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Clustering and triaxial deformations of 40Ca
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We have studied the positive-parity states of 40Ca using antisymmetrized molecular dynamics (AMD) and the
generator coordinate method (GCM). Imposing two different kinds of constraints on the variational calculation,
we have found various kinds of 40Ca structures such as a deformed-shell structure, as well as α-36Ar and 12C-28Si
cluster structures. After the GCM calculation, we obtained a normal-deformed band and a superdeformed band
together with their side bands associated with triaxial deformation. The calculated B(E2) values agreed well with
empirical data. It was also found that the normal-deformed and superdeformed bands have non-negligible α-36Ar
cluster and 12C-28Si cluster components, respectively. This leads to the presence of an α-36Ar higher nodal band
occurring above the normal-deformed band.
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I. INTRODUCTION

Nuclear dynamics possess various aspects depending on
mass regions, excitation energies, and so on. In light-weight
nuclei, it is known that clustering plays a significant role in
the features of ground and excited states [1,2]. In contrast,
in heavier nuclei, the clustering effects are not clear, though
many theoretical [3,4] and experimental [5] studies have been
conducted. In the fp-shell region, the focus should be on
proton-rich N ∼ Z nuclei, because such nuclei can have
a clustered structure comprising stable nucleus. Moreover,
proton-rich nuclei have a large radius and stronger Coulomb
repulsion and may also derive a cluster structure. In the scope
of this research, the features of cluster structures in 40Ca are a
key issue, because they are the heaviest N = Z stable nuclei,
and many experimental data exist for this nuclei. In this paper,
we have studied the structure of 40Ca as a starting point
to understand the structures of medium- and heavy-weight
N ∼ Z nuclei. 40Ca has a typical double closed-shell structure
nucleus and has a spherical ground state. However, it is known
that many kinds of deformed band appear in low-energy
regions. The first Kπ = 0+ band built on the Jπ = 0+

2 state
(3.35 MeV) is considered to be a normal-deformed (ND) state
and the dominant configuration is 4p-4h [6]. The Kπ = 2+
band built on Jπ = 2+

2 (5.25 MeV) exists just above the
Kπ = 0+ band. It has been suggested that the ND band
deforms triaxially and has the Kπ = 2+ side band owing to
triaxiality [7,8].

The α-36Ar cluster structure has been studied for a long
time, because 40Ca is an analog of 16O, which has an α-12C
cluster structure in the first Kπ = 0+ band, as a double closed-
shell nuclei. Calculations with the local potential model [9–11]
and α-36Ar orthogonal condition model (OCM) [12,13] have
been performed theoretically. Ohkubo et al. suggested that the
first Kπ = 0+ band (ND) has an α-36Ar structure and predicted
that its parity-doublet Kπ = 0− band and α-36Ar higher nodal
band exist in highly excited states [10]. Sakuda and Ohkubo
obtained the Kπ = 2+ band as well as the Kπ = 0+ and 0−

states using the α-36Ar OCM and succeeded in reproducing E2
transition strengths [13]. Experimentally, the α-36Ar structure
is studied through the 36Ar(6Li,d)40Ca reaction [14,15]. The
states in these Kπ = 0+ and 0− bands are populated by the
α-transfer reactions and have large α spectroscopic factors
[14]. In the experiments we describe, the α-36Ar higher nodal
states were also observed [15].

It has been suggested that the states in the Kπ = 0+
rotational band built on the Jπ = 0+

3 state (5.21 MeV) have
an 8p-8h configuration [7], and they have been observed
during experimental work searching for the 8p-8h states
with 32S(12C, α)40Ca reactions [16]. Because of the strong
population in the multinucleon transfer data and the strong
E2 transitions [17], the 0+ (5.21 MeV), 2+ (5.63 MeV),
and 4+ (6.54 MeV) states have been thought to belong
to the superdeformed (SD) band with the dominant 8p-8h

configuration. Recently, by using GAMMASPHERE array
detectors, the level structure of the deformed bands in 40Ca
has been explored and many excited states up to high spin
have been discovered. This band was thus confirmed as the SD
band [18].

Motivated by these the experimental observations, many
theoretical microscopic studies on deformed states of 40Ca
have been performed recently with the methods of Skyrme-
Hartree-Fock (SHF) [19], SHF-BCS + GCM [20], spherical-
basis antisymmetrized molecular dynamics (AMD) [21], and
the shell model [22]. Inakura et al. performed cranked SHF
calculations without assuming axial symmetry, though energy
levels were not calculated [19]. Bender et al. performed
SHF-BCS + GCM calculations [20]. Although they calculated
energy levels and quadrupole transition strengths in the ND
and SD bands, they could not study triaxiality nor side bands
because they assumed axial symmetry. In these studies, the
relationship between deformed states and cluster structure was
not discussed. It has been suggested that the SD state forms
a 12C-28Si-like cluster structure in spherical-basis AMD [21].
Within the spherical-basis AMD, neither ND nor SD states
exhibit triaxiality.
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The purpose of the present study is to understand the
clustering and triaxial deformations in the low-energy states
of 40Ca in a unified manner. We use the framework of AMD +
GCM. The basis functions of the generator coordinate method
(GCM) are obtained by energy variation after parity projection
with constraints. We adopted two kinds of constraints. One is
a constraint on the quadrupole deformation parameter β (β
constraint) and the other is on the distance d between clusters’
centers of mass (d constraint). It has already been proven
that the d constraint is useful for obtaining various kinds of
clustering wave function, which are not computed within a
simple β constraint [23]. For example, the 8Be(2α)-12C cluster
structure in 20Ne is calculated with a d constraint but not
with the β constraint. Also, in the case of 40Ca, many kinds
of cluster structure, for example, α-36Ar, 8Be(2α)-32S, and
12C-28Si, can be calculated with the d constraint, although
no cluster structure is obtained in 40Ca with the β constraint.
We superposed mean-field-type and cluster-type wave func-
tions calculated with β and d constraints, respectively, and
calculated energies and E2 transition strength. We analyzed
the superposed wave functions to investigate clustering and
triaxial deformations.

