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Dineutron structure in 8He
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The ground and excited states of 8He were investigated with a method of antisymmetrized molecular dynamics
(AMD). We adopted effective nuclear interactions that systematically reproduce the binding energies of 4He,
6He, and 8He. The ground state of 8He has both the j -j coupling feature (p3/2 closure) and the L-S coupling
feature (4He + 2n + 2n) with a slight tail of dineutron at the long distance region. The theoretical results give an
indication of the 0+

2 state with a dineutron gaslike structure, where two dineutrons are moving in an S wave around
the α core with a dilute density. The dineutron structure (4He + 2n + 2n) of this state is similar to the 3α-cluster
structure of the 12C(0+

2 ) state, which has been interpreted as an α condensate state. Because the 8He(0+
2 ) state has

a significant overlap with the dineutron condensate wave function, we suggest that this theoretically predicted 0+
2

state is a candidate for the dineutron condensate state.
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I. INTRODUCTION

In the recent study of unstable nuclear physics, various
kinds of exotic structure have been discovered. Many of these
phenomena in the light nuclear region are often related to
cluster physics. For instance, the halo structure in 6He and
11Li and molecular structure in Be isotopes are regarded
as cluster phenomena discovered in neutron-rich nuclei.
Recently, Tohsaki et al. proposed a new type of cluster
structure in the second 0+ state 12C, where 3α clusters
are weakly interacting [1]. This is a dilute gas state of α

particles that behave as bosonic particles in dilute density. This
phenomena is associated with Bose-Einstein condensation
and is called “alpha condensation.” The alpha condensation
was originally suggested in dilute nuclear matter by Röpke
et al. [2]. The 0+

2 of 12C is regarded as an example where
the alpha condensation is realized in a finite nuclear system.
It is thus challenging to search for such cluster-gas states in
other nuclei. In analogy to the alpha condensation, dineutron
condensation in neutron matter is a recent key issue in the
physics of unstable nuclei. Matsuo suggested that the dineutron
correlation can be enhanced in dilute neutron matter [3]. In a
real system, one should focus on the dineutron correlation in
finite nuclei such as halo nuclei and extremely neutron rich
nuclei or that in the neutron skin of neutron-rich nuclei. In
fact, the dineutron correlation in two-neutron halo nuclei such
as 6He and 11Li attracts great interests these days. For 6He,
where the 4He is a good core, the dineutron correlation of
valence neutrons has been demonstrated in three-body model
calculations (see, e.g., Refs. [4–7] and references therein).

Now, let us consider the structure of 8He from a point
of view associated with the dineutron condensation. First,
more than one dineutron is required to construct a dineutron
condensate state. In 8He, two pairs of neutrons can be formed
around the 4He core. Second, the 8He system may have some
correspondence with the 12C system, because both systems
have the same neutron number, N = 6. In analogy to 12C, the
ground state of 8He may have a feature of the neutron p3/2

closure or the SU(3)-limit p-shell configuration. Instead of
the ground state, one can speculate a dineutron gas-like state
with developed 4He + 2n + 2n structure in excited states.

There are many theoretical works on He isotopes. Ap-
plication of ab initio calculations such as green function
monte carlo (GFMC) and no-core shell model (NCSM) with
realistic nuclear forces have reached the mass A ∼ 10 region,
including 6He and 8He [8–10]. Systematic studies of He
isotopes have been performed also by model calculations
with effective interactions such as cluster models as well as
GSM [11–13] and mean-field approaches [14]. Three-body
models with an assumption of the 4He core have often been
adopted to study 6He [4–7,15,16] and they have been applied to
heavier He isotopes [17]. 8He and 10He have been also studied
by 4He + Xn models [18–21] and extended models [22,23].
With Fermionic molecular dynamics, the study of He isotopes
has been performed based on a realistic nuclear force [24].
However, many of these studies concentrated on the ground
states, except for the three-body models, GSM, and GFMC.

After the first experimental indication of neutron skin
structure in 8He [25], many experimental works of 8He have
been performed to reveal the detailed properties of the ground
state. The core excitation 6He(2+) in the ground state, which
has been experimentally suggested [26], indicates that 8He
is different from a simple three-body state of 6He(0+) + 2n.
Recent experiments using 8He beams suggested a significant
component of the (p3/2)2(p1/2)2 configuration [27,28]. They
may support the dineutron correlation in the 8He ground state
rather than the pure (p3/2) closure of neutrons. However, a
measurement of the spectroscopic factor of 7He(3/2−) [29] in
8He suggested the pure subshell closed structure, contrasting
with other experimental results. Thus, the neutron structure of
the 8He ground state is controversial. For excited states, some
levels are known to exist in the energy Ex = 3–8 MeV region;
however, the experimental information is very poor for these
states except for the 2+

1 state [30].
In this paper, we investigated the structure of 8He. In

particular, we focused on 0+ states and discuss their dineutron
component, because one of our major aims is to search for
the dineutron gas-like state. We applied a method of antisym-
metrized molecular dynamics (AMD) [31–33], which has been
already proven to be useful in describing cluster structure in
light nuclei. AMD has been applied to various light unstable
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nuclei such as He, Li, and Be isotopes as well as stable nuclei.
It has been applied also for the study of cluster gas-like states
in 12C and 11C(11B) [34,35]. In the present work, we adopted
an AMD+generator coordinate method (GCM). Namely, we
superposed a number of AMD wave functions, which were
obtained by energy variation with constraints, to take various
configurations into account. We comment that the theoretical
method AMD+GCM of the present calculation is similar
to those of the AMD+GCM and AMD+SSS works on He
isotopes by Itagaki and his collaborators [20,23] in a sense that
multiconfigurations of AMD wave functions are superposed.
In Refs. [20,23], 4He + Xn and t + t + Xn configurations
were a priori assumed. Another claim is that they used an
effective interaction that makes a bound 2n. In the present
work, we make no assumption on the cluster core and chose
effective interactions by taking care of subsystem energies
such as α-n and 6He as well as nucleon-nucleon scattering.
We used some sets of interaction parameters and showed
the calculated results of the ground and excited states of He
isotopes. By assuming a (0s)2 configuration as the interior
structure of a dineutron, we analyzed the dineutron structure
of 8He and compared it with the α-cluster structure of 12C.

