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Dispersive-optical-model analysis of the asymmetry dependence of correlations in Ca isotopes
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A dispersive-optical-model analysis of p+40,42,44,48Ca and n+40Ca interactions has been carried out. The
real and imaginary potentials have been constrained by fitting elastic-scattering data, total and reaction cross
sections, and level properties of valence hole states deduced from (e, e′p) data. The resulting surface imaginary
potential increases with asymmetry for protons, implying that in heavier Ca isotopes, protons experience stronger
long-range correlations. Presently, there is not enough data for neutrons to determine their asymmetry dependence.
Global optical-model fits usually assume that the neutron asymmetry dependence is equal in magnitude, but
opposite in sign, to that for protons. Such a dependence was found to give unphysical results for heavy Ca
isotopes. The dispersive optical model is shown to be a useful tool for data-driven extrapolations to the drip lines.
Neutron and proton data at larger asymmetries are needed to achieve more reliable extrapolations. The present
analysis predicts 60Ca and 70Ca to be bound, while the intermediate isotopes are not.
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I. INTRODUCTION

A full understanding of nuclear properties requires knowl-
edge of the correlations between the nucleons. These correla-
tions cause the spectroscopic strength of single-particle levels
to be reduced relative to independent-particle-model (IPM)
values. Furthermore, the strength is spread in energy; and for
stable closed-shell nuclei, the spectroscopic factors measured
in (e, e′p) reactions are about 65% of the IPM predictions.
The theoretical interpretation [1] of these observations points
to a global depletion of the shell-model Fermi sea due to
short-range correlations accompanied by a complementary
presence of high-momentum components that have recently
been observed [2]. A quantitative understanding of the spec-
troscopic factors obtained from the (e, e′p) reaction requires
a substantial contribution from long-range correlations that
represent the coupling of the single-particle states to low-lying
collective excitations that are dominated by surface properties
of the nucleus. With an increasing interest in nuclei far from
stability, it is important to understand how these correlations
are modified as one approaches the drip lines. Nuclear-matter
calculations suggest that protons (neutrons) feel stronger
(weaker) correlations with increasing neutron fraction [3].
These effects are related to the increased (decreased) impor-
tance of the stronger p-n tensor interaction compared to the
p-p (n-n) interaction for protons (neutrons) with increasing
asymmetry. In addition to these volume effects associated
with short-range and tensor correlations, one must consider
the long-range correlations associated with the coupling of
surface excitations, which are present in finite nuclei, to single-
particle degrees of freedom. The asymmetry (N − Z)/A
dependence of these latter correlations has not been well
studied.

Experimentally, spectroscopic factors for hole states mea-
sured in knockout reactions provide evidence for an asymmetry
dependence. Gade et al. [4] have observed that the reduction
factor, the ratio of the measured spectroscopic factor relative
to the shell-model value, decreases strongly with nucleon

separation energy. The latter, of course, is related to the
asymmetry.

An appropriate framework for studying correlations is
to constrain the nucleon self-energy �(rm, r ′m′; E). With
knowledge of this complex, energy-dependent, nonlocal and
spin-dependent quantity, the Dyson equation can be solved,
thereby generating the nucleon single-particle propagator [5].
From this propagator, one can calculate all single-particle
properties pertaining to the ground state of the system, such as
spectroscopic factors and occupation numbers (in any basis),
the charge and matter distributions, and the contribution to the
energy of the ground state from two-body interaction terms.
The standard optical-model (OM) potential for nucleon elastic
scattering represents a local approximation of this self-energy
for positive energies. The imaginary OM potential is usually
decomposed into surface and volume components. The surface
contribution, which is dominant at small positive energies,
accounts mostly for long-range correlations associated with
couplings to low-lying collective states and giant resonances.
At higher energies, the volume contribution dominates and
is associated with short-range correlations that can be conve-
niently studied theoretically in nuclear matter.

Mahaux and Sartor [6] developed the dispersive optical
model (DOM) to extend the OM potential down to negative
energies, and thus the DOM can address bound single-particle
properties as well as elastic nucleon scattering. There are a
number of examples of DOM fits to proton and neutron elastic-
scattering data [7–15]. Fitted DOM potentials usually describe
single-particle properties reasonably well.

Parametrized OM potentials derived from global fits to
nucleon elastic-scattering data, such as the Becchetti and
Greenlees [16] and the Chapel Hill 89 [17] versions, include
an asymmetry dependence. The asymmetry dependence of
the real potential is related to the symmetry energy. Of
more importance in the present study is the asymmetry
dependence of the imaginary potential that when imple-
mented in the DOM, results in an asymmetry dependence
of occupation probabilities, spectroscopic factors, and other
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quantities related to correlations. In the OM fits, the asymmetry
dependence of the imaginary potential is attributed solely to the
surface component associated with long-range correlations.
The volume component, associated more with short-range
correlations is asymmetry independent. These fits suggest
that the long-range correlations associated with coupling to
low-lying collective excitations and giant resonances have the
largest asymmetry dependence.

This paper reports on a continuation of a DOM analysis of
scattering and bound-state data for Ca isotopes. In Ref. [18],
DOM fits of p+40Ca and p+48Ca data indicated that protons
are more strongly correlated in the neutron-rich 48Ca nucleus.
The present work extends this analysis by adding the p+42Ca,
p+44Ca, and n+40Ca systems to this analysis. In addition,
the data sets for the p+40Ca and p+48Ca systems were
buttressed with more elastic-scattering data now including
proton energies up to 200 MeV.

To extrapolate the results to nuclei near the drip lines, it
is imperative that one determine the asymmetry dependence
of the imaginary part of the DOM potential. Following
our previous study and the global OM fits, the asymmetry
dependence will be confined to the surface imaginary potential.
We will ignore the volume component which appears to have a
weaker asymmetry dependence. In any case, we are compelled
to do so, as there are still not sufficient data at high energies
for N �= Z targets to adequately constrain its dependence [18].
The asymmetry dependence of the surface component is well
determined from the experimental data for protons. We will
consider two possible asymmetry dependences for neutrons
and their consequences.

A brief description of the DOM is given in Sec. II, while the
data sets used in the DOM fits are listed in Sec. III. Information
about integrated OM potentials is presented in Sec. IV. The
parametrizations of the real and imaginary potentials are given
in Sec. V, while the results of the fit are given in Sec. VI.
The implication of the fitted potentials for correlations are
presented in Sec. VII. Finally, Sec. VIII lists the conclusions
of this study.

II. DISPERSIVE OPTICAL MODEL

The optical-model potential is related to the nucleon
self-energy �(rm, r ′m′; E) which is complex, nonlocal, spin,
isospin, and energy dependent. Once this self-energy is
specified, the Dyson equation can be solved yielding the
single-particle properties of the system under study. In the
DOM, the optical-model potential is a local approximation
to �(rm, r ′m′; E) representing the traditional analysis of
nucleon scattering and bound single-particle properties. This
section gives a brief description of the derivation of the
DOM and the calculation of bound-state properties. Additional
details can be found in Ref. [6].