This paper is organized as follows. In the next section
(Sec. II), we explain the framework of this study. The
calculated results and discussions are presented in Sec. III,
and lastly, we present a summary in Sec. IV.

II. FRAMEWORK

A. Wave function and Hamiltonian

We used the theoretical framework of AMD + GCM. In the
present study, the AMD wave function is a Slater determinant
of triaxially deformed Gaussian wave packets (deformed-basis
AMD),

|�int〉 = Â|ϕ1, ϕ2, . . . , ϕA〉, (1a)

|ϕi〉 = |φi, χi, τi〉, (1b)

〈r|φi〉 =
∏

σ=x,y,z

(
2νσ

π

) 1
4

exp

[
−νσ

(
rσ − Ziσ√

νσ

)2
]

, (1c)

|χi〉 = αi | ↑〉 + βi | ↓〉, (1d)

|τi〉 = |p〉 or |n〉. (1e)

Here, the complex parameters Zi , which represent the cen-
troids of the Gaussian in phase space, take independent values
for each single-particle wave function. The width parameters
νx, νy , and νz are real parameters and take independent values
for each of the x, y, and z directions, but are common for
all nucleons. The spin part |χi〉 is parametrized by αi and
βi and the isospin part |τi〉 is fixed as |p〉 (proton) or |n〉
(neutron). The quantities (Zi , αi, βi, νx, νy, νz) are variational
parameters and are optimized by energy variation as explained
in the next section.

The trial wave function in the energy variation with
constraints is a parity-projected wave function,

|�π 〉 = 1 + πP̂r

2
|�int〉, (2)

where π is parity and P̂r is the parity operator. In this study,
we will discuss positive-parity states.

The Hamiltonian is

Ĥ = K̂ + V̂N + V̂C − K̂G, (3)

where K̂ and K̂G are the kinetic energy and the energy of the
center-of-mass motion, respectively, and V̂N is the effective
nucleon-nucleon interaction. We have used the Gogny D1S
force (D1S) and the Skyrme SLy7 force (SLy7) in the present
work. The Coulomb force V̂C is approximated by a sum of
seven Gaussians.

B. Energy variation, angular momentum projection, and
the generator coordinate method

We performed energy variation and optimized the vari-
ational parameters included in the trial wave function
[Eqs. (1)] to find the state that minimizes the energy of the
system,

Eπ = 〈�π |Ĥ |�π 〉
〈�π |�π 〉 + Vcnst. (4)

Here, we add the constraint potential Vcnst to the expectation
value of Hamiltonian Ĥ to obtain local minimum energy
states under the optional constraint condition. In this study,
we employed two types of constraint, which are on the
quadrupole deformation parameter β (β constraint) and the
distance between clusters’ centers of mass d (d constraint) by
employing the potential

Vcnst =
{

v
β
cnst(β − β̃)2 for β constraint,

vd
cnst(dCm-Cn

− d̃Cm-Cn
)2 for d constraint.

. (5)

Here β is the matter quadrupole deformation parameter, which
is defined in Ref. [24], and dCm-Cn

is the distance between the
clusters’ centers of mass Cm and Cn, that is,

dCm-Cn
= |Rm − Rn|, (6)

Rnσ = 1

An

∑
i∈Cn

ReZiσ√
νσ

, (7)

where An is the mass number of cluster Cn and the expression
i ∈ Cn means that the ith nucleon is contained in cluster Cn.
It should be noted that the σ (= x, y, z) component of the
spatial center of the single-particle wave function |ϕi〉 is ReZiσ√

νσ
.

When sufficiently large values are chosen for v
β
cnst and vd

cnst,
the resultant values β and dCm-Cn

of energy variation become
β̃ and d̃Cm-Cn

, respectively. We constrained the dα-36Ar and
d12C-28Si values for the d constraint. In each calculation of
energy variation, we constrained one of β, dα-36Ar, and d12C-28Si.
A detailed explanation regarding the d constraint may be found
in Ref. [23].

The energy variation with the AMD wave function is
carried out using the frictional cooling method [25]. The time
evolution equation for the complex parameters Zi , αi , and βi

is

dXi

dt
= −µX

∂Eπ

∂X∗
i

, (i = 1, 2, . . . , A), (8)
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where Xi is Zi , αi , or βi , and that for the real parameters νx, νy,

and νz is

dνσ

dt
= −µν

∂Eπ

∂νσ

(σ = x, y, z). (9)

The quantities µX and µν are arbitrary positive real numbers.
The energy of the system decreases as time progresses, and
after a sufficient number of time steps, we obtain a local
minimum energy state.