The paper is organized as follows. In the next section, we
briefly explain the theoretical method of the present work.
Results are given in Sec. III, and dineutron structure is
discussed in Sec. IV. Finally, we give a summary in Sec. V.

II. FORMULATION

In this section, we briefly explain the formulation of
AMD+GCM in the present calculation. The detailed for-
mulation of the AMD method for nuclear structure study
is described in Refs. [32,33]. There are various versions of
practical methods of the AMD framework. In the present
work, we performed a superposition of a number of AMD
wave functions obtained by energy variation with constraints
based on the concept of GCM. The procedure of the variation,
spin and parity projection, and superposition is similar to those
of AMD+GCM calculations in Refs. [20,36,37], though the
details of the model wave functions and effective interactions
are different from each other.

An AMD wave function is a Slater determinant of Gaussian
wave packets,

�AMD(Z) = 1√
A!

A{ϕ1, ϕ2, . . . , ϕA}, (1)

where the ith single-particle wave function is written by a
product of spatial (φ), intrinsic spin (χ ), and isospin (τ ) wave
functions as

ϕi = φXi
χiτi, (2)

φXi
(rj ) =

(
2ν

π

) 3
4

exp

[
−ν

(
rj − Xi√

ν

)2
]

, (3)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓, (4)

where φXi
and χi are spatial and spin functions, and τi is

the isospin function, which is fixed to be up (proton) or

down (neutron). The width parameter ν is chosen to be
the optimum value for each system. Accordingly, an AMD
wave function is expressed by a set of variational parameters,
Z ≡ {X1, X2, . . . , XA, ξ1, ξ2, . . . , ξA}.

The energy variation was performed for the parity-projected
AMD wave function �±

AMD(Z) under constraints. To obtain
basis wave functions, we adopted the total oscillator quanta
and deformation as the constraints. Hereafter, we note the
expectation value of an operator Ô with respect to a normalized
parity-projected AMD wave function as 〈Ô〉. Expectation
values 〈N̂ho〉 of the total oscillator quanta are given by the
creation and annihilation operators of the harmonic oscillator
in the same way as in Ref. [37]. In the AMD+GCM calcula-
tions with the β-constraint (e.g., Ref. [36]), the deformation
is usually constrained by using the rotational invariant value
D ≡ Tr(QQ)/Tr2(Q), where the matrix Q is calculated by
quadrupole operators as Qσρ = 〈∑i σ̂i ρ̂i〉 (σ̂ = x̂, ŷ, ẑ and
ρ̂ = x̂, ŷ, ẑ) [38]. Here D is approximately related to the
quadrupole deformation parameter β as D(β) = (5β2/2π +
1)/3. In the present work, we used the modified quadrupole
matrix Q′

σρ ≡ Qσρ − Aδσρ (where A is the mass number)
instead of the original Qσρ and imposed the constraint on
D′ ≡ Tr(Q′Q′)/Tr2(Q′). This is useful for He isotopes to
obtain basis wave functions with various configurations on
mesh points of the two-dimensional parameters, β and 〈N̂ho〉.
The energy variation with the constraint values Nconst and βconst

was performed with respect to the parity-projected AMD wave
function by minimizing the energy, defined as

E ≡ 〈Ĥ 〉 + V N (Nconst − 〈N̂ho〉)2 + V β[D(βconst) − D′]2.

(5)

Here the artificial potentials are introduced to satisfy the con-
dition of the constraints. With a given set of constraint values
(Nconst, βconst) the optimum wave function �±

AMD(Nconst, βconst)
was obtained. Finally, we superposed the spin-parity eigen-
states projected from the obtained wave functions,

|8He(J±
n )〉 =

∑
K,Nconst,βconst

cJ±
n (K,Nconst, βconst)

× |P J
MK�±

AMD(Nconst, βconst)〉, (6)

where the coefficients cJ±
n (K,Nconst, βconst) were determined

by diagonalizing the Hamiltonian and Norm matrices. In the
present calculations, we used all the K = 0 states. For the
K 	= 0 states, we applied energy truncation and took only
P J

MK�±
AMD(Nconst, βconst) with energy E � −10 MeV.

III. RESULTS

A. Calculations
6He, 8He, and 10He were calculated by the AMD+GCM

method. The strengths, V N and V β , for the constraint
potentials in Eq. (5) are chosen to be 30 and 2000 MeV,
respectively. We chose the width parameter ν to optimize the
energy for P J=0

(MK)=(00)�
+
AMD(Nconst = Nmin + 2), which gives

the minimum energy among the states P J=0
(MK)=(00)�

+
AMD(Nconst)

in most cases. Here, Nmin is the minimum value of the
harmonic-oscillator quanta; Nmin = 2, 4, and 6 for 6He, 8He,
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TABLE I. Parameter sets of the effective interaction and the values of the width parameter ν adopted in the present
work. The theoretical values of scattering length as(at ) for singlet (triplet) even channel, neutron separation energy
of 5He[Sn(5He) ≡ E(4He) − E(4He-n)], 2α threshold energy of 8Be, and two-neutron separation energies of 6He and
8He[S2n(6He) ≡ E(4He) − E(6He) and S2n(8He) ≡ E(6He) − E(8He)] are also listed.

