW (E)] and of the rms radius for neutrons and protons are
shown in Fig. 7 for 32S, 93Nb, and 209Bi. Similar dependencies
have also been observed for neutrons or protons on 208Pb, 90Zr,
and 40Ca. [9,13,14].

F. Lane-consistent optical model potential

Our global optical model is not Lane-consistent even
though it contains (N − Z)/A dependence in the imaginary
surface part. To build such a potential, we keep the same
parameters BS = 13 and CS = 0.025 for protons and neutrons.
To reproduce the proton experimental data, we decided to seek
a different volume imaginary potential.

As we did for the surface imaginary neutron potential,
we try to include an isospin dependence in the AV and BV

parameters for the volume imaginary neutron potential:

Wn
V (E) = AV

(
E − En

F

)2

(
E − En

F

)2 + B2
V

.

The new parameters AV = −11 − 16(N − Z)/A and BV =
65 + 120(N − Z)/A can reproduce neutron scattering data
but unfortunately, when we use an isospin dependence for the
proton [AV = −11 + 16(N − Z)/A and BV = 65–120(N −
Z)/A], the agreement between predictions and experimental
data is poor. A big improvement is observed for protons if
we keep the original mass dependency for the AV parameter
(AV = −11.21 − 0.017A) and choose an isospin dependence
for the BV parameter [BV = 65–120(N − Z)/A]. At the same
time, the imaginary spin-orbit potential is slightly modified
to obtain better results. Finally, we succeeded in building a
Lane-consistent imaginary surface potential and we failed for
the imaginary volume potential. All the needed parameters
and the energy dependencies to define the imaginary neutron
and proton potentials are listed in Table II. This potential is
denoted “M.R.07b”.

Energy dependencies of the depths of the imaginary volume
(WV ) and surface (WS) proton potentials are shown in Fig. 8
(upper panel) for the same three nuclei (32S, 93Nb, and 209Bi).
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TABLE II. Energy dependencies and parameters for imaginary
part of the potential “M.R.07b.” The real part and the geometrical
parameters are given in Table I.

W
n,p

S (E) = AS (E−E
n,p
F

)2

(E−E
n,p
F

)2+B2
S

exp[−CS(E − E
n, p

F )]

neutron proton
AS −17.5 + 19 N−Z

A
−17.5 − 19 N−Z

A

BS 13
CS 0.025

W
n,p

V (E) = AV (E−E
n,p
F

)2

(E−E
n,p
F

)2+B2
V

neutron and proton
AV −11.21 − 0.017A

neutron proton
BV 65 + 120 N−Z

A
65–120 N−Z

A

W
n,p

SO (E) = −1.25(E−E
n,p
F

)2

(E−E
n,p
F

)2+502

neutron and proton

The proton imaginary surface potential is still deeper for the
heaviest nuclei but the differences are much smaller among the
nuclei. However, there are big differences among nuclei for
the imaginary volume potential. The depths of the real volume
(VV + �VV ) and surface (VS = �VS) proton potentials are
represented in Fig. 8 (lower panel) between −50 and 200 MeV.
The differences among nuclei for the real surface potential are
small owing to the slight variations of the imaginary surface
potentials. The deviation on the real volume proton potential
around zero MeV is due to the dispersive volume contribution
and is deeper for heavy nuclei.
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FIG. 8. Depths of imaginary (upper panel) and real (lower panel)
proton potentials “M.R.07b” for 32S, 93Nb, and 209Bi.

The needed parameters to define the new surface and
volume imaginary potentials are listed in Table II.