After the constrained energy variation for |�π 〉, we super-
posed the optimized wave functions employing the quadrupole
deformation parameter β and the distances between the centers
of mass among clusters dCm-Cn for Cm-Cn configurations as the
generator coordinate,

∣∣�Jπ
M

〉 =
∑
K

P̂ Jπ

MK


∑

i

f
β

iK

∣∣�β

i

〉 + ∑
i,Cm-Cn

f
dCm -Cn

iK

∣∣�dCm-Cn

i

〉 ,

(10)

where P̂ J π

MK is the parity and total angular momentum

projection (AMP) operator, and |�β

i 〉 and |�dCm-Cn

i 〉 are
optimized wave functions with β and dCm-Cn

constraints for the
constrained values β̃(i) and d̃

(i)
Cm-Cn

, respectively. The integrals
over the three Euler angles in total AMP operator P̂ J

MK

are evaluated by numerical integration. The mesh widths in
numerical integration are 2π/17, π/65, and 2π/17 for α,

β, and γ , respectively. Here the body-fixed x, y, and z axes
are chosen as 〈x2〉 � 〈y2〉 � 〈z2〉 for γ < 30◦ wave functions
and 〈x2〉 � 〈y2〉 � 〈z2〉 for γ > 30◦ ones, respectively. The
coefficients f

β

iK and f
dCm-Cn

iK are determined by the Hill-
Wheeler equation,

δ
(〈
�Jπ

M

∣∣Ĥ ∣∣�Jπ

M

〉 − ε
〈
�Jπ

M

∣∣�Jπ

M

〉) = 0. (11)

C. Squared overlap

We defined squared overlap SO to estimate the overlap of
a specific model space in the superposed wave function. Sup-
pose the nonorthonormalized wave functions |�X

i 〉 span the

functional space {X}, for example, {X} = {|�β

i 〉}, {|�dα-36Ar
i 〉},

or {|�d12C-28Si
i 〉}. Orthonormalized wave functions |�̃X

α 〉 are
obtained by performing unitary transformations from |�X

i 〉,
∣∣�̃X

α

〉 = uαi

∣∣�X
i

〉
, (12a)〈

�̃X
α

∣∣�̃X
β

〉 = δαβ. (12b)

Using the |�̃X
α 〉, we define the squared overlap between |�〉

and the functional space {X} as

SO =
∑

α

∣∣〈�̃X
α

∣∣�〉∣∣2
. (13)
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FIG. 1. (a) The energy curves for the positive-parity states
obtained using β, dα-36Ar, and d12C-28Si constraints. The energies are
plotted as functions of quadrupole deformation β. The solid (dotted)
line shows the results for D1S (SLy7). (b) Projection of the energy
curves onto the β-γ plane. The solid (dotted) line shows the results
for D1S (SLy7).

III. RESULTS AND DISCUSSIONS

A. Various structures obtained with β and d constraints

We performed the energy variation after the projection
to the positive-parity state imposing two different kinds of
constraints, β and d constraints.

Figure 1(a) shows the obtained energy curves as a function
of matter quadrupole deformation β. By applying the β

constraint we obtained energy curves for D1S (solid line) and
SLy7 (dotted line). The two forces give quite similar curves that
have three local minima or shoulders at β ∼ 0, 0.4, and 0.6. As
shown in Table I, they also give approximately the same kinetic
and potential energies around each minimum. Therefore, we
mainly discuss the D1S result and make some comments
on the differences between D1S and SLy7 in the following.
The lowest minimum at β = 0 corresponds to the spherical
ground state and the two minima at β ∼ 0.4 and 0.6 corre-
spond to the ND and SD states, respectively. The excitation
energies of the ND and SD minima are approximately 14 and
18 MeV, respectively. This result qualitatively agrees with the
constrained SHF calculation using SLy4 [19]. However, the
energy curve in the constrained SHF-BCS calculation with
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TABLE I. Expectation values of kinetic and potential energies
around the ground state and ND and SD minima. K,VNN, VLS , and
VC denote kinetic energy, central, spin-orbit, and Coulomb potentials,
respectively.

Interaction β Total K VNN VLS VC

D1S 0.00 −340.9 634.2 −1046.2 −0.1 71.2
SLy7 0.00 −340.7 637.9 −1050.0 0.0 71.5
D1S 0.39 −326.7 654.6 −1033.7 −18.4 70.9
SLy7 0.39 −326.8 653.7 −1031.9 −19.4 70.8
D1S 0.62 −322.2 670.9 −1029.9 −33.6 70.4
SLy7 0.61 −322.3 676.2 −1035.9 −33.3 70.7

SLy6 [20] reveals different behavior. It has neither a ND
minimum nor a shoulder, but it does have a SD minimum.
The excitation energy of the SD minimum is much smaller
than ours and that of Ref. [19]. This difference may be due to
the strong pairing correlation reported in Ref. [20].

In the present calculation, we do not make any assumptions
regarding the spatial symmetry of the wave function nor put
any constraints on the quadrupole deformation γ . Therefore γ

has the optimal value for each given value of β.
Figure 1(b) shows the projection of the energy curve onto

the β-γ plane. It shows that in most regions the system is
triaxially deformed and the degree of the triaxial deformation
greatly changes as a function of β. Starting from the spherical
ground state, the system rapidly changes to oblate deformation
around β = 0.15–0.25 via a small prolate deformation. Then,
it changes to triaxial deformation around β = 0.35 where the
ND minimum appears and the system has the largest triaxiality.
With a further increase of β, γ decreases gradually from γ =
30◦ at β = 0.35 to γ = 15◦ at β = 0.70. The SD minimum
that appears at β = 0.60 also has a large triaxial deformation
γ = 15◦. The deformation of the β − γ curve for SLy7 shows
similar behavior except in the region of β = 0.15–0.30. In the
β ∼ 0.30 region, the deformation obtained for SLy7 is triaxial,
which is different from the oblate deformation with D1S. The
wave functions in this region did not affect the ND and SD
bands, nor their side bands as shown later.