Parameter set v58 v56 m62 m56
Central force Volkov No. 2 Volkov No. 2 MV1 case (3) MV1 case (3)

Wigner w 0.42 0.44 0.38 0.44
Bartlett b 0 0.15 0 0.15
Heisenberg h 0 0.15 0 0.15
Majorana m 0.58 0.56 0.62 0.56
ν(4He) (fm−2) 0.265 0.265 0.210 0.210
ν(6He) (fm−2) 0.245 0.245 0.210 0.210
ν(8He) (fm−2) 0.240 0.240 0.185 0.185
ν(10He) (fm−2) 0.185 0.175 0.165 0.165

Exp. v58 v56 m62 m56

at (fm) 5.42 (p-n) 9.7 5.4 6.4 4.2
as (fm) −16.5 (n-n) 9.7 −23.9 6.4 >100
Sn(5He) (MeV) −0.9 −0.7 −0.7 −1.0 −0.4
2E(4He)−E(4He-4He) (MeV) −0.1 0.6 1.4 −1.3 −0.6
S2n(6He) (MeV) 1.0 1.3 −0.2 2.1 1.1
S2n(8He) (MeV) 2.1 3.0 3.2 1.2 2.0

and 10He, respectively. A common ν value for each He isotope
is used in the calculation with each interaction. The adopted ν

values are listed in Table I. We adopted the constraint values
of the mesh points (i, j ) on the Nconst-βconst plane as N

(i)
const =

Nmin + �(i)(�(i) = 0, 1, 2, 3, 4, 6, 8, 10 for positive-parity
states and �(i) = 1,2, 3, 4, 6, 8, 10 for negative-parity states)
and β

(j )
const = 0, 0.2, 0.4, 0.6, . . . , 1.6. Then, the total number

of the basis wave functions is 72 for positive-parity states
and 63 for negative-parity states. On the Nconst-βcont plane,
we first obtained the wave function �±

AMD(Nconst, βconst) at
Nconst = Nmin + 2 and βconst = 0, 0.2, 0.4, 0.6, . . . , 1.6. Then
we searched for �±

AMD(Nconst + 1, βconst) [or �±
AMD(Nconst −

1, βconst)] starting from the �±
AMD(Nconst, βconst) by increasing

(or decreasing) Nconst one by one.
Some of the basis wave functions with these constraints

contain breaking of the 4He core. Such basis wave functions
with 4He-core breaking have high energies in general, and
therefore, they give only a small contribution to the low-lying
states of 6He, 8He, and 10He isotopes. This means that the 4He
cluster is a rather good core in 6He, 8He, and 10He isotopes,
whereas the motion of valence neutrons is relatively important.

B. Interactions

We used an effective nuclear interaction consisting of the
central force, the spin-orbit force, and the Coulomb force. For
the central force, we adopted the Volkov force [39] used in
the work on He isotopes with AMD+GCM (4He + Xn) [20],
and also the MV1 force [40] used in the AMD calculations
of 12C [34,42]. We used the spin-orbit force of the G3RS
force [41] as done in Refs. [20,42]. We fixed the strengths of
the spin-orbit term as uls = 2000 MeV, which is the same value
as in Ref. [20]. By taking care of energies of subsystems, we
tuned the interaction parameters, w, b, h, and m, for Wigner,

Bartlett, Heisenberg, and Majorana exchange terms in the the
central force (Volkov or MV1), respectively. 6He, 8He, and
10He were calculated with AMD+GCM by using four cases
of central force. The parametrization for the central force is
summarized in Table I. To demonstrate characteristics of the
effective interactions, we also show the relative energies of
subsystems and the nucleon-nucleon scattering lengths with
these four types of interaction. We estimate the energy of the
4He, 4He-n state with Jπ = 3/2−, and that of the 4He-4He
state with Jπ = 0+, by assuming the (0s)4 state of 4He and
performing cluster-GCM calculations within the α-n and α-α
cluster models for simplicity.

The first case of interaction is the Volkov No. 2 force [39]
with interaction parameters m = 0.58, b = h = 0. This is the
same effective interaction as that used in the AMD+GCM
(4He + Xn) by Itagaki and Aoyama [20], which succeeded
in systematically reproducing the binding energies of He
isotopes. We denote this interaction as v58 in this paper. In
spite of good agreement of the binding energies of He isotopes,
the v58 force has a fault that two neutrons are bound in free
space. It is well known that the Volkov force with b = h = 0
has a neutron-neutron attraction that is too strong, because
such a parametrization with no Bartlett term nor Heisenberg
term gives the same interaction in the singlet-even channel
as that in the triplet-even channel. In reality, the singlet-even
channel has weaker attraction, and two neutrons are unbound.
To describe the dineutron correlation in neutron-rich nuclei it
might be crucial to reproduce such a feature of a two-nucleon
system, though it does not matter for a spin-isospin saturated
system such as Z = N nuclei.