In deriving the DOM potential, Mahaux and Sartor [6] start
with the real part of the nucleon self-energy, which can be
written as

Re �(r, r ′; E) = Re �(r, r ′; EF ) + �V(r, r ′; E), (1)

where EF is the Fermi energy and (iso)spin indices have been
suppressed for notational convenience. Here the first term is
the static or energy-independent part, and the second term
�V , the dispersive correction, contains the energy dependence.
This term can be obtained from the imaginary part of the
self-energy through a subtracted dispersion relation

�V(r, r ′; E) = + 1

π
P

∫
Im �(r, r ′; E′)

×
(

1

E′ − E
− 1

E′ − EF

)
dE′, (2)

where P stands for the principal value. The dispersion relation
is a consequence of causality, and a subtracted form is used
here so that �V(r, r ′; EF ) = 0. The dispersive correction
varies rapidly around EF and causes the valence single-particle
levels to be focused toward the Fermi energy.

The effect of a nonlocal real potential can be approximately
represented by an energy-dependent local potential [19]. While
this procedure allows one to make contact with a considerable
amount of experience in describing nuclear properties, it is nec-
essary to adhere to the nonlocal form for a complete solution
of the Dyson equation that yields the relevant single-particle
properties of the ground state, such as the charge density. In
the present paper, we continue to employ an energy-dependent
optical-model potential U(r, E) = V(r, E) + iW(r, E) as a
local approximation to the nucleon self-energy. Equation (1)
then becomes

V(r, E) = VHF(r, E) + �V(r, E), (3)

and the corresponding local dispersive correction is given by

�V(r, E) = 1

π
P

∫
W(r, E′)

(
1

E′ − E
− 1

E′ − EF

)
dE′.

(4)

In Eq. (3), VHF(r, E) is the local equivalent of Re �(r, r ′; EF ).
It contains the nonlocal effects that are contained in Hartree-
Fock calculations with phenomenological effective interac-
tions and hence is called the Hartree-Fock potential by Mahaux
and Sartor, but it should not be confused with the Hartree-
Fock self-energy contribution of a realistic nucleon-nucleon
interaction.

The energy derivative of VHF is a measure of nonlocality,
which is related to the momentum-dependent effective mass

m̃(r, E)

m
= 1 − dVHF(r, E)

dE
, (5)

where m is the nucleon mass. The Hartree-Fock potential is
expected to have a smooth energy dependence compared to the
more rapid dependence of the dispersive correction. One well-
known consequence of the replacement of Re �(r, r ′; EF )
by VHF(r, E) is that wave functions obtained with the local
potential must be scaled by the factor

√
m̃(r, E)/m to fully

account for nonlocality [19]. In addition, this treatment
requires one to scale Im �(r, r ′; E′), and thus �V(r, r ′; E)
by m̃(r, E)/m [6]. The imaginary potential in Eq. (4) is also
replaced by a local equivalent. Mahaux and Sartor argue that
this change modifies �V by a smooth function of energy,
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which can be compensated by a correspondingly smooth
change in the energy dependence of VHF.

In addition to the momentum-dependent effective mass, two
other effective masses can be defined. The total effective mass
is given by

m∗(r, E)

m
= 1 − dV(r, E)

dE
, (6)

while the energy-dependent effective mass is

m(r, E)

m
= 1 − m

m̃(r, E)

d�V(r, E)

dE
. (7)

At the highest energies considered in this work, relativistic
effects become relevant. We have included a corresponding
lowest order correction in solving the radial wave equation [20][

d2

dρ2
+

(
1 − Ũ(ρ,E)

Etot − M − m
− �(� + 1)

ρ2

)]
u(ρ) = 0, (8)

with ρ = k r , where k = M
Etot

√
T (T + 2m), T is the laboratory

kinetic energy, Etot is the total energy in the center-of-mass
frame, and M is the target mass. The scaled potential is

Ũ = γ U , γ = 2(Etot − M)

Etot − M − m
. (9)

If un�j (r) are bound-state solutions to the radial wave equation,
then the normalized wave functions corrected for nonlocality
are given by

un�j (r) =
√

m̃(r, En�j )

m
un�j (r). (10)

In this work, we have employed the following approxi-
mations, developed by Mahaux and Sartor [6], to determine
bound-state properties. The width of a state is given by

�n�j = −2

∫ ∞
0 u2

n�j (r)W(r, En�j )dr∫ ∞
0 u2

n�j (r)m∗(r,En�j )
m

dr
, (11)

where the spectroscopic factor for valence states is

Sn�j =
∫ ∞

0
u2

n�j (r)
m

m(r, En�j )
dr, (12)

with root-mean-square (rms) radius of

Rn�j
rms =

√∫ ∞

0
u2

n�j (r)r2 dr. (13)

For hole states, the occupation probability is approximated by

Nn�j =
∫ ∞

0
u2

n�j (r)

[
1 + m

m̃(r, En�j )

× P

π

∫ ∞

EF

W(r, E′)
(E′ − En�j )2

dE′
]

dr, (14)

while for particle states, the same approximation gives

Nn�j = −
∫ ∞

0
u2

n�j (r)

[
m

m̃(r, En�j )

× P

π

∫ EF

−∞

W(r, E′)
(E′ − En�j )2

dE′
]

dr. (15)

TABLE I. Elastic scattering data for p+40Ca reactions used in
the fits.

E (MeV) dσ

d	
Ay Q Ref.

17.57 x [42]
19.57 x [43]
21.0 x x [44,45]
25.0 x [45]
26.3 x x [45,46]
30.0 x [45]
30.3 x [47]
35.0 x [45]
40.0 x x [45,48]
45.0 x [45]
48.0 x [45]
49.0 x [49]
61.4 x [50]
65.0 x x x [23,51]
80.2 x x [20,52]

100.6 x x [53]
135.1 x [20]
152.0 x [54]
160.0 x x [20,52]
181.0 x x [20,52]
200.0 x x x [22]

III. DATA SETS

The optical-model potential is constrained using a large
number of published data sets at both positive and negative
energies. These include the following data sets:

(i) Elastic-scattering angular distributions dσ/d	 and ana-
lyzing powers Ay for p+40,42,44,48Ca and n+40Ca with
energies up to 200 MeV. The energies and references for
these data are listed in Tables I–V. Only the p+40Ca data
are significant and constraining at the higher energies
where the volume absorption is dominant. Spin rotation
parameters Q [21] are available for 200 MeV p+40,48Ca
[22] and 65 MeV p+40Ca [23]. These were not used in
the fits but are compared with the final DOM predictions.

(ii) Reaction cross sections σreact for p+40,42,44,48Ca reac-
tions from Ref. [24] and for the n+40Ca reaction from

TABLE II. Elastic scattering data for
p+42Ca reactions used in the fits.

E (MeV) dσ

d	
Ay Ref.

21.0 x [45]
25.0 x [45]
30.0 x [45]
35.0 x [45]
40.0 x [45]
45.0 x [45]
48.4 x [45]
65.0 x x [51]
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TABLE III. Elastic scattering data for
p+44Ca reactions used in the fits.

E (MeV) dσ

d	
Ay Ref.

21.0 x [45]
25.0 x [45]
30.0 x [45]
40.0 x [45]
45.0 x [45]
48.4 x [45]
65.0 x x [51]

Ref. [25]. Again, only for the p+40Ca reaction are there
data above 50 MeV.

(iii) Total reaction cross sections σtotal for the n+40Ca
reaction at energies from 8 to 200 MeV [26–29].
Comparisons were made to σtotal data for the n+44Ca
reaction [30], but these were not included in the fit.

(iv) Single-particle energies for proton and neutron levels
from Refs. [31–37].