Figure 2 shows the density distribution of the ND and SD
minima and confirms their large triaxial deformation. It also
reveals the deformed mean-field nature of the ND minimum
and implies the existence of a relationship between the SD
minimum and the cluster structure. At the limit when all Zi →
0 (all centroids of single-particle wave packets go to the origin
of the coordinate frame), the AMD wave function is identical
to an eigenstate of the deformed harmonic oscillator whose
oscillation number is given by the relation ωσ = 2h̄νσ /M .
In contrast, when the system has a cluster-like structure,
the Zi are separated into several groups to describe cluster
subunits. In the case of the ND minimum, the centroids of
the single-particle wave packets are located around the origin
and the wave packets are strongly deformed, (νx, νy, νz) =
(0.16, 0.14, 0.11), suggesting that the nature of the mean
field is deformed. In the case of the SD minimum, the wave
packets are further deformed, (νx, νy, νz) = (0.17, 0.15, 0.10),
and reveal the aspect of a triaxially deformed mean field. In the
case of the SD minimum, the centroids of the single-particle

ND: zy-plane ND: zx-plane ND: xy-plane

2 fm 2 fm 2 fm

SD: zy-plane SD: zx-plane SD: xy-plane

2 fm 2 fm 2 fm

FIG. 2. Density distributions of the ND and SD minima ob-
tained using the β constraint. The crosses in the figure show the
centroids of the wave packets. The deformation parameters are
(β, γ ) = (0.39, 25.2◦) and (0.62, 14.5◦) for the ND and SD minima,
respectively.

wave packets appear separated into two (28 + 12) or three
[(12 + 16) + 12] groups and the density distribution reveals
an octupole deformation, implying that the SD minimum also
has an asymmetric cluster-like nature. It will be shown using
the d constraint that this has a significant overlap with the
12C-28Si cluster structure.

There are few studies on the triaxial deformation of 40Ca,
but some theoretical work has suggested the triaxiality of the
ND [7,8] and SD [19] states. The present calculation with the
β constraint has shown that most of the states on the energy
curve have a triaxial deformation. We therefore consider it
indispensable to study the issue without the assumption of
spatial symmetry to understand the excited states of 40Ca.

With the β constraint, we do not find spatially developed
clustering at the ND and SD minima, although the density
distribution of the SD state implies its relationship to cluster-
ing. We have therefore applied the d constraint. We discuss
the results obtained with dα-36Ar and d12C-28Si constraints.
Other combinations of clusters such as 2α-32Si have also
been applied, but they have appeared at comparatively high
excitation energy levels and were not involved with the ND
and SD states even after the GCM calculation.

By applying the dα-36Ar constraint, we have obtained an
excited energy curve above the energy curve obtained with
the β constraint (Fig. 1). Two different kinds of structure
appeared on the energy curve. In both cases, the system has
well-developed α-36Ar cluster structures, as may be clearly
seen in their density distributions [Figs. 3(a) and 3(b)]. The
difference between them is the orientation of the axis of
symmetry in the oblately deformed 36Ar cluster. The first
is denoted as type (a). In this type, the axis of symmetry
for 36Ar is perpendicular to the vector that connects the α

and 36Ar clusters. Therefore the whole system has a triaxial
deformation. This type of structure is favored under dα-36Ar

constraints with large dα-36Ar values and appears in the region
of β = 0.45–0.7. The second kind of structure is denoted type
(b). In this type, the axis of symmetry in the 36Ar cluster is
parallel to the vector that connects the α and 36Ar clusters,
resulting in an axial deformation of the system. This type is
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α-36Ar: type (a) α-36Ar: type (b) 12C-28Si

2 fm 2 fm 2 fm

FIG. 3. Density distributions of intrinsic states obtained with the
d constraint. dα-36Ar is fixed to 5.0 fm for α-36Ar (a) and (b). d12C-28Si

is fixed to 4.0 fm for 12C-2Si. The crosses in the figure show the
centroids of the wave packets.

obtained when the intercluster distance is restricted to a shorter
distance (dα-36Ar = 4.5–5.5 fm) and appears in the region of
β = 0.15–0.3. It is interesting that type (b) is bound deeper
than type (a) for shorter intercluster distances and 36Ar changes
its orientation as the intercluster distance becomes larger. We
assume that 36Ar changes its orientation to make the overlap
and potential energy between the α and 36Ar clusters larger.

By applying a d12C-28Si constraint (d12C-28Si = 4.0–6.0 fm),
we obtained a strongly deformed and excited energy curve
that appears in the region of β = 0.55–0.8. The system has a
prominent 12C-28Si cluster structure and is triaxially deformed,
as shown in Fig. 3. In this case, we did not find a change in the
orientation of the clusters.

The d constraints have generated excited energy curves in
which the system has prominent cluster structures. The fact
that these wave functions are mixed with the wave functions
obtained with the β constraint and play an important role in
describing highly excited bands is discussed in the following.

B. Angular momentum projection

The wave functions just obtained are projected onto the
eigenstate of the total angular momentum. The Jπ = 0+ and
2+ states obtained with the β constraint are shown in Fig. 4.
For Jπ = 2+ states, different K states are superposed by
diagonalizing Hamiltonian and norm matrices as∣∣�J+M

AMP (β)
〉 =

∑
K

f AMP
K P̂ J

MK |�+(β)〉. (14)
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FIG. 4. The energy curves of the J π = 0+ and 2+ states projected
from wave functions obtained with the β constraint with D1S.

TABLE II. Squared overlaps of the K component, SO(K), in
the J π = 2+ states |�AMPJ+M(β)〉 projected from β = 0.39 and 0.62
wave functions. The labels “Kπ = 0+” and “Kπ = 2+” indicate the
dominant K component.