In the second case of interaction, we used the Volkov No. 2
force with modified interaction parameters as m = 0.56, b =
h = 0.15. This interaction (denoted v56) describes well the
experimental S-wave scattering lengths of the n-n and p-n
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channels and the unbound feature of two-neutron system. The
Majorana parameter m = 0.56 was determined by adjusting
the binding energy of 8He to the experimental data. However,
this interaction fails to reproduce 2n separation energies of
6He and 8He, and it also gives too strong an attraction in the
4He-4He system.

The third interaction (m62) and the fourth one (m56) listed
in Table I are based on the MV1 force [40]. The parametrization
of the m62 interaction is m = 0.62 and b = h = 0, which is the
same as used in the AMD calculations of 12C [34,42]. For the
m62 interaction, two neutrons are bound infree space as well
as the Volkov force with b = h = 0, like the v58 interaction.
In the m56 interaction, we used the modified Bartlett and
Heisenberg terms, b = h = 0.15, and the Majorana term m =
0.56, which was adjusted to reproduce the binding energy of
8He. With the m = 0.56 interaction, two neutrons are almost
unbound in free space, and the other subsystem energies are
reasonably reproduced.

C. Ground states of He isotopes

We show the calculated results of the ground states of He
isotopes. The energies of He isotopes are shown in Fig. 1.
The v58 and m56 interactions systematically reproduce the
energies of 4He, 6He, and 8He, though they overestimate the
10He energy. However, the v56 and m62 interactions are poor
in reproducing the 6He energy, and therefore, they fail to
reproduce two-neutron separation energies of 6He and 8He
as shown in Table I. Hereafter, we discuss the results obtained
with the v58 and m56 interactions. We stress again that the v58
interaction well describes the subsystem energies except for
the fault of the too strong neutron-neutron interaction, whereas
the m56 interaction reasonably reproduces the global features
of the subsystem energies.

The calculated root-mean-square radii of proton, neutron,
and matter density are given in Table II. The experimental
data and the theoretical results of other calculations are also
listed. Experimentally, extremely large radii of 6He and 8He
were reported by the reaction cross sections [25,43,44]. It
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FIG. 1. The calculated energies of He isotopes with the v58, v56,
m62, and m56 interactions (see text). The experimental data are also
given.

was suggested that the large radii originate in the remarkable
enhancement of neutron radii caused by the neutron halo
and neutron skin structures in 6He and 8He, respectively.
The empirical neutron radii are well described by the present
calculations with the m56 interaction. However, the neutron
radii calculated with the v58 interaction are slightly smaller
than the empirical ones as well as the former AMD+GCM
(4He + Xn) calculations with the same v58 interaction [20].
The proton radii calculated with the m56 interaction are
consistent with the observed data except for that of 4He.
Figure 2 shows the proton density and neutron density. In 6He,
the neutron density has a long tail at a large distance region.
This is the neutron halo structure and is similar to the neutron
density obtained by other calculations such as stochastic
variational method (SVM) [19]. In 8He, the neutron and
proton density shows the neutron skin structure at the surface,
which well corresponds to the discussion in Refs. [19,25].
Thus, the present calculations with the m56 interaction
systematically describe the ground-state properties of 6He and
8He such as energies and radii.

TABLE II. Root-mean-square radii (fm) of point-proton, point-neutron, and point-matter density of the ground states of He isotopes.
The experimental value (a) is deduced from the charge radius [46], and empirical values (b) are taken from Refs. [25,44]. Theoretical
values of other calculations, NCSM [10], stochastic variational methods (SVM) [19], AMD+GCM (4He + Xn) [20], and RMF [14], are
also given.

Exp. AMD-v58 AMD-m56 SVM [19] RMF [14] AMD (4He + Xn) [20] NCSM [10]

4He rp 1.455(1) 1.46 1.64 1.45
rn 1.46 1.64 1.45
rm 1.46 1.64 1.76

6He rp 1.912(18)(a) 1.83 1.90 1.80 1.89
rn 2.59–2.61(b) 2.40 2.49 2.67 2.67
rm 2.33–2.48(b) 2.23 2.31 2.46 2.43 2.32

8He rp 1.76–2.15(b) 1.76 1.96 1.71 1.88
rn 2.64–2.69(b) 2.37 2.63 2.53 2.8
rm 2.49–2.52(b) 2.24 2.48 2.40 2.55 2.31

10He rp 2.04 2.13
rn 2.88 2.97
rm 2.73 2.82 3.17
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FIG. 2. Point-proton and point-neutron density in the ground
states of He isotopes. The calculated results are those with the m56
and v58 interactions.

Let us discuss the effect of the spin-orbit force, which may
induce the j -j coupling feature of neutrons. The expectation
values of the spin-orbit force 〈Vls〉 and those of the squared
total intrinsic spin of neutrons 〈S2

n〉 are listed in Table III.
From the values of 〈S2

n〉, the S = 1 component in the 6He(0+
1 )

state is estimated to be 0.13 and 0.07 in the m56 and v58
results, respectively. This means that the (p3/2)2 configuration
is contained by the spin-orbit force. However, the S = 0
component is still significant because of the L-S coupling
feature of the spin-zero 2n correlation. We note that the
fraction 0.87 in the m56 results for the S = 0 component in
6He is in good agreement with three-body model calculations
[7,15,16,45]. Compared with the results of 6He, where the
L-S coupling configuration as well as the j -j coupling
configuration is significant, the j -j coupling feature increases
in the 8He(0+

1 ) state because of the (p3/2)4 closure. As a result,
the spin-orbit force gives a much larger attraction in 8He (by
a factor of 3–4) than in 6He. It is interesting that the value
〈S2

n〉 = 0.86 (0.72) of the 8He(0+
1 ) in the m56 (v58) results is

different from the value 〈S2
n〉 = 1.33 for the pure (p3/2)4 closed
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FIG. 3. Energy levels of 8He. The calculated results are those
with the m56 and v58 interactions. The experimental data are taken
from Refs. [47] and [30].

state. This deviation is because the L-S coupling configuration
is still present in 8He owing to the spin-zero 2n correlation of
neutron pairs. The detailed dineutron structure of 6He and 8He
will be discussed later.