(v) For the 0d5/2, 1s1/2, and 0d3/2 proton holes states in 40Ca
and 48Ca, the widths �, rms radii Rrms, and spectroscopic
factors S measured in the (e, e′p) reactions at the Na-
tional Instituut voor Kernfysica en Hoge-Energiefysica,
Netherlands (NIKHEF) by Kramer et al. [38,39]. The
spectroscopic factor for the 1s1/2 state in 40Ca, although
shown in subsequent plots, was not included in the fits.
More recent experiments by the same group indicate
that the value of this quantity is larger than the published
value [40].

(vi) Experimental widths of the neutron holes states in 40Ca
measured in 40Ca(p, d)39Ca transfer reactions [36] were
not used in the DOM fits but were compared with final
DOM predictions.

TABLE IV. Elastic scattering data for p+48Ca reactions
used in the fits.

E (MeV) dσ

d	
Ay Q Ref.

8.0 x x [55]
10.0 x x [55]
12.0 x x [55]
14.03 x x [56]
15.05 x x [56]
15.65 x x [56]
21.0 x [45]
25.0 x [45]
30.0 x [45]
35.0 x [45]
40.0 x [45]
45.0 x [45]
48.4 x [45]
65.0 x x [51]

200.0 x x x [22]

TABLE V. Elastic scattering data for n+40Ca
reactions used in the fits.

E (MeV) dσ

d	
Ay Ref.

9.9 x x [57]
11.0 x [58]
11.9 x x [57]
13.9 x x [57,59]
16.9 x x [59]
19.0 x [60]
20.0 x [58]
21.7 x [60]
25.5 x [60]
26.0 x [58]
30.0 x [61]
40.0 x [61]
65.0 x [62]
75.0 x [62]
85.0 x [62]
95.0 x [62]

107.5 x [62]
127.5 x [62]
155.0 x [62]
185.0 x [62]

(vii) Fermi energies determined from experimental masses M

following Ref. [41], i.e.,

EF = E+
F + E−

F

2
, (16)

E+
F = MA+1 − MA − m, (17)

E−
F = MA − MA−1 − m, (18)

where m is either the proton or neutron mass and E−
F

and E+
F are the separation energies of the A and A+1

nucleon systems.

IV. INTEGRATED POTENTIALS

Ambiguities in determining potentials in standard OM fits
are well known; however, volume integrals and rms radii of
potentials are known to be better defined [6,63]. The volume
integral and rms radius of the real potential V are given by

JV =
∫

V(r)d r, (19)

RV
rms =

√∫
r2V(r)d r

JV

. (20)

Similar quantities for the imaginary JW ,RW
rms and spin-orbit

terms Jso, R
so
rms can be defined. Mahaux and Sartor used such

quantities to constrain the DOM potential [6]. Although we fit
the experimental data directly, these quantities proved useful
in choosing the parametrization of the various potentials.

As an example, the asymmetry dependence of |JW/A| is
shown in Fig. 1 at four energies. These data points were
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FIG. 1. (Color online) Asymmetry dependence of the integrated
imaginary potential. Data points are from the optical-model fits of
Ref. [45]. Lines are linear-least-square fits to these points. The
lines and data have been offset along the y axis by the indicated
amounts.

obtained from optical-model fits by McCamis et al. to their
measured p+40,42,44,48Ca elastic-scattering angular distribu-
tions [45]. For the lowest two energies (E = 21, 25 MeV),
there is a clear asymmetry dependence of JW . However, at
E = 45 and 48.4 MeV, this dependence has largely disap-
peared. The asymmetry dependence of JW therefore appears
to be confined to low energies where surface absorption
is dominant. These observations are consistent with global
optical-model fits which require an asymmetry dependence
of the surface term Ws , but not for the volume contribution
Wv [16,17]. From all published OM fits, the dependence of
|JW/A| on E − EF is plotted in Fig. 2 for the p+40Ca,
n+40Ca, and p+48Ca reactions. The fluctuations of JW are
expected to be larger in this figure as the different studies
are not consistent in the parametrizations of the potentials,
and the quality of the fits varies from study to study. As best
one can tell, the energy dependence for proton and neutron
scattering on 40Ca are identical. However for p+48Ca, the

0
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| [

M
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 f
m

3 ]
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E-E

Fermi
 [MeV]

p+
48
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p+
40

Ca

n+
40

Ca

FIG. 2. (Color online) Energy dependence of the inte-
grated imaginary potential determined from published optical-
model fits to p+40Ca, p+48Ca, and n+48Ca elastic-scattering
data.

|JW/A| values are consistently higher than for p+40Ca in
the energy regime E − EF < 40 MeV and relax toward these
values for higher energies. These results again indicate that
the surface imaginary component has the largest asymmetry
dependence and justifies our assumption that the asymmetry
dependence of the volume term can be ignored as a first
approximation.

The energy dependence of the potentials at higher energies
are determined mainly by the p+40Ca and n+40Ca data. To
further constrain the integrated potentials and rms radii in this
region, combined fits to the p+40Ca elastic-scattering data and
n+40Ca total cross sections were made. Neutron and proton
potentials for a symmetric system like 40Ca are expected to be
identical once the proton energy is corrected for the Coulomb
potential. In this work, the Coulomb correction is given by
the difference between the proton and neutron Fermi energies
(Ec = 7.20 MeV). This can be compared favorably to the
value of Ec = 7.95 MeV from the global OM parametrization
of Varner et al. [17]. Proton elastic-scattering data sets in
Table I containing both angular-distribution and analyzing-
power information were fit with a standard OM simultaneously
with the neutron total cross section interpolated from Refs.
[26–29] at an energy consistent with the Coulomb correction.
The integrated potentials and rms radii obtained from these fits
are plotted as a function of E − EF in Fig. 3. The inclusion of
the neutron cross sections in the fits reduced the fluctuations
in all of these quantities, especially for the rms radii.

A number of important trends are observed in these data.
First, the spin-orbit term Jso is approximately constant but
shows a small, but significant, decrease with energy. Second,
for the imaginary potential, RW

rms continues to decrease above
E − EF = 50 MeV, where the asymmetry dependence has
largely vanished. It is possible that the radial dependence of
the volume term Wv is itself energy dependent or that there is
an asymmetry-independent surface component that persists to
larger energies. These two possibilities are indistinguishable
in practice, since adding a small surface correction to a volume
component is equivalent to modifying the radius of the volume
component. Finally for the real potential, RV

rms shows much less

]3
 [

M
eV

 f
m

-400

-200
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200
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FIG. 3. (Color online) (a) Integrated potentials and (b) rms radii
obtained from combined fits to p+40Ca elastic-scattering data and
n+40Ca total cross sections.
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energy dependence and may increase at the highest energies.
The latter may be an indication of a “wine-bottle”-shaped
potential (see Sec. V).