β Kπ SO(K = 0) SO(K = −2) SO(K = 2)

0.39 “Kπ = 0+” 0.999 0.002 0.003
“Kπ = 2+” 0.001 0.989 0.990

0.62 “Kπ = 0+” 1.00 0.000 0.000
“Kπ = 2+” 0.001 0.982 0.985

AMP reduces the excitation energies of the deformed states.
For example, the Jπ = 0+ states of ND and SD are lowered
by approximately 6 and 9 MeV, respectively. As a result, they
almost degenerate in terms of energy. In the deformed region,
we have obtained two low-lying 2+ states for each given value
of β by the diagonalization with K . These states are denoted
as Kπ = 0+ and 2+ according to the K-dominant component
of their wave function.

In Table II, squared overlaps of the K component,

SO(K,β) ≡ |〈�+(β)|(P̂ J
MK

)†∣∣�J+M
AMP (β)

〉∣∣2

〈�+(β)|P̂ J
KK |�+(β)〉〈�J+M

AMP (β)
∣∣�J+M

AMP (β)
〉 ,
(15)

are shown. It is found that different |K| states hardly mix
with each other, and almost pure |K| states are found after
the diagonalization. Therefore, K can be regarded as a
good quantum number. Although K distributions are slightly
distorted after GCM calculation, K mixing is small and K is
an appropriately good quantum number.

The presence of the Kπ = 2+ state is due to the triaxial
deformation in the β >∼ 0.3 region. As will be discussed in the
following, the triaxial deformations of the ND and SD states
leads to the presence of their side bands, Kπ = 2+.

The energy of the wave functions obtained with the d

constraint are also lowered by AMP. The α-36Ar type (a) and
(b) and 12C-28Si states are lowered by approximately 5–10,
10–15, and 10 MeV, respectively. α-36Ar type (a) and 12C-28Si
wave functions have the Kπ = 2+ components because of the
triaxial deformation.

C. GCM calculation

1. Energy levels and deformations

After applying the AMP, we carried out GCM calcu-
lations. For the GCM basis, we adopted 15 β-constrained
wave functions β = 0.00–0.73 and 7dα-36Ar-constrained wave
functions of type (a) with dα-36Ar = 4.5–9.0 fm. In the
superpositions, we adopted projected states with |K| � 4 and
〈�+|P̂ J

KK |�+〉/〈�+|�+〉 > 0.005 states. We omitted other
states with |K| > 4 or small norm because they may contain
numerical errors in the numerical integration of AMP. We
checked convergence of the energy levels with respect to
the number of basis wave functions along β and the α-36Ar
surface by comparing the energies calculated by the full set
of basis wave functions and a reduced set. For example, we
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FIG. 5. Energy levels in 40Ca. The left-
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energies of superposed wave functions and that
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calculated the energies with a reduced set of basis by adopting
7 β-constrained wave functions and 7dα-36Ar-constrained type
(a) wave functions, and we found that the difference from
energies for the full set is less than 1 MeV. In addition to the
β- and dα-36Ar-constrained type (a) wave functions, we also
adopted 3 dα-36Ar-constrained wave functions of type (b) with
dα-36Ar = 4.5–5.5 fm and 3d12C-28Si-constrained wave functions
with d12C-28Si = 4.0–6.0 fm in the superposition. Then we
obtained the final GCM wave functions by diagonalizing
Hamiltonian and norm matrices for the parity and angular
momentum projected states with the 28 independent wave
functions.

The theoretical energy levels of the GCM states and the
experimental levels are shown in Fig. 5. The energies of the
simple AMP for the main components for low-lying bands are
also given. In most levels, the GCM states gain approximately
1 MeV from the simple AMP. Experimentally, the Kπ =
0+, 2+, and 0+ bands built on Jπ = 0+

2 , 2+
1 , and 0+

3 states
are known to be the ND band (Kπ = 0+

ND)m the side band of
the ND band (Kπ = 2+

ND), and the SD band (Kπ = 0+
SD). In the

GCM calculation, we obtained two Kπ = 0+ and two Kπ =
2+ bands and some states in low-lying states above the ground
state. We assigned the first and second Kπ = 0+ bands to the
observed Kπ = 0+

ND and 0+
SD bands, respectively, and the first

Kπ = 2+ band to the observed Kπ = 2+
ND band, because the

theoretical moments of inertia and electric transition strength
B(E2) of these bands correlate well with the experimental data
for the corresponding bands, as discussed in the following.
The second Kπ = 2+ band in the results is regarded as the
side band Kπ = 2+

SD of the SD band. We also obtained the
Kπ = 0+ and 2+ bands in highly excited states with large
α-36Ar cluster structure components, which are the candidates
for α-36Ar higher nodal bands, Kπ = 0+

hn and 2+
hn, observed

experimentally [15].
Let us consider the GCM results of the low-lying states

(ground, ND, and SD states) in more detail by analyzing
the squared overlap between Jπ = 0+ states and the AMP
states from the β-constrained wave functions. The ND state’s
Kπ = 0+

ND and 2+
ND bands are mainly constructed from

the β-constrained wave functions around the ND minimum
occurring in the β ∼ 0.4 region. The members of ND bands
have a maximum overlap of approximately 85% for the
triaxially deformed state with (β, γ ) = (0.39, 25.2◦). There
is no mixing between the ND state and the ground state.
The squared overlap with the β-constrained wave functions is
almost unchanged up to high spin states along the Kπ = 0+

ND
band. However, in the Kπ = 2+

ND band, the squared overlap
of each component changes with the increase in spin, which
implies the change of structure in this band. In the GCM
calculation, the theoretical excitation energies of the members
of SD bands in the Kπ = 0+

ND and 2+
ND bands are 10.5 and

11.4 MeV, respectively. These are much higher than the
experimental excitation energies.

However, kinematic moments of inertia J (1) in Kπ = 0+
ND

and 2+
ND bands reasonably agree with those of experimental

data, as shown in Fig. 6. Namely, the averaged theoretical J (1)

value for ND states is approximately 7h̄2/MeV, and the value
is consistent with the experimental values.