V. PROTON REACTION AND DIFFERENTIAL CROSS
SECTIONS

The nonlocal, dispersive, and spherical neutron and proton
optical model “M.R.07a” is completely defined with the pa-
rameters of Table I whereas the potential “M.R.07b” is defined
with the parameters of Table II. The reaction cross section
(left panel) and selected elastic angular distributions (right
panel) for protons on 208Pb calculated with the OMP labeled
“M.R.07a” (red solid curves) are compared with experimental
data (black circles) in Fig. 3. However, the calculated reaction
cross section overestimates the data between 100 and 200 MeV.
That is the price paid to reproduce the differential elastic cross
sections at higher energies. Our proton OMP has also been
used to predict reaction cross sections σR , angular distributions
σ (θ )/σRuth., and analyzing powers Ay(θ ) for many nuclei, and
comparisons between experimental data and the calculations
are shown in Figs. 9, 10, and 11. An overall good description of
the reaction cross section is obtained. Some deviations occur
for the minima of the angular distributions and it should be
noted that there is poor agreement between predictions and
experimental data for 40Ca. The predicted analyzing powers
are in good agreement with experimental data below 100 MeV
whereas above this energy there is a poor description of Ay(θ ).

We did not show comparisons on diffusion data between
our past neutron potential “M.R.04” and our new neutron
potentials “M.R.07a” or “M.R.07b” because there are only
minor differences for neutron total and differential calculated
cross sections.

VI. SINGLE-PARTICLE ENERGIES

We next compare the neutron bound single-particle states
obtained from the neutron OMP defined in Table I with our
previous OMP [1]. As can be seen in Fig. 4, the new real spin-
orbit potential is very different than the potential published in
2004 for negative energy. The neutron single-particle and hole
states of 208Pb, 90Zr, and 40Ca predicted with these two OMPs
are compared with experimental values in Fig. 12. Results are
slightly better for the new potential for 40Ca, 208Pb, and 90Zr.

In Fig. 13, the proton single-particle and hole states of
208Pb, 90Zr, and 40Ca calculated with our proton OMP are
compared with experimental data. The results obtained with
our proton OMP, labeled “M.R.07a” in this figure, are in good
agreement with the experimental data for the three nuclei.
There is only a large discrepancy for the deepest state of 40Ca.
The results obtained with the Rost [8], the Wang et al. [9],
and the Tornow [10] potentials are also shown in Fig. 13 for
208Pb, 90Zr, and 40Ca, respectively. Rost built a shell-model
potential for lead, and Wang et al. and Tornow used a dispersive
OMP to calculate scattering data of protons on 90Zr and 40Ca,
respectively, and extended it to negative energy. The OMP of
Rost, Wang et al., and Tornow perform slightly better than our
OMP but those potentials are devoted to one nucleus whereas
our new potential predicts cross sections and single-particle
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FIG. 9. (Color online) Comparison of calculated pro-
ton reaction cross sections and experimental data for
nuclides in the Al–Pb mass region. The curve and the
data points for 27Al represent the true values; the others
are offset by factors of 1.5, 2, 2.5, 3, 3.5, 4, and 4.5. The
blue dotted lines represent the calculated reaction cross
sections with the “M.R.07a” OMP and the red solid lines
show the results obtained with the “M.R.07b” OMP.
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FIG. 10. (Color online) Comparison of calculated
proton scattering cross sections and experimental data for
nuclides in the Al–Pb mass region. The blue dotted lines
represent the calculated scattering cross sections with the
“M.R.07a” OMP and the red solid lines show the results
obtained with the “M.R.07b” OMP.
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FIG. 11. (Color online) Comparison of cal-
culated proton analyzing powers and experimen-
tal data for nuclides in the Al–Pb mass region.
The blue dotted lines represent the calculated
analyzing powers with the “M.R.07a” OMP and
the red solid lines show the results obtained with
the “M.R.07b” OMP.
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FIG. 12. Neutron single-particle en-
ergies in 208Pb, 90Zr, and 40Ca. For each
nucleus, the first column displays the val-
ues calculated from our previous neutron
OMP (“M.R.2004”), the column labeled
“Exp.” displays the experimental values,
and the third column shows the results
obtained with the neutron OMP defined
in Table I.

044601-9



B. MORILLON AND P. ROMAIN PHYSICAL REVIEW C 76, 044601 (2007)

3p 1/2

3p 3/2

2f 5/2

1i 13/2
2f 7/2

1h 9/2

3s 1/2

2d 3/2

1h 11/2

2d 5/2

Pb
208

Rost Exp. M.R.
2007

a        b

0

-5

-10

E
  (

M
eV

)

2d 5/2
1g 7/2

1g 9/2

2p 1/2

2p 3/2

1f 5/2

1f 7/2

2s 1/2

1d 3/2

Zr90

Wang Exp. M.R.
2007

a        b

et al.