V. PARAMETRIZATION OF THE POTENTIALS

The imaginary potential is composed of the sum of the
volume, surface, and imaginary spin-orbit components,

W(r, E) = −Wv(E)f (r, rv, av)

+ 4asWs(E)
d

dr
f (r, rs, as) + Wso(r, E),

with Woods-Saxon form factors

f (r, ri, ai) = 1

1 + e
r−ri A

1/3

ai

. (21)

Two contributions to the surface imaginary potential have
been included: one dependent and the other independent of
asymmetry, i.e.,

Ws(E) = W 0
s (E) + D(N,Z)W 1

s (E). (22)

The asymmetry-dependent factor D(N,Z) for protons is just

Dp(N,Z) = N − Z

A
. (23)

In Sec. VII B two different asymmetry dependences Dn(N,Z)
for neutrons will the discussed. However, based on the the
integrated potential in Sec. IV, we assume the neutron and
proton potentials are identical for 40Ca, i.e., Dp = Dn = 0.
Both surface terms have been parametrized by the same form,
which is assumed symmetric about EF . The latter form is taken
from our previous work [18] and consists of the difference of

two functions that cancel at large energies,

Wi
s (E) = ω4

(
E,Ai

s, B
i
s1, 0

)
−ω2

(
E,Ai

s, B
i
s2, C

i
s

)
, (24)

ωn

(
E,Ai

s, B
i
s , C

i
s

) = Ai
s �(X)

Xn

Xn + (
Bi

s

)n , (25)

where �(X) is Heaviside’s step function and X = |E − EF | −
Ci

s . The functions ωn are very practical for constructing the
imaginary potentials, as there are analytical expressions for
the corresponding dispersion integrals [64,65]. Figure 4(a)
demonstrates the relationship between the shape of Wi

s (E)
and its four defining parameters As, Bs1, Bs2, and Cs . It is
important to note that the present treatment of the optical
potential generates an �j -independent representation of the
nucleon self-energy, apart from the spin-orbit contribution
which is explicitly included. Details of the pole structure of
the nucleon self-energy [1] at very low energy that depend on
angular momentum and parity are therefore only treated in an
average way.

The phase space of particle levels for E � EF is signifi-
cantly larger than that of hole levels for E � EF . Therefore the
contributions from two-particle–one-hole states for E � EF

will be larger than that for two-hole–one-particle states at
E � EF . Thus at energies well removed from EF , the form of
the volume imaginary potential should no longer be symmetric
about EF . Hence the following form was assumed:

Wv(E) = ω4(E,Av, Bv, 0) + �WNM(E), (26)

where �WNM(E) is the energy-asymmetric correction mod-
eled after nuclear-matter calculations. Apart from this cor-
rection, the parametrization is just the Jeukenne and Mahaux
form [66] used in many DOM analyses.

The energy-asymmetric correction was taken as

�WNM(E) =


α

[√
E + (EF +Ea )3/2

2E
− 3

2

√
EF + Ea

]
for E − EF > Ea,

−ω2(E,Av,Ea, 0, Ea) for E − EF < Ea,

0 otherwise.

(27)

This is the same form as assumed in Ref. [6], except for
E − EF < Ea , where the form is slightly different but has
the advantage of making the calculation of the dispersive
correction easier. The parameter α defines the magnitude of the
asymmetry correction for E > EF [see Fig. 4(b)], and Mahaux
and Sartor assumed a value of α = 1.65 MeV1/2. However,
the value of this quantity is not constrained theoretically. For
example, nuclear-matter calculations with the CDBonn and
ArV18 interactions predict very different behavior, see Fig. 2
of Ref. [67]. Fitting these calculated imaginary potentials
with Eqs. (26) and (27), we obtained values of α ≈ 0 and
α = 2.2 MeV1/2 for the two interactions, respectively. In the
DOM analysis, the larger values of α do not give good fits,

otherwise the value is not well constrained. Subsequently, we
have used a fixed, intermediate value of α = 0.61 MeV1/2.
The uncertainty in α gives rise to uncertainties in the absolute
values of the predicted spectroscopic factors and occupation
probabilities [6,18].

The dependence of Wv(E) on its defining parameters
(Av,Bv , Ea , and α) is shown in Fig. 4(b). We note
that the effect of the energy asymmetry in the volume
potential is mainly confined to the deeply bound orbits.
In the present description, few data are available to con-
strain this energy asymmetry. This situation would likely
improve if charge densities could be included in the fit
procedure.
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The Hartree-Fock potential is parametrized in the following
way:

VHF(r, E) = −V Vol
HF (E) f (r, rHF, aHF)

+ 4V sur
HF

d

dr
f (r, rHF, aHF) + Vc(r) + Vso(r, E),

where the Coulomb Vc and real spin-orbit Vso terms have
been separated from the volume and surface components.
The volume component contains the energy dependence
representing nonlocality, which was assumed to be linear
below the Fermi energy and by a sum of two exponentials
above. The two forms are matched at the Fermi energy as

V Vol
HF (E) =

{
AHF exp

[
−BHF

AHF
(E − EF )

]
+ CHF exp

[
−DHF

CHF
(E − EF )

]
for E > EF ,

AHF − BHF(E − EF ) + CHF − DHF(E − EF ) for E < EF .
(28)

As it is important to have the correct Fermi energy in
the DOM, the quantity AHF (related to the depth of the
Hartree-Fock potential) was not fit, but adjusted to reproduce
this quantity. In addition to the standard volume term, a surface
term V sur

HF is also included. In the fits, V Vol
HF dominates V sur

HF
for all but the highest energies. Here the surface and volume
components combine to give a “wine-bottle” shape. There is
both theoretical and experimental evidence to support such a
potential. Relativistic and nonrelativistic nuclear-matter cal-
culations suggest that the magnitude of the real optical-model
potential should decrease faster with energy for saturated than
for lower density nuclear matter [22,68,69]. When combined
with a local-density or more sophisticated approximations, the
predicted potentials for finite nuclei have wine-bottle shapes
for proton energies around 180–200 MeV [22,70–72]. Satchler
has also indicated that a wine-bottle potential allows the
description of both elastic and inelastic scattering data at these
high energies [73]. The inclusion of a real surface contribution
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FIG. 4. (Color online) Typical energy dependences of (a) the
surface and (b) the volume imaginary potentials. In each case, the
meanings of the defining parameters are indicated. For the volume
term in (b), the dashed curve indicates the symmetric potential,
before the energy asymmetry correction �WNM is added.

causes the predicted values of RV
rms to increase at the largest

energies as suggested in Fig. 3. It was also found to improve
the quality of the fits for these energies.

At high energies, OM potentials generally include an
imaginary spin-orbit potential [43]. Given that this term is
usually assumed to be zero for lower energies, this implies
that the imaginary spin-orbit term is energy dependent. As
such, it should give rise to a dispersive correction to the real
component. Given these considerations, the total spin-orbit
potential was taken as

Uso(r, E) = Vso(r, E) + iWso(r, E)

= �Vso(r, E) +
(

h̄

mπc

)2

[Vso − CsoE

+ iWso(E)]
1

r

d

dr
f (r, rso, aso)

� · s
2

,

where (h̄/mπc)2 = 2.0 fm2 and �Vso is the dispersive correc-
tion determined from the imaginary component Wso. As the
imaginary spin-orbit component is generally needed only at
high energies, we chose the form

Wso(E) = ω4(E,Aso, Bso, 0). (29)

The dispersive correction �Vso(E) associated with this com-
ponent from Eq. (4) gives an approximately linear decrease in
magnitude of the total real spin-orbit strength over the energy
region of interest. Through the term Cso, we also include
the possibility of an additional linear decrease in the real
spin-orbit strength due to nonlocality. However, in the final
fit, the Cso term is very small (Table VI), suggesting that the
dispersive term accounts for most of the energy dependence.
Thus, imposition of causality provides a natural way to account
for all the linear decrease in the magnitude of the integrated
potential Jso observed in Fig. 3.