The SD states, Kπ = 0+
SD and 2+

SD, are constructed mainly
by β-constrained wave functions around the SD local mini-
mum. The main component is the β-constrained wave func-
tion with triaxial shape, (β, γ ) = (0.62, 14.5◦). The squared
overlap is more than 90% in the bandhead states and remains
almost unchanged up to high spin states along the Kπ = 0+

SD
and 2+

SD bands. A small degree of mixing between the ND and
SD bands is seen in the β ∼ 0.5 region. The GCM calculation
reveals the bandhead energies of the Kπ = 0+

SD and 2+
SD bands

as 11.4 and 13.4 MeV, respectively. Although the present
calculations overestimate experimental excitation energies of
the Kπ = 0+

SD band as well as the ND bands, the theoretical
J (1) values for SD states are in good agreement with the
experimental data, as shown in Fig. 6.

We comment on comparison of our results with those
of other theoretical studies. In spherical-basis AMD [21],
Kπ = 2+

ND and 2+
SD bands were not obtained, suggesting that

deformation of wave packets adopted in the present work is
important for describing triaxial deformation. In SHF-BCS +
GCM [20], although the excitation energies of the Jπ = 0+

2
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state and the members of Kπ = 0+
SD band were produced,

Kπ = 2+ bands were not obtained because axial symmetry
was a priori assumed. Moreover, the moment of inertia of the
Kπ = 0+

ND band could not be reproduced. In α-36Ar OCM [13],
the Kπ = 0+

ND and 2+
ND bands were reproduced, but the SD

band was not described.

2. Cluster components

In this section we discuss the contribution of the cluster
wave functions in the ND and SD states. In Table III, we list

TABLE III. The squared overlap (SO) of β-constrained wave
functions and d-constrained wave functions.

Kπ J π β constraint d constraint
SO

SO configuration

ND 0+
ND 0+ 0.99 0.37 α-36Ar

2+ 0.99 0.40
4+ 0.99 0.41

2+
ND 2+ 0.99 0.41

3+ 0.99 0.45
4+ 0.99 0.42

SD 0+
SD 0+ 0.95 0.59 12C-28Si

2+ 0.95 0.59
4+ 0.95 0.58

2+
SD 2+ 0.95 0.61

3+ 0.95 0.61
4+ 0.95 0.60

α-36Ar 0+
hn 0+ 0.50 0.40 α-36Ar

higher nodal 2+ 0.49 0.47
4+ 0.63 0.33

2+
hn 2+ 0.54 0.39

3+ 0.50 0.47
4+ 0.55 0.41

the squared overlap values of the GCM states with the α-36Ar
configuration space given by the set of dα-36Ar-constrained
wave functions, and those with the 12C-28Si configuration
space, as well as the SO values for the model space of the
β-constrained wave functions. The definition of the specific
functional space is explained in Sec. II C. The squared overlap
between the ND state and β-constrained wave functions is
99%. This means that the ND state is practically represented
by the β-constrained wave functions alone. Nonetheless, it
is surprising that the ND states have a significant overlap
of approximately 40% with the dα-36Ar-constrained wave
functions as well. This indicates that the β-constrained wave
functions for the ND states include the α-36Ar component,
though the spatially developed cluster structure is not seen in
the density distributions. The α-36Ar cluster component in the
ND band is mainly consistent with type (a) wave functions,
whereas the squared overlap of type (b) wave functions in
ND states is almost negligible. The result—that the ND state
contains an α-36Ar cluster structure component—is associated
with the results of the α-36Ar potential model calculation
[10,11], 36Ar(6Li,d)40Ca reaction [14,15], and α-36Ar OCM
calculation [13].

The SD states are dominated by the β-constrained wave
function as well as the ND states. However, the SD states
also have a large overlap with the d12C-28Si-constrained wave
functions, as reflected by the SO of approximately 60%. We
found that the β-constrained AMD wave functions for the
SD states also include the cluster components, even though
the cluster structure is not visible in the density distributions.
The 12C-28Si cluster configurations also make a significant
contribution to the energy of the SD states. In particular, the
energies of the SD states gain approximately 1 MeV owing
to the mixing of 12C-28Si cluster structure wave functions.
This is associated with the results of spherical-basis AMD
[21] according to which the SD states have a 12C-28Si cluster
structure configuration.

3. α-36Ar higher nodal states, Kπ = 0+
hn and 2+

hn bands

As shown in Fig. 5, we obtained Kπ = 0+ and 2+ bands
with large α-36Ar cluster components in the excitation energy
region approximately 10 MeV higher than the ND band.
The main component of the higher α-36Ar bands, Kπ =
0+

hn and 2+
hn, are dα-36Ar-constrained wave functions obtained

with a large distance, dα-36Ar = 6.0 fm. We assume that this
corresponds to the α-36Ar higher nodal band observed with
the 36Ar(6Li,d)40Ca reaction [15], where the fragments of the
Jπ = 0+ state for this band were reported around 8 MeV above
the bandhead of the ND band.

