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Spin-isospin nuclear response using the existing microscopic Skyrme functionals
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Dipartmento di Fisica, Università degli Studi and INFN, Sezione di Milano, I-20133 Milano, Italy
(Received 15 April 2007; revised manuscript received 22 June 2007; published 9 October 2007)

Our paper aims at providing an answer to the question of whether one can reliably describe the properties of the
most important spin-isospin nuclear excitations by using the available nonrelativistic Skyrme energy functionals.
Our method, which has been introduced in a previous publication devoted to the isobaric analog states, is the
self-consistent quasiparticle random-phase approximation (QRPA). The inclusion of pairing is instrumental for
describing a number of experimentally measured spherical systems which are characterized by open shells. We
discuss the effect of isoscalar and isovector pairing correlations. Based on the results for the Gamow-Teller
resonance in 90Zr, 208Pb, and a few Sn isotopes, we draw definite conclusions on the performance of different
Skyrme parametrizations, and we suggest improvements for future fits. We also use the spin-dipole resonance as
a benchmark of our statements.
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I. INTRODUCTION

The special role played by the spin-isospin modes for the
detailed understanding of the structure of nuclei has been
pointed out over the past several decades. The subject has been
treated in review papers [1] and textbooks [2]. Spin-isospin
transitions can occur spontaneously in the case of β decay.
The simplest case is that of the Gamow-Teller (GT) transitions,
whose corresponding operator is

�OGT± =
A∑

i=1

�σ (i)t±(i). (1)

This operator is associated with a model-independent sum
rule [3], namely, m0 ≡ m0(t−) − m0(t+) = 3(N − Z), where
m0(t±) is the total strength in the given channel. This sum rule
is commonly called the Ikeda sum rule. Since the early work of
K. Ikeda et al. [4], it has been indeed clear that in the limited
energy window accessible to the β− decay, only a limited
fraction of m0(t−) can be found. A collective state should be
expected at higher energy, and this Gamow-Teller resonance
(GTR) has been indeed detected in (p, n) experiments starting
from the mid-1970s [5]. Later, systematic (3He, t) experiments
characterized by much better energy resolution were also
performed. We should recall that in nuclei having neutron
excess, the Ikeda sum rule is exhausted almost entirely by
states in the t− channel, as the Pauli principle hinders the t+
excitations.

In medium-heavy nuclei, ranging from 90Zr to 208Pb, the
GTR is located somewhat above the isobaric analog resonance
(IAR) which fact is also well known from (p, n) and (3He, t)
experiments. This corresponds to the typical energy region of
the giant resonances, that is, 10–20 MeV (we refer here to
energies with respect to the ground state of the mother, or
target, nucleus). At the same time, the main GT peak(s) turns
out to exhaust only about 50% of the Ikeda sum rule in these
medium-heavy nuclei; this percentage becomes about 70% if
the whole strength in the neighboring energy region (i.e., below
≈20 MeV in the daughter, or final, nucleus