VI. FIT RESULTS

Comparisons of experimental and fitted elastic scattering
data are shown in Figs. 5 and 6 for differential cross sections
and analyzing powers, respectively. Fitted reaction and total
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FIG. 5. (Color online) Comparison of experimental (data) and fitted (curves) differential elastic-scattering cross sections. For display
purposes, both data and curves for successively larger energies are scaled down by a factor of 4. For p+42Ca, the data and curves are scaled
down by an additional factor of 100.

cross sections are displayed in Fig. 7, while the fitted bound-
state data from (e, e′p) results are shown in Fig. 8, and the
level energies are compared in Fig. 9. The fit parameters are
listed in Table VI. For such a large body of data (81 data
sets comprising 3569 data points), the excellent agreement

of the fit with just 25 free parameters provides confidence in
the predictive power of the DOM calculations. For example,
Figs. 10 and 11 compare the DOM predictions to data not
included in the fit. The predicted spin-rotation parameters for
proton reactions in Fig. 10 describe the experimental data quite
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FIG. 6. (Color online) Comparison of experimental and fitted analyzing powers. The data points depicted by the solid circles, solid squares,
open circles, open squares, and triangles are for the p+40Ca, p+48Ca, p+42Ca, p+44Ca, and n+40Ca reactions, respectively.
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TABLE VI. Parameters describing the OM potential
obtained from fitting of the data.

BHF = 0.415 MeV, CHF = 18.29 MeV,
DHF = 0.153 MeV
V sur

HF = 1.81 MeV, rHF = 1.19 fm, aHF = 0.70 fm

A0
s = 6.19 MeV, B0

s1 = 9.82 MeV, B0
s2 = 36.94 MeV

C0
s = 58.1 MeV

A1
s = 110.34 MeV, B1

s1 = 7.82 MeV, B1
s2 = 17.70 MeV

C1
s = 30.0 MeV

rs = 1.27 fm, as = 0.64 fm

Av = 6.18 MeV, Bv = 47.85 MeV
rv = 1.38 fm, av = 0.63 fm
Ea = 60 MeV (fixed), α = 0.61 MeV1/2 (fixed)

Vso = 5.51 MeV, Aso = −4.38 MeV, Bso = 208.6 MeV
rso = 1.058 fm, aso = 0.67 fm, Cso = −4.5 × 10−4

rC = 1.31 fm (fixed)

well. In Fig. 11, the widths of neutron levels in 40Ca determined
from transfer reactions are also well reproduced. We also note
that parameters such as radii and diffuseness properties in
Table VI have values that are quite standard.
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VII. DISCUSSION

A. Potentials

The energy dependence of the potentials is shown in Fig. 12.
The Hartree-Fock potential VHF is dependent on the parameter
AHF which is adjusted for each system. The potential plotted in
Fig. 12 is for the p+40Ca system. For the other systems, while
the absolute potential will be different, the relative energy
dependence is the same.

The two imaginary surface potentials have quite different
energy dependences. The asymmetry-dependent or isovector
component W 1

s rises and falls faster with |E − EF | than the
isoscalar component W 0

s . This is consistent with our previous
work, in which the minimum around the Fermi energy for
the total imaginary potential was found to be narrower for
p+48Ca compared to p+40Ca [18]. The elastic-scattering and
other positive-energy data constrain the falling part of these
potentials, while the rising part is constrained by the (e, e′p)
data and the level energies. It is therefore essential to have
both positive and negative energy data to fully constrain these
potentials.

The fitted potentials are consistent with the integrated
potentials and rms radii for the p+40Ca reaction presented in
Fig. 3. The curves in this figure indicate the DOM predictions.
The slow falloff with energy of the isoscalar surface potential
W 0

s (seen in Fig. 12) is responsible for the slow falloff of the
RW

rms values in Fig. 3(b). The faster falloff for the isovector

 [MeV]
nlj

E
-30 -20 -10 0

 [
M

eV
]

Γ

0

2

4

Ca40n + 

FE

FIG. 11. (Color online) Comparison of experimental and pre-
dicted widths of neutron states in 40Ca.
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FIG. 12. (Color online) Potentials determined from the fit. The
Hartree-Fock potential VHF is for p+40Ca, while the other potentials
are system independent.

component is required in order for the JW values of Figs. 1
and 2 to be largely asymmetry independent by 50 MeV. The
surface Hartree-Fock component is responsible for the small
increase of RV

rms at the larger energies.

B. Neutron asymmetry dependence

Asymmetry dependences of global optical-model potentials
are based on the Lane model [74]. If the nuclear force is charge
independent, the optical-model potential for nucleon scattering
can be written in the form

U = v0 + t · T
A

v1, (30)

where t and T represent the nucleon and target isospin
operators, and v0 and v1 depend in general on position and
energy but not on N or Z. For proton and neutron scattering
off a target of isospin T0 with projection T0, the mean potential
is

U p

n
=

〈
1

2
∓ 1

2
T0T0

∣∣∣∣U ∣∣∣∣1

2
∓ 1

2
T0T0

〉
= v0 − (±)

N − Z

A

v1

4
. (31)

The real part of the ±N−Z
A

v1 term is associated with the
symmetry energy. Global OM parametrizations [16,17] also
include a ±N−Z

A
dependence for the surface imaginary poten-

tial. Therefore let us consider the consequences of using the
standard OM asymmetry dependence in the DOM by setting

D
p

n

1 (N,Z) = ±N − Z

A
. (32)

For neutrons, this implies that the asymmetry dependence is
of the same magnitude but of opposite sign to the fitted proton
dependence.

Figure 13 shows experimental total reaction cross sections
for n+44Ca. The DOM predictions obtained with Eq. (32)
are indicated by the dashed curve and reproduce these
experimental results very well.

Neutron spectroscopic factors extracted in a consistent
analysis of (p, d) and (d, p) transfer reactions on Ca isotopes
[75] are plotted in Fig. 14 as a function of A. Again the
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DOM predictions obtained with Eq. (32) are indicated by
the dashed curve. One should compare the A dependence of
the spectroscopic factors, not the absolute values, as both the
data and predictions have absolute uncertainties. Given the
fluctuations in the data points, the dashed curve cannot be
discounted. However, the experimental data do not show any
indication of the rise in the spectroscopic factor with A as
suggested by the dashed curve.

In the end, the asymmetry dependence for neutrons implied
by Eq. (32) has to be abandoned, as it leads to pathological
problems in neutron-rich Ca isotopes. For example, Fig. 15
shows the extrapolated surface potentials Ws(E) for the
p+50Ca and n+50Ca reactions obtained with Eq. (32). The
neutron potential is negative over small energy intervals either
side of EF . As the volume potential is essentially zero for these
energies, the total imaginary potential is also negative. In such
a case, there is no absorption, but there is unphysical creation
of neutrons!

Given the unphysical result for neutrons with the standard
OM asymmetry dependence, it is useful to examine how well
the asymmetry dependence is determined by OM fits. For
this purpose, we searched for other studies that measured
elastic scattering for a long chain of isotopes at a fixed
energy. We restricted the search to bombarding energies
in the 15 < E < 30 MeV range to avoid compound-elastic
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FIG. 14. (Color online) Data points indicate spectroscopic factors
deduced by Lee et al. [75] for valance neutron hole and particle states
in Ca isotopes using (p, d) and (d, p) reactions. The spectroscopic
factors are expressed as a percent of the independent-particle-model
value. The DOM predictions with the asymmetry dependences D1

[see Eq. (32)] and D2 [Eq. (39)] are indicated by the points connected
with dashed and solid lines, respectively.
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FIG. 15. (Color online) Surface imaginary potentials for p+50Ca
(solid thick curves) and n+50Ca (dashed thick curves) obtained
with the D1(N,Z) asymmetry dependence. The thin-dashed curves
indicate the magnitude of the isovector components while the thin-
solid curves are for the isoscalar components.

processes, but where the energies were low enough such that
the surface imaginary component was still dominant. In each
of the chosen cases, the elastic scattering was measured and
fit consistently for each isotope in the chain by the authors
of the respective studies. Figure 16 shows systematics of the
integrated imaginary potential JW from these cases, and the
lines are fits to the data points. For neutrons [Fig. 16(a)], only
one study of n+AMo [76] was found; whereas for protons
[Fig. 16(b)], studies of seven reactions from p+ACa to p+ASn
[45,77–80] were found. As for the low-energy data in Fig. 1,
all the proton reactions show a clear increase in the magnitude
of JW with asymmetry.