The squared overlap between dα-36Ar-constrained wave
functions and the Jπ = 0+ states in Kπ = 0+

ND and 0+
hn bands

are shown in Fig. 7. The squared overlap for 0+
hn is suppressed

in the small dα-36Ar region and has a peak at dα-36Ar = 6 fm,
which demonstrates the nodal property of the intercluster
motion in this band. It can be assumed that the α-36Ar higher
nodal states arise from the intercluster excitation built on the
ND states. In other words, the significant component of the
α-36Ar cluster structure in the ND states must be essential for

044317-7



TANIGUCHI, KIMURA, KANADA-EN’YO, AND HORIUCHI PHYSICAL REVIEW C 76, 044317 (2007)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

sq
ua

re
d 

ov
er

la
p 

SO

dα-36Ar [fm]

Jπ=0+, Kπ=0+
ND

Jπ=0+, Kπ=0+
hn

FIG. 7. The squared overlap of the J π = 0+ states in the ND
band (Kπ = 0+

ND) and the α-36Ar higher nodal band (Kπ = 0+
hn) with

dα-36Ar-constrained wave functions.

the formation of the higher nodal states, because the cluster
component in the small-distance region is possible if the ND
states contain no cluster component. This means that the higher
nodal states appear as a consequence of the orthogonality to
the cluster components with a small distance d, which are
already contained in the ND states. This situation is similar to
the relationship between the ground band and α-40Ca higher
nodal band in 44Ti suggested by Kimura and Horiuchi with
deformed-basis AMD [27].

4. Electric transitions

Here, we investigate the electric quadrupole strengths and
discuss the band structure.

The theoretical and experimental values of E2 transition
strengths B(E2) are shown in Fig. 8. The B(E2) values
for intraband transitions are remarkably strong, and the
transitions between the Kπ = 0+

ND and Kπ = 2+
ND bands and

those between the Kπ = 0+
SD and 2+

SD bands are also strong.
This reflects the side-band features of the Kπ = 2+

ND and
Kπ = 2+

SD bands, corresponding to Kπ = 0+
ND and Kπ = 0+

SD,
respectively. The interband transitions between ND and SD
states and those from ND or SD states to the ground state
are underestimated. This is because mixing of wave functions
among these bands is small in our calculation.

Detailed comparisons between the theoretical values and
experimental data of the B(E2) values are shown in Table IV.
The B(E2) values for the intraband transitions in the ND and
SD states are reproduced well, except for the 6+ → 4+ tran-
sition when Kπ = 0+

ND. The small value of the experimental
B(E2; 6+ → 4+) is overestimated by the calculation, although
the error in the experimental value is rather large.

We also compared our results with those of other theoretical
studies in Table IV. The B(E2) values in (4) α-36Ar OCM
are consistent with the present values for the ND states.
This may indicate that the deformation of the ND states in
our calculations is similar to that calculated with the α-36Ar
cluster model. In (1) the spherical-basis AMD, B(E2) values
in Kπ = 0+

ND and 0+
SD bands are underestimated, whereas our

results are consistent with experimental values. This means
that deformation of wave packets works well for quantitatively
describing the deformed states of 40Ca. In (3) the shell model,
smaller B(E2) values for the Kπ = 0+

ND and 0+
SD bands were

obtained by comparison to our model. In (2) SHF-BCS +
GCM, the B(E2) values are also smaller than our results for
Kπ = 0+

ND and 0+
SD bands. In particular, the B(E2) value for the

4+ → 2+ transition in both the ND and SD states is remarkably
small. This shows that the ND and SD bands obtained in the
SHF-BCS + GCM calculation are not rigid-rotor-like. This
seems to be inconsistent with experimental results regarding
the rigid-rotor-like property, which has been found in rotational
energies and E2 transitions. Further analysis requires more
detailed measurements of the E2 transition strengths.

IV. SUMMARY

We investigated the ground state and excited states of 40Ca
in the framework of deformed-basis AMD, focusing on the
aspects of triaxiality and clustering in the deformed states.
Superposing mean-field-type and cluster-structure-type wave
functions obtained with β and d constraints, respectively,
we obtained the ground states and ND, SD, and α-36Ar
higher-nodal states. We found that both the ND and SD
bands are constructed from triaxially deformed shapes, and
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TABLE IV. Theoretical and experimental B(E2) of 40Ca. The units of transitions are Weisskopf units: B(E2)W.u. = 8.12e2 fm4.
Experimental B(E2) values taken from Refs. [13] and [22] are marked by single and double asterisks, respectively; all other values
are taken from Ref. [26]. (1), (2), (3), and (4) are result of spherical-basis AMD [21], HF-BCS + GCM [20], shell model [22],
and α-36Ar OCM [13], respectively.

Kπ
i → Kπ

f Ii If Experimental Present work (1) (2) (3) (4)

0+
ND → g.s. 2+ 0+ 2.26 ± 0.14 <0.01 0.22 0.025

2+
ND → g.s. 2+ 0+ 0.13 ± 0.04 <0.01 0.025 0.001

0+
SD → g.s. 2+ 0+ 0.20 ± 0.05 <0.01 0.01

0+
ND → 0+

ND 2+ 0+ 32 ± 4 39.13 7.9 13.8 36.0 33.4
4+ 2+ 61 ± 10 55.03 14.3 2.0 48.9 48.1
6+ 4+ 17+9

−17 61.24 15.8 23.0 42.6 52.9
8+ 6+ — 64.36 24.6 28.0 53.8

0+
SD → 0+

SD 2+ 0+ — 118.47 40.6 55.0 71.3
4+ 2+ 170 ± 40 169.54 58.9 45.9 100
6+ 4+ — 186.53 56.0 68.6 108
8+ 6+ — 178.82 38.1 109 112