D. Excited states of 8He

The calculated energy levels of 8He are illustrated in
Fig. 3, and the properties of the excited states are shown in
Table III. In both the m56 and v58 results, the 2+

1 state is
the lowest excited state and the 1−

1 , 2−
1 , 0+

2 , and 3−
1 states

are obtained above the 2+
1 state. In addition, in the present

calculations with the m56 interaction, the 1+
1 state is obtained

at almost the same energy region as the 1−
1 and 2−

1 states. The
present AMD framework is regarded as a kind of bound-state
approximation because of the restricted model space, and
therefore, coupling with continuum states is not taken into
account. In such a case, only resonance states remain in the
low-energy region; continuum states rise to a high excitation
energy region in principle. Actually, below the calculated 3−

1
state, there are no other states than those presented in Fig. 3.
However, to check the stability of these resonances against
neutron decays, their properties should be carefully examined.
In the present m56 results, the negative-parity states contain
a large component of 6He + n + n-like configurations with
the valence neutron far from the core. Because they have
extremely large neutron radii and show somehow escaping
behavior of neutrons, further investigation is required for these
negative-parity states. In particular, the 1−

1 and 2−
1 states can

couple with the (0s)2(0p)3(1s)1 neutron configuration, which
has a valence 1s1/2 neutron with no centrifugal barrier.

Compared with the experimental data, the theoretical value
of the 2+

1 excitation energy is in good agreement with the
experimental data in the m56 calculation, and it is slightly
higher than the experimental one in the v58 case. However,
it is important that the level structure for the excited states,
2+

1 , 1−
1 , 0+

2 , 2−
1 , and 3−

1 , is not sensitive to the adopted interac-
tion though the relative position to the ground energy depends
on the interaction. The 0+

2 state is theoretically suggested
to appear in the same energy region as the 1−

1 , 2−
1 , and 3−

1
states. What is striking is that the 0+

2 state has a remarkably
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TABLE III. Excitation energies, root-mean-square radii of point-proton, point-neutron, and point-matter density, the expectation values of
squared total intrinsic spin of neutrons 〈S2

n〉, and those of the spin-orbit force 〈Vls〉. The experimental data of the excitation energies are taken
from Ref. [47].

Exp. AMD-v58 AMD-m56

Nucleus J π
n Ex Ex rp rn rm 〈S2

n〉 〈Vls〉 Ex rp rn rm 〈S2
n〉 〈Vls〉

(MeV) (MeV) (fm) (fm) (fm) (MeV) (MeV) (fm) (fm) (fm) (MeV)

6He 2+
1 1.797 2.5 1.80 2.41 2.22 0.24 −2.9 1.4 1.88 2.52 2.32 0.47 −2.8

6He 0+
1 0 0.0 1.83 2.40 2.23 0.16 −2.6 0.0 1.90 2.49 2.31 0.26 −2.3

8He 3−
1 7.16a 11.2 1.86 2.83 2.62 0.72 −7.6 9.1 2.06 3.25 3.00 1.15 −5.6

8He 0+
2 10.3 1.97 2.94 2.73 0.67 −4.7 8.5 2.11 3.12 2.90 0.99 −1.0

8He 2−
1 10.4 1.81 2.82 2.60 1.69 −11.0 7.1 2.07 3.32 3.06 1.92 −6.2

8He 1−
1 4.36a 9.1 1.85 2.85 2.63 0.88 −9.1 6.9 2.06 3.31 3.05 1.07 −6.0

8He 1+
1 6.8 1.97 2.86 2.67 2.02 −2.8

8He 2+
1 3.6b 5.6 1.80 2.55 2.38 0.25 −4.1 3.9 1.99 2.78 2.61 0.34 −2.7

8He 0+
1 0 0.0 1.76 2.37 2.24 0.72 −11.4 0.0 1.96 2.63 2.48 0.86 −7.3

10He 0+
1 0 0.0 2.04 2.88 2.73 0.13 −2.6 0.0 2.13 2.97 2.82 0.11 −1.7

aThe spin and parity assignments for the 1− and 3− states have not been established yet.
bThe excitation energy of the 2+ is from Ref. [30].

large neutron radius compared with the ground state because
of developed 4He + 2n + 2n structure. In the obtained wave
function of the 0+

2 state, which is given by a superposition of the
basis AMD wave functions, the amplitude is found to be widely
distributed into the basis wave functions with various spatial
configurations of 4He + 2n + 2n. This indicates a gas-like
feature that the dineutrons are rather freely moving around the
4He core. Therefore, we consider that the 0+

2 state is a candidate
for the cluster gas-like state with two dineutrons around the α

core. The detailed discussion of the dineutron-like structure is
given later. In the experimental energy spectra, some excited
states were observed above the 2+

1 state. Spins and parities
of these states are not definitely assigned yet. In the present
calculations, the predicted 0+

2 state has a strong monopole
neutron transition from the ground states as the matrix element
Mn(0+