Based on the assumed asymmetry dependence of Eq. (32),
|JW/A| would be expected to decrease with asymmetry
for neutrons. In fact, as the p+AMo and n+AMo data in
Figs. 16(a) and 16(b) are for similar bombarding energies,
the slopes of their asymmetry dependences are expected to
be approximately equal but opposite in sign. This is not
the case, the neutrons in fact show very little asymmetry
dependence. It should be noted that the n+AMo data set
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FIG. 16. (Color online) Integrated imaginary potentials for
(a) neutrons and (b) protons as a function of asymmetry. The data
points are from the elastic-scattering studies of Refs. [45,76–80]. The
lines are linear least-square fits to these data. For display purposes,
the data and lines are shifted along the y axis by the amounts indicated
in parentheses.
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was rejected from the CH89 global optical-model fit [17], as
these data could not be fit with the assumed parametrization.
This fact suggests that either the n+AMo data are suspect
and not representative or the assumed asymmetry dependence
[Eq. (32)] is incorrect. Therefore unlike for protons, the sign
and magnitude of the asymmetry dependence for neutrons has
not been established in prior studies, and thus there is a need
for future measurements to address this.

Satchler [81] gives a microscopic justification of the
standard asymmetry dependence [Eq. (32)] based on the
average interaction of a projectile nucleon with the individual
target nucleons. Taking into account the difference between
the mean in-medium neutron-proton 〈σnp〉 and proton-proton
〈σpp〉 scattering cross sections, the imaginary potential is

Wp = h̄vρN

2

(
N

A
〈σnp〉 + Z

A
〈σpp〉

)
(33)

= h̄vρN

4
(〈σnp〉 + 〈σpp〉)

+ N − Z

A

h̄vρN

4
(〈σnp〉 − 〈σpp〉) (34)

= W0 + N − Z

A
W1, (35)

where v is the incident nucleon’s velocity inside the target
nucleus which has a nucleon density of ρN . Similarly, for an
incident neutron,

Wn = h̄vρN

2

(
N

A
〈σnn〉 + Z

A
〈σnp〉

)
(36)

= h̄vρN

4
(〈σnp〉 + 〈σnn〉)

− N − Z

A

h̄vρN

4
(〈σnp〉 − 〈σnn〉), (37)

as 〈σnn〉 � 〈σpp〉, then

W
p

n = W0 ± N − Z

A
W1. (38)

The correlations implicit is this derivation are short range
and thus are applicable to the volume imaginary potential.
Therefore, this potential should have an isovector term of
strength ±N−Z

A
. In the present work, we have assumed that

this term is small relative to the asymmetry dependence of
the surface potential, but for infinite nuclear matter this term
will give the total asymmetry dependence of the imaginary
potential. It will be responsible for the asymmetry dependence
of the occupation probabilities in infinite nuclear matter such
as those predicted in Ref. [3].

For surface absorption, the situation is more complex. The
total absorption is a result of couplings of the incident nucleon
to many collective modes. Thus the overall asymmetry depen-
dence may have contributions from many of these modes. Let
us consider just a few of the possible long-range correlations,
i.e., collective vibrations and Gamow-Teller resonances. These
correlations are illustrated in Fig. 17. The couplings of particles
and holes to collective 2+ vibrational modes are considered in
Figs. 17(a) and 17(b), respectively. From parity considerations,
the collective 2+ mode must be comprised of particle-hole
excitations, where the particles and holes have the same parity.
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FIG. 17. (Color online) Feynman diagrams of important long-
range correlations considered in this work. These include couplings
of (a) particles and (b) holes to collective 2+ vibrations. Couplings
to giant Gamow-Teller resonances are diagramed in (c) and (d) for
nuclei with N > Z and in (e) and (f) for N < Z. The Gamow-Teller
resonances are labeled by the sign of the change in isospin projection
�MT = ±1.

For 40Ca, particles will be in the negative parity fp shell, while
holes are in the positive parity sd shell. These vibrational
excitations will therefore be suppressed in 40Ca. In going to
48Ca by adding neutrons to the 0f 7

2
level, the collective 2+

strength should be stronger as neutron particles and holes are
both in the fp shell. As protons and neutrons (particles and
holes) can couple to these collective 2+ excitations, then for
both particle types, the contribution to the surface imaginary
potential from these couplings will increase in going from 40Ca
to 48Ca.

The sum-rule strength of the giant Gamow-Teller resonance
has a strong asymmetry dependence and thus coupling to
this resonance may be important. For N > Z, only proton
particles [Fig. 17(c)] and neutron holes [Fig. 17(d)] couple
to the Gamow-Teller with the change in isospin projection
of �MT = −1, while for N < Z, only neutron particles
[Fig. 17(e)] and proton holes [Fig. 17(f)] couple to the
Gamow-Teller with �MT = +1. These possible couplings
are governed by isospin selection rules. Parity conservation
is also important in these coupling schemes. For example, in
Fig. 17(d), the typical neutron hole in 48Ca has negative
parity (0f 7

2
level). In the charge-changing interaction, this

neutron couples to a proton hole and the 1+ Gamow-Teller
resonances. As the latter have positive parity, the proton hole
must have negative parity. However, typical proton holes in
48Ca (sd shell) have positive parity, so these interactions will
be suppressed.

For proton elastic scattering, we would expect an increase in
absorption in going from 40Ca to 48Ca because of the coupling
to the Gamow-Teller collective mode. On the other hand,
we expect no change for neutrons, as they do not couple to
this resonance. Also, as particles and holes do not couple
to this resonance in the same manner, the surface imaginary
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potential may not be symmetric about the Fermi energy as
assumed in Eq. (24). We also note that interference between
different modes may occur that can be described in the Faddeev
formalism developed in Ref. [82] and applied in Ref. [83].

The examples of coupling to vibrational and Gamow-
Teller collective modes clearly indicate that an asymmetry
dependence different from the ±N−Z

A
dependence assumed in

global OM might be expected from long-range correlations.
However, given that the surface potential contains absorption
from coupling to many different collective modes, one cannot
at present predict the relationship between the dependences
for neutron and protons. We have also shown experimentally
that the asymmetry dependence for neutron particles in elastic
scattering is not determined. Given these uncertainties, we
have chosen to investigate the consequences of setting the
asymmetry dependence for neutrons to zero. Thus we consider
a second asymmetry dependence

D
p

2 (N,Z) = N − Z

A
, Dn

2 = 0. (39)

Such a dependence is suggested by the flat behavior of JW/A

for the n+AMo data in Fig. 16(a). The predicted total reaction
cross sections for n+44Ca are now indicated by the solid curve
in Fig. 13. Both this curve and the dashed curves obtained with
the first parametrization [Eq. (32)] are almost identical and in
good agreement with the data. Therefore this quantity is not
very sensitive to the asymmetry dependence.