0

-5

-10

-15

-20

-25

E
  (

M
eV

)

2p 3/2

1f 7/2

1d 3/2
2s 1/2

1d 5/2

1p 1/2

1p 3/2

1s 1/2

Ca40

Tornow Exp. M.R.
2007

a        b

et al.

0

-10

-20

-30

-40

-50

-60

E
  (

M
eV

)

FIG. 13. Proton single-particle ener-
gies. The first column shows the results
obtained with the Rost potential [8],
the Wang potential [9], and the Tornow
potential [10] in 208Pb, 90Zr, and 40Ca,
respectively. For each nucleus, the last
column displays the values calculated
from the OMP “M.R.07b,” the third col-
umn shows the results obtained with the
OMP “M.R.07a”, and the column labeled
“Exp.” shows the experimental values.

energies for neutrons and protons and for all spherical nuclei.
The predictions calculated with the “M.R.07b” OMP are also
shown in Fig. 13. Agreement with the experimental values is
not as good as with the “M.R.07a” potential for 208Pb and 90Zr.

From the proton solution U
p

nlj of the radial Schrödinger
equation, it is possible to calculate the charge densities
ρC in the spherical shell-model basis for a closed-shell
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FIG. 14. (Color online) Experimental charge-density distribu-
tions compared with those calculated with our proton OMP (the blue
triangles, solid and dotted lines; the black circles, solid and dotted
lines; and the red squares, solid and dotted lines, refer to 208Pb, 90Zr,
and 40Ca, respectively). The dotted lines represent the charge-density
distributions calculated with the “M.R.07a” OMP whereas the solid
lines show the results obtained with the “M.R.07b” OMP.

configuration:

ρC(r) =
∑

occupied
nlj

2j + 1

4π

∣∣∣∣∣
U

p

nlj (r)

r

∣∣∣∣∣
2

.

The experimental charge densities for 40Ca, 90Zr, and 208Pb
[15] are shown in Fig. 14 by red squares, black circles, and
blue triangles, respectively. In the same figure, we compare the
experimental data and the calculated charge densities obtained
with our OMP including dispersion relations and the local
energy approximation of Perey-Buck (red solid and dotted
lines for 40Ca, black solid and dotted lines for 90Zr, and blue
solid and dotted lines for 208Pb). The dotted lines represent
the charge-density distributions calculated with the “M.R.07a”
OMP and the solid lines show the results obtained with the
“M.R.07b” OMP. There is poor agreement between theory
and experiment for the three nuclei, although better results are
obtained with the “M.R.07b” potential. A large improvement is
obtained if we increase the radius of the nuclei, but in this case
we lose the nice agreement with the experimental scattering
data.

VII. CONCLUSIONS

In this work, we have built a global OMP for incident
neutrons and protons on spherical nuclei that contains disper-
sion relations and the local energy approximation of Perey
and Buck. This potential, which is very close to our previous
neutron potential recently published, provides a very good
description of the neutron total and differential elastic cross
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sections. For negative energies, this potential provides a
reasonably good description of bound single-particle states
for neutrons and protons. For the scattering of protons, the
situation is not as satisfactory as for neutrons, probably because
we tried to extend a neutron potential to protons. Nevertheless,
this analysis shows that it is possible to reproduce nucleon
cross sections and bound states for spherical nuclei with very
simple functional forms owing to the dispersion relations and
the local energy approximation. The main difference between

the neutron and proton nuclear potential rests in the surface
imaginary term for the “M.R.07a” OMP and in the volume
imaginary term for the “M.R.07b” OMP.

To obtain an agreement between experimental and calcu-
lated data for protons as good as for neutrons, it would be
necessary to seek the parameters of the global optical model
simultaneously for protons and neutrons. But would it be
possible to reproduce the experimental charge-density without
destroying the diffusion observables?
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