2+
ND → 2+

ND 3+ 2+ >71, 82 ± 26∗ 66.66 52.6 61.6
4+ 2+ 23 ± 5∗ 20.76 16.4 19.3
4+ 3+ <1300∗ 29.24 35.0 43.3

2+
ND → 0+

ND 2+ 0+ 1.3 ± 0.4, 0.54 ±
0.14∗

0.015 2.0 7.0

2+ 2+ 22 ± 6, 25 ± 6∗ 44.30 11 11.3
3+ 2+ 3.7 ± 0.7∗ 0.064 3.4 12.4
3+ 4+ <22∗ 15.49 7.3
4+ 2+ 3.8 ± 0.8 0.28 2.5 3.5
4+ 4+ 6.8 ± 5.2∗ 16.65 6.0 13.6

0+
SD → 0+

ND 0+ 2+ 17 ± 3 0.080 7.1
2+ 0+ 2.6 ± 0.7 <0.01 0.4
4+ 2+ 2.6 ± 0.6 0.017 2.4
4+ 4+ 14.3 ± 4.2∗∗ <0.01 0.83

0+
SD → 2+

ND 4+ 2+ 22 ± 6 0.018

we obtained the Kπ = 2+ side bands of these bands. The
theoretical B(E2) and moments of inertia are consistent
with experimental data, although the excitation energies are
higher than empirical values. In the spherical-basis AMD
calculation [21], the Kπ = 2+

ND band has not been obtained,
and B(E2) intraband values in Kπ = 0+

ND and 0+
SD bands are

underestimated. This shows that the deformed-basis AMD is
essential for describing triaxial deformation and useful for the
quantitative description of B(E2).

The ND band and its side band contain approximately
40% of the α-36Ar cluster structure component, and the SD
band and its side band contain approximately 60% of the
12C-28Si cluster structure component. The α-36Ar higher nodal
band was obtained from the excitation of intercluster motion

between the α and 36Ar clusters. The present results suggest
that cluster correlation will be important for deformation and
excitation even in medium- and heavy-weight nuclei.
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Y. Suzuki, and E. Uegaki, Prog. Theor. Phys. Suppl. 68, 29
(1980), and references therein.

[3] F. Michel, S. Ohkubo, and G. Reidemeister, Prog. Theor. Phys.
Suppl. 132, 7 (1998), and references therein.

[4] T. Sakuda and S. Ohkubo, Prog. Theor. Phys. Suppl. 132, 103
(1998), and references therein.

[5] T. Yamaya, K. Katori, M. Fujiwara, S. Kato, and S. Ohkubo,
Prog. Theor. Phys. Suppl. 132, 73 (1998), and references therein.

[6] W. J. Gerace and A. M. Green, Nucl. Phys. 93, 110 (1967).
[7] W. J. Gerace and A. M. Green, Nucl. Phys. A123, 241 (1969).
[8] W. J. Gerace and J. P. Mestre, Nucl. Phys. A285, 253 (1977).
[9] K. F. Pal and R. G. Lovas, Phys. Lett. B96, 19 (1980).

[10] S. Ohkubo and K. Umehara, Prog. Theor. Phys. 80, 598 (1988).
[11] G. Reidemeister, S. Ohkubo, and F. Michel, Phys. Rev. C 41, 63

(1990).

044317-9



TANIGUCHI, KIMURA, KANADA-EN’YO, AND HORIUCHI PHYSICAL REVIEW C 76, 044317 (2007)

[12] T. Ogawa, Y. Suzuki, and K. Ikeda, Prog. Theor. Phys. 57, 1072
(1977).

[13] T. Sakuda and S. Ohkubo, Phys. Rev. C 49, 149 (1994).
[14] T. Yamaya, M. Saito, M. Fujiwara, T. Itahashi, K. Katori,

T. Suehiro, S. Kato, S. Hatori, and S. Ohkubo, Phys. Lett. B306,
1 (1993).

[15] T. Yamaya, M. Saitoh, M. Fujiwara, T. Itahashi, K. Katori,
T. Suehiro, S. Kato, S. Hatori, and S. Ohkubo, Nucl. Phys.
A573, 154 (1994).

[16] R. Middleton, J. D. Garrett, and H. T. Fortune, Phys. Lett. B39,
339 (1972).

[17] J. R. MacDonald, D. H. Wilkinson, and D. E. Alburger, Phys.
Rev. C 3, 219 (1971), and references therein.

[18] E. Ideguchi et al., Phys. Rev. Lett. 87, 222501 (2001).
[19] T. Inakura, S. Mizutori, M. Yamagami, and K. Matsuyanagi,

Nucl. Phys. A710, 261 (2002).

[20] M. Bender, H. Flocard, and P.-H. Heenen, Phys. Rev. C 68,
044321 (2003).

[21] Y. Kanada-En’yo and M. Kimura, Phys. Rev. C 72, 064322
(2005).

[22] E. Caurier, J. Menendez, F. Nowacki, and A. Poves, Phys. Rev.
C 75, 054317 (2007).

[23] Y. Taniguchi, M. Kimura, and H. Horiuchi, Prog. Theor. Phys.
112, 475 (2004).

[24] A. Dote, H. Horiuchi, and Y. Kanada-En’yo, Phys. Rev. C 56,
1844 (1997).

[25] Y. Kanada-Enyo and H. Horiuchi, Prog. Theor. Phys. 93, 115
(1995).

[26] J. A. Cameron and B. Singh, Nucl. Data Sheets 102, 293
(2004).

[27] M. Kimura and H. Horiuchi, Nucl. Phys. A767, 58
(2006).

044317-10