The mass dependence of neutron spectroscopic factors is
shown in Fig. 14. The new predictions (solid curve) have
a rather flat mass dependence significantly different from
the previous predictions (dashed curve) obtained with Dn

1
[Eq. (32)]. The new predicted dependence is not unexpected,
because the imaginary potential is now independent of
asymmetry, and thus the spectroscopic factors should have
little A dependence. In fact, this dependence seems to be
more consistent with the experimental data than that based
on Dn

1 . Finally as Dn
2 = 0, there is no possibility of having an

unphysical imaginary potential which changes sign.
Energies of bound neutron levels for 42−48Ca are also

compared to DOM predictions in Fig. 9. While the energies of
the 0f and 1p levels are reasonably well described, there
is an apparent discrepancy for the 0d3/2 and 1s1/2 levels,
which are almost degenerate. This discrepancy worsens for
the heavier Ca isotopes where these levels approach the 0f7/2

level. A similar discrepancy also exists when compared with
the prediction of the first asymmetry dependence D1. It is
difficult to understand these experimental results. In the DOM,
one would require a large dispersive correction to push these
levels toward the 0f7/2 state, and this would have serious
consequences for levels on the other side of the Fermi energy,
which are not observed.

It may be that the full strengths of the 0d3/2 and 1s1/2

levels have not been observed experimentally and that there is
missing strength at lower energies that would pull down the
average energies of these levels in line with the predictions.
For 48Ca, the worst case, the observed strengths of the 0d3/2

and 1s1/2 levels are confined to a single fragment, and any
missing strength must be in the continuum. In (p, d) reactions,
the observed fragments are reported to have a spectroscopic
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FIG. 18. (Color online) Predicted n+48Ca elastic-scattering dif-
ferential cross sections at 11 and 17 MeV. The solid and dashed curves
were obtained with the D1 and D2 asymmetry dependences, while
the dotted curves assume the same imaginary potential as fitted for
protons.

strength close to the IPM limit [84,85]. If this is correct, then
there is no significant missing strength indicating that there
is some important physics missing from our DOM analysis.
On the other hand, for (d, t) reactions, the reported strength
of these fragments is significantly less [86]. For example,
the 0d3/2 fragment carries only 30% of the single-particle
strength in the (d, t) reaction, while Ref. [85] reports 90%.
This suggests that it is useful to initiate a search for missing
strength to clarify the situation.

Finally, let us consider the sensitivity of the elastic-
scattering differential cross section to the form of D(N,Z).
Figure 18 shows predicted n+48Ca differential cross sections
at energies of 11 and 17 MeV. The solid and dashed curves
show the predictions with D1 and D2. For the dotted curves,
we used the same imaginary potential as fitted for protons.
The large dependence of the magnitude of these differential
cross sections on the asymmetry dependence of the imaginary
potential suggests that measurements of these quantities could
significantly improve our knowledge of neutron correlations.

C. Extrapolating to the drip lines

To extrapolate beyond the region of known masses, one
must estimate the Fermi energies for these nuclei. The Fermi

(N-Z)/A
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FIG. 19. (Color online) Asymmetry dependence of the parameter
AHF for both protons (squares) and neutrons (circles). The data
points were obtained in the DOM calculations by reproducing the
experimental Fermi energies. The lines are fits to these results.
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FIG. 20. (Color online) Chart of nuclides in the region of Ca showing the known isotopes. The shaded region for Ca indicates the predicted
isotopes that are particle bound using the D2 asymmetry dependence. The darker boxes correspond to stable nuclei.

energy is related to the parameter AHF. The value of this
quantity determined from DOM calculations with D2(N,Z)
is plotted as a function of asymmetry in Fig. 19 for the region
of known Ca masses. They follow the expected behavior
consistent with the Lane potential in Eq. (31). The lines in
Fig. 19 are fits to these results with

A
p

n

HF = 38.5 ± 33.5
N − Z

A
MeV.

With these values of AHF, the Fermi energy in the region
of unknown masses is determined by an iterative procedure.
Starting with an initial value of EF , DOM predictions for the
valence levels are made from which a new value of EF is
determined. The proton and neutron energy levels determined
by this procedure are displayed in Fig. 9.

From these levels, we determined the proton and neutron
drip lines. Figure 20 shows the chart of nuclides in the Ca
region, where the predicted bound Ca isotopes are shaded. The
last proton-bound nucleus is predicted to be 33Ca for which the
0d3/2 proton is bound by 0.4 MeV. Experimentally, the 34Ca
nucleus is thought to be proton unbound, while 35Ca is proton
bound [87]. On the neutron-rich side, the predictions indicate
that there may not be a well-defined separation between
neutron-bound and unbound nuclei. We predict that 60Ca and
70Ca are neutron bound, but the intermediate nuclides are
unbound. 60Ca is predicted to be bound by 4.5 MeV and 70Ca
by only 170 keV. If neighboring nuclei in the N = 50 shell are
also bound, one can envisage a reef of particle-stable nuclei
offshore from the mainland of other particle-bound systems.
While these predictions have considerable uncertainty because
of the degree of extrapolation and the need for confirmation
of the assumed neutron asymmetry dependence, they suggest
the possibility of a more complicated neutron-drip region

 [MeV]FermiE-E
-40 -20 0

O
cc

u
p

at
io

n

0

0.5

1

 protons

Ca40

Ca48Ca60

FIG. 21. (Color online) Occupation probabilities predicted for
protons in 40Ca (circles), 48Ca (squares), and 60Ca (triangles).

than commonly anticipated. In the future, when data at larger
asymmetries for protons and neutrons can be included in the
DOM analysis, it should be possible to generate a more reliable
extrapolation to the drip lines.

D. Occupation probabilities

With the fitted potentials, occupation probabilities calcu-
lated for protons in 40Ca and 48Ca are displayed in Fig. 21.
Results extrapolated for 60Ca are also shown. There is some
uncertainty associated with the absolute values of these prob-
abilities. For instance, the parameter α, defining the energy
asymmetry of the volume imaginary potential (see Sec. V),
is not constrained in the fits, and variation of this parameter
leads to scaling of the occupation probabilities [6,18]. One
should therefore concentrate on the relative difference in the
probabilities between the three isotopes. The protons show
a significant difference: compared to 40Ca, the occupation
probabilities for 48Ca and 60Ca are further reduced from unity
below the Fermi surface and further enhanced from zero above.
The predicted effect is larger for 60Ca. This implies that protons
feel stronger correlations in the more neutron-rich nucleus. The
differences in occupation are mainly confined to levels near the
Fermi surface. The 0s and 0p levels show very little asymmetry
dependence. Their occupation probabilities are dominated
by the effects of short-range correlations. Their asymmetry
dependence is therefore more strongly connected to any
asymmetry dependence of the volume imaginary component,
which is absent in the present calculations.

The predictions for neutrons obtained with Eq. (39) are
shown in Fig. 22. They show little asymmetry dependence,
which is not surprising as the strength of surface imaginary
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FIG. 22. (Color online) Same as Fig. 21, but for neutrons.
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FIG. 23. (Color online) Predicted effective masses relative to
the nucleon mass for protons. The momentum-dependent effective
masses m̃/m in 40Ca are given by the dotted curve; results for 48Ca
are similar. The energy-dependent effective masses are indicated by
the dashed curves, while the solid curves represent the total effective
masses. Thick and thin curves identify 40Ca and 48Ca, respectively.

potential is assumed to be identical for all three Ca isotopes,
i.e., D2 = 0.