1 → 0+
2 ) = 13.5(13.9) fm2 in the m56(v58) results. This

neutron matrix element is much larger than the observed proton
matrix element Mp(0+

1 → 0+
2 ) = 5.4 fm2 of 12C by more than

a factor of 2. Therefore, we consider that the 8He(0+
2 ) might

be excited by inelastic scattering on the nuclear target.
The excited states of 8He have been theoretically predicted

by a few other calculations such as continuum shell model
(CSM) and GFMC. The CSM gives good agreement of the
2+

1 excitation energy with the experimental data [12]. We also
comment that the GFMC calculation with AV18/IL2, which is
an ab initio calculation with a realistic two-body force and an
empirical three-body force, gives a similar level structure of
the positive-parity states to the present m56 results. Namely,
the GFMC with AV18/IL2 gives the 2+ state at Ex = 4.72
MeV and the 1+

1 , 0+
2 , and 2+

2 states in the Ex > 5 MeV region.

IV. DINEUTRON STRUCTURE

A. What is a dineutron (2n) cluster?

There is no bound state in an isolated nn system. However,
it has been emphasized in many theoretical works that the
spatial neutron-neutron correlation plays an important role

in the binding mechanism of the Borromean systems with
a two-neutron halo such as 6He and 11Li (e.g., Refs. [4–6,48]
and references therein). The neutron-neutron correlation is
characterized by a spin-zero nn pair with a spatial correlation
in the S wave. In the correlation density of the two-neutron
halo nuclei, a peak in the probability appears at the region
with a small n-n distance [R(nn)] and a large n-core distance
in general. This corresponds to the dineutron correlation. In
an extended meaning, it is regarded as a “dineutron cluster,”
which can virtually exist in loosely bound neutron-rich nuclei.

As already mentioned, the characteristics of the dineutron
are its zero spin and the spatial correlation. In the corre-
lation density for 6He, 11Li, and 14Be given by three-body
calculations [5,7,49,50], the peak for the dineutron correlation
is seen typically around R(nn) ∼ 2 fm with a ridge in the
R(nn) = 2–3 fm region. It is important that this n-n distance
at the peak nearly depends on the system size among these
three systems, 6He, 11Li, and 14Be. From this most probable
n-n distance, the typical size of the spatial correlation of
the nn pair can be estimated to be about 2 fm. Then, to inves-
tigate the dineutron structure in 8He, we here approximately
describe the dineutron cluster, 2n, by a spin-zero neutron pair
written by the simple harmonic oscillator (0s)2 state with the
size parameter b. Then, the 2n-cluster wave function φ

2n(S),
which is localized at the position S, is expressed as

φ
2n(S) = A

{
φ0s

S (r1)χ↑φ0s
S (r2)χ↓

}
, (7)

φ0s
S (ri) = 1

(b2π )
3
4

exp

[
− 1

2b2
(ri − S)2

]
. (8)

In this definition, the relative motion between two neutrons in
the 2n cluster is given by a Gaussian,

φr (r1 − r2) = 1

(b2
r π )

3
4

exp

[
− 1

2b2
r

(r1 − r2)2

]
, (9)

with size br = √
2b, which should be the typical nn distance

br = 2–3 fm. With this approximation of the 2n cluster, the
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major component of the dineutron correlation might be taken
into account, though the tail part at large correlation length is
omitted. For simplicity, we chose the size parameter b for the
(0s)2 dineutron cluster as b = 1/

√
2ν, where ν is the width

parameter, ν(6He) and ν(8He) optimized for 6He and 8He,
respectively, in the AMD calculations. The values of ν, which
are listed in Table I, correspond to br = 2.0–2.3 fm and satisfy
the typical nn distance of the dineutron correlation.

B. Dineutron-cluster motion

To investigate features of the dineutron cluster structure
in the 0+ states, we extracted the 2n-cluster motion from the
obtained 8He(0+) wave functions. We assume a simple core
(4He + 2n)0+ , which is equivalent to the SU(3)-limit 6He(0+),
and form the 6HeSU(3)(0+)-2n cluster wave function with the
L = 0 relative motion between the core 6HeSU(3)(0+) and the
2n cluster. In the same way as in Refs. [34,51] for α-cluster
motion, we calculated the reduced width amplitudes ry(r) for
the 2n-cluster motion and the cluster probability Sfac by taking
the overlap of the 6HeSU(3)(0+)-2n cluster wave functions with
the 8He wave functions. In Fig. 4, we show the reduced width
amplitudes in the 8He(0+

1 ) and the 8He(0+
2 ) wave functions

obtained with the v58 and m56 interactions. These indicate
the 6HeSU(3)(0+)-2n relative motion. We also show the reduced
width amplitudes for the 8BeSU(3)(0+)-α relative motion in
12C(0+

1 ) and 12C(0+
2 ) given in Ref. [42]. Surprisingly, the 2n-

cluster motion in 8He is quite similar to the α-cluster motion
in 12C.