E. Effective masses

Proton effective masses at the corresponding Fermi energy
EF obtained from the DOM calculations are plotted in
Fig. 23. The momentum-dependent effective masses m̃/m are
shown only for 40Ca. The results for 48Ca are similar with
a slightly larger radius. As for the occupation probabilities,
the proton’s energy-dependent m/m and total m∗/m effective
masses show significant difference between 40Ca and 48Ca.
The larger surface imaginary component for 48Ca gives rise to
an increased enhancement of the proton effective mass in the
surface.

F. Neutron knock-out reactions

Our study of correlations has only addressed nuclei with
N � Z. In the case of N < Z, the role of the protons and
neutrons should be reversed, and thus instead of Eq. (39),
we might consider a different asymmetry dependence in this
region, i.e.,

D
p

3 (N,Z) = 0, Dn
3 (N,Z) = −N − Z

A
. (40)

Qualitatively such a dependence for neutrons is supported by
the small spectroscopic factors measured in neutron knock-out
reactions from proton-rich nuclei and thus require a large
imaginary potential. Gade et al. found the spectroscopic factor
for the 0d 5

2
neutrons in 32Ar was only 24% of that predicted

by many-body shell-model theory [4] and thus even a smaller
percentage of the IPM value. This is an exceedingly small
spectroscopic factor for a valence level. Compare this to
the spectroscopic factors of 0d 3

2
protons which change from

65.5%±4.8% to 56.5%±4.0% of the IPM value in going from

40Ca to 48Ca [38,39]. To achieve such a small value for neutrons
in 32Ar with the DOM (using the D3 asymmetry dependence),
the magnitude of W 1

s must be significantly larger than we
determined for protons. These results indicate the need for
measurements of elastic scattering and other data for N < Z

to allow the extension of the present DOM analysis to this
region to provide a more global view of correlations.

VIII. CONCLUSIONS

A dispersive-optical-model analysis of elastic-scattering
angular distributions, analyzing powers, reaction and total
cross sections, single-particle level energies, widths, rms
radii, and spectroscopic factors was undertaken to deduce
the optical-model potential at both positive and negative
energies. The asymmetry dependence of the surface imaginary
potential for protons was constrained for Ca isotopes by fitting
p+40,42,44,48Ca and n+40Ca data. However, for neutrons, there
are not enough existing data to constrain the asymmetry
dependence. Therefore two asymmetry dependencies for
neutrons were considered. The first, based on global optical-
model fits where the asymmetry dependence for neutrons
is of the same magnitude but opposite sign, was found
to give unphysical results for heavy Ca isotopes. We also
considered the consequences of neutrons having no asymmetry
dependence. This was found to better describe systematics of
spectroscopic factors in (d, p) or (p, d) reactions.

From the fitted potentials, the occupation probabilities and
effective masses were derived. These indicate that for N >

Z, protons experience stronger correlations for heavier Ca
isotopes. This is reflected in reduced (enhanced) occupation
probabilities just below (above) the Fermi surface and the
enhanced effective mass in the nuclear surface.

The dispersive optical provides a natural framework for
data-driven extrapolations to the drip lines. In the present
work, single-particle levels were extrapolated to heavier and
lighter Ca isotopes and the proton and neutron drip lines were
calculated. The predicted proton drip line is at 33Ca whereas
the experimental location is at 35Ca. On the neutron-rich side, it
is predicted that 60Ca and 70Ca are bound, but the intermediate
nuclides are not. With future proton and neutron data at more
extreme asymmetries, a more reliable extrapolation can be
expected.
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A263, 210 (1976).
[36] M. Matoba, O. Iwamoto, Y. Uozumi, T. Sakae, N. Koori,

T. Fujiki, H. Ohgaki, H. Ijiri, T. Maki, and M. Nakano, Phys.
Rev. C 48, 95 (1993).

[37] Y. Uozumi, N. Kikuzawa, T. Sakae, M. Matoba, K. Kinoshita,
T. Sajima, H. Ijiri, N. Koori, M. Nakano, and T. Maki, Phys.
Rev. C 50, 263 (1994).

[38] G. J. Kramer, H. P. Blok, J. F. J. van den Brand, H. J. Bulten,
R. Ent, E. Jans, J. B. J. M. Lanen, L. Lapikás, H. Nann, E. N.
M. Quint et al., Phys. Lett. B227, 199 (1989).

[39] G. J. Kramer, H. P. Blok, and L. Lapikás, Nucl. Phys. A679, 267
(2001).

[40] L. Lapikás (private communication).
[41] J.-P. Jeukenne, C. Mahaux, and R. Sartor, Phys. Rev. C 43, 2211

(1991).
[42] J. F. Dicello, G. Igo, W. T. Leland, and F. G. Perey, Phys. Rev.

C 4, 1130 (1971).
[43] W. T. H. van Oers, Phys. Rev. C 3, 1550 (1971).
[44] E. T. Boschitz, R. W. Bercaw, and J. S. Vincent, Phys. Lett. 13,

322 (1964).
[45] R. H. McCamis, T. N. Nasr, J. Birchall, N. E. Davison, W. T.

H. van Oers, P. J. T. Verheijen, R. F. Carlson, A. J. Cox, B. C.
Clark, E. D. Cooper et al., Phys. Rev. C 33, 1624 (1986).

[46] D. L. Watson, J. Lowe, J. C. Dore, R. M. Craig, and D. J. Baugh,
Nucl. Phys. A92, 193 (1967).

[47] V. Hnizdo, O. Karban, J. Lowe, G. W. Greenlees, and
W. Makofske, Phys. Rev. C 3, 1560 (1971).

[48] L. N. Blumberg, E. E. G. Gross, A. van der Woude, A. Zucker,
and R. H. Bassel, Phys. Rev. 147, 812 (1966).

[49] R. M. Craig, J. C. Dore, J. Lowe, and D. L. Watson, Nucl. Phys.
86, 113 (1966).

[50] C. B. Fulmer, J. B. Ball, A. Scott, and M. L. Whiten, Phys. Rev.
181, 1565 (1969).

[51] T. Noro, H. Sakaguchi, M. Nakamura, K. Hatanaka, F. Ohtani,
H. Sakamoto, and S. Kobayashi, Nucl. Phys. A366, 189 (1981).

[52] P. Schwandt, H. O. Meyer, W. W. Jacobs, A. D. Bacher, S. E.
Vigdor, M. D. Kaitchuck, and T. R. Donoghue, Phys. Rev. C 26,
55 (1982).

[53] H. Seifert, Ph.D. thesis, University of Maryland, 1990.
[54] C. Rolland, B. Geoffrion, N. Marty, M. Morlet, B. Tatischeff,

and A. Willis, Nucl. Phys. 80, 625 (1966).
[55] H. S. Liers, Nucl. Phys. A170, 616 (1971).
[56] J. C. Lombardi, R. N. Boyd, R. Arking, and A. B. Robbins, Nucl.

Phys. A188, 103 (1972).
[57] W. Tornow, E. Woye, G. Mack, C. E. Floyd, K. Murphy, P. P.

Guss, S. A. Wender, R. C. Byrd, R. L. Walter, T. B. Clegg et al.,
Nucl. Phys. A385, 373 (1982).

[58] J. Rapaport, J. D. Carlson, D. Bainum, T. S. Cheema, and R. W.
Finlay, Nucl. Phys. A286, 232 (1977).
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