First we discuss the features of the dineutron clustering
in the 0+

2 state. The most striking thing is that the 8He(0+
2 )

state has a large amplitude of the dineutron cluster in the long
distance region around r = 4–6 fm, which corresponds well
to the peak position of the α-cluster motion in 12C(0+

2 ). The
enhancement of the 2n-cluster component at long distance
is more remarkable in the v58 results than the m56 results.
The cluster probability of 8He(0+

2 ), which is defined by
the integrated overlap with the 6HeSU(3)(0+)-2n cluster wave
functions, is Sfac = 0.50 and Sfac = 0.43 in the v58 and the
m56 results, respectively. The larger development of the 2n

clustering in the v58 results is considered to be because
of the stronger n-n interaction in the v58 than in the m56
interaction. It is very important that, even with the weaker
n-n interactions of the m56, the 2n-cluster structure remains a
significant component in 8He(0+

2 ). Considering that the other
2n cluster exists inside the 6HeSU(3)(0+) core, it is regarded
that 8He(0+

2 ) has a component of the developed 4He + 2n + 2n

clustering, where two dineutrons are moving in L = 0 orbits.
Furthermore, from the analogy of the 2n-cluster structure
in 8He(0+

2 ) with the α-cluster structure in 12C, 8He(0+
2 ) is

considered to contain a dineutron gas-like structure.
Next, we discuss the dineutron structure in the ground state

of 8He. In 8He(0+
1 ), the reduced width amplitude has a peak

at the distance of less than 3 fm. This means that the spatial
development of the 2n cluster is not so remarkable as that of
8He(0+

2 ). After discussing the dineutron structure in 6He(0+
1 ),

we shall compare it with that of 8He(0+
1 ). In Fig. 4, we show

the reduced width amplitudes of the 4He-2n cluster motion
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FIG. 4. Reduced width amplitudes ryl=0(r) for 6HeSU(3)(0+)-2n

in the 8He(0+), and those for 4He-2n in the 6He(0+). The 8He(0+) and
6He(0+) wave functions are calculated by AMD+GCM with (a) the
v58 and (b) the m56 interactions. The 6HeSU(3)(0+) is written by an
SU(3)-limit 4He-2n cluster state. The 4He cluster and the 2n cluster
are expressed by the (0s)4 and (0s)2 wave functions, respectively,
where the size parameter for the (0s) state is chosen to be the
same value as the AMD+GCM wave functions; b = 1/

√
2ν(6He)

in the calculation of ry(r) for 6He(0+) and b = 1/
√

2ν(8He) in the
calculation of ry(r) for 8He(0+). The reduced width amplitudes for
4He-2n in the 6HeSU(3)(0+) are also shown. (c) The reduced width
amplitudes for 8BeSU(3)(0+)-α in the 12C(0+) taken from Ref. [34].

in 6He(0+
1 ) obtained by the present calculations and that in

6HeSU(3)(0+) given by the SU(3)-limit 4He-2n state. Compared
with the SU(3)-limit, the calculated 6He(0+

1 ) wave function has
a long tail of dineutron structure at the surface. The 2n-cluster
probability in the 6He(0+

1 ) state is Sfac = 0.91 and 0.84 in the
v58 and the m56 calculations, respectively. This is consistent
with the fractions, 0.92 and 0.87, of the S = 0 component,
which are estimated from 〈S2

n〉. The 2n-cluster probability is
reduced by the S = 1 component because of the mixing of
the (p3/2)2 state. The dineutron wave function in the inner
region is similar to that of the SU(3)-limit 4He-2n state. In this
region, we have better to call it the spin-zero 2n correlation
(dineutron correlation) rather than the 2n cluster, because the
antisymmetrization effect is important in the small distance
region.
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Comparing the result of 8He(0+
1 ) with that of 6He(0+

1 ),
we found that the reduced width amplitude for the dineutron
component is suppressed in 8He(0+

1 ). This is because of the
p3/2 subshell closure effect. As mentioned in the previous
section, the j -j coupling feature is more remarkable in
8He(0+

1 ) than in 6He(0+
1 ). However, the cluster probability of

8He(0+
1 ) is still significant as Sfac = 0.57 and 0.52 in the v58

and the m56 results, respectively. This probability dominantly
originates in the SU(3)-limit 4He + 2n + 2n configuration,
which is equivalent to the L-S coupling p-shell configuration,
and indicates that the dineutron correlation is still important
in 8He(0+

1 ). This situation is quite similar to that of 12C(0+
1 ),

which is an admixture of the p3/2 closure and the SU(3)-limit
3α state. As a result of the L-S coupling feature from the
dineutron correlation, the 8He(0+

1 ) state should contain sig-
nificant (p3/2)2(p1/2)2 contamination. This result is consistent
with the experimental indication of the p1/2 component in
the 8He ground state reported in recent observations [27,28].
As seen in Fig. 4, it is also interesting that the 8He(0+

1 ) state
has a tail of the 2n-cluster motion at the surface, though the
tail is slight compared with the long tail in the 6He(0+

1 ) state.
In conclusion, the 8He(0+

1 ) state is an admixture of the p3/2

closure and the L-S coupling p-shell configuration of neutrons
with a small tail of dineutron clustering.

C. 2n condensate wave function

In the previous section, we discussed the 2n-cluster wave
function by assuming the core (4He + 2n)0+ , which is equiv-
alent to the SU(3)-limit 6He(0+). In this description, one of
the 2n clusters is confined in the the core (4He + 2n)0+ , and its
relative wave function to the 4He is given by the 1s orbit of
the harmonic oscillator potential with the oscillator frequency
ω = 8ν/3.

As shown in Fig. 4, in this SU(3) limit, the radial wave
function of the 2n cluster around 4He remains in the inner
region. In such a case, although the 2n cluster is moving in the S

wave, it receives considerable antisymmetrization effect from
the 4He core and this does not necessarily indicate a gas-like
state. To see more directly the 2n-cluster gas-like nature, where
two 2ns are moving in the S wave far from the the 4He core, we
assumed the 2n condensate wave function in the 4He + 2n + 2n

system and calculated the overlap with the obtained 8He(0+)
wave functions.

We define the 2n condensate wave function by naturally
extending the α condensate wave function proposed by
Tohsaki et al. [1] as follows:

�cond(B) ≡ n0

∫ k∏
i=1

{
d3Si exp

(
− (Si − SC)2

B2

)}

×�Brink(SC, S1, S2, . . . , Sk), (10)

where n0 is the normalization factor and
�Brink(SC, S1, S2, . . . , Sk) is the Brink wave function
for the C + k(2n)-cluster system consisting of a core (C) and
k dineutrons (2n) as

�Brink(SC, S1, S2, . . . , Sk),

≡ A{φC(SC)φ
2n(S1)φ

2n(S2) · · ·φ2n(Sk)}. (11)
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FIG. 5. The squared overlap between the dineutron condensate
wave function �cond(B) and the obtained 8He(0+) wave functions.
See details in the text.

Here, the wave function of the ith 2n, φ
2n(Si), is given by

the (0s)2 state localized around Si . SC is the mean position
of the center-of-mass motion of the core and is chosen to
be SC = − 2

A
(S1 + S2 + · · · + Sk). In the heavy limit of the

core mass A, this wave function is equivalent to the dineutron
condensate wave function proposed by Horiuchi [52]. In the
present calculation for 4He + 2n + 2n, the core C is 4He, and
the number of 2n clusters is k = 2. We assumed the (0s)4 state
of the core wave function, φ

4He, and adopted the common
size parameter b = 1/

√
2ν(8He) for the 4He and 2n clusters.

In practical calculations, the six-dimensional integrals for the
coordinates, S1 and S2, are performed by taking mesh points
on (θ12, |S1|, |S2|) and the total-angular-momentum projection
(where θ12 is the angle between S1 and S2).

In Fig. 5, we show the squared overlap, |〈8He|�cond(B)〉|2,
between the 2n condensate wave function and the 8He wave
functions obtained by AMD+GCM. The calculated values
are plotted as a function B, which indicates the size of the
spatial distribution of the 2n clusters in the condensate wave
function. The 8He(0+

1 ) state has about 0.5 overlap at B <

2 fm. The condensate wave function �cond(B) with such a
small B is almost equivalent to the SU(3)-limit 4He + 2n + 2n

state. In contrast, the 8He(0+
2 ) state has a maximum overlap,

of about 0.5, at remarkably large size B = 4–5 fm. This is a
strong indication of the dineutron gas-like component in the
calculated 8He(0+

2 ). The dineutron gas-like feature is further
enhanced in the v58 interaction than in the m56 interaction.
These results are consistent with the discussion of the 2n-
cluster wave function in the previous section.

V. SUMMARY

We studied the structure of 8He with the AMD+GCM
method. We chose the effective nuclear interactions by taking
care of energies of subsystems and reproduced the ground-state
properties of 4He, 6He, and 8He. In the ground state of
8He, the p3/2 subshell closure is a dominant component.
However, the L-S coupling feature is also significant because
of the spin-zero dineutron correlation. This is consistent
with the experimental report on the significant mixing of
the (p3/2)2(p1/2)2 component in 8He(0+

1 ). It is concluded
that the 8He(0+

1 ) state is an admixture of p3/2 subshell
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closure and L-S coupling p-shell configurations with a slight
dineutron tail at the surface. This result is also consistent
with the experimentally suggested large spectroscopic factor
of 6He(2+) in 8He(0+

1 ).
The present results suggest that the 0+

2 state may appear
near the negative-parity states above the 2+

1 state. By analyzing
dineutron structure, it was found that this state has a significant
component of the developed 4He + 2n + 2n structure where
two dineutrons are moving around the 4He core in the S

wave with a dilute density. The 2n-cluster wave function of
the 8He(0+

2 ) state is similar to the α-cluster wave function of
the 12C(0+

2 ) state. Therefore, we consider that the predicted
8He(0+

2 ) state is a candidate for a dineutron gas-like state,
which is analogous to the α condensate state suggested in
12C(0+

2 ). In the experimental energy spectra of 8He, some ex-
cited states were observed above the 2+

1 state. Spins and parities
of these states have not been definitely assigned yet. Since the
present calculations predicted the remarkable neutron matrix
element for the monopole transitions 8He(0+

1 ) →8He(0+
2 ), we

expect that the 8He(0+
2 ) state might be excited in inelastic

scattering on nuclear targets.
The AMD framework is regarded as a kind of bound-state

approximation, so coupling with continuum states is not taken
into account. Moreover, because of the restricted model space,
particle-hole excitations may be only partially included but are
not fully treated. In future, widths of the excited states should
be carefully investigated with further large basis calculations
by taking into account the continuum coupling to confirm the
stability of the resonances against particle decays.

In the present work, the calculations were performed within
the AMD model space by using effective interactions. We
chose the interaction parameters by taking care of subsystem
energies such as those of α-n and 6He, as well as the scattering

lengths of nucleon-nucleon systems. Although it is difficult
to completely reproduce all of the subsystem energies with a
unique effective interaction, we found interaction parameter
sets that can reasonably reproduce the global feature of the
subsystem energies. We here stress that the level structure of
the excited states is not sensitive to the adopted nuclear forces
within the reasonable choice of effective interaction, though
the excitation energy relative to the ground state depends on the
interaction. It is also important that the dineutron structure of
the 8He(0+) states is qualitatively similar among the four sets
of interaction adopted in the present calculations. For further
investigations of He isotopes, more extended calculations
based on realistic forces should be important as well as ab
initio calculations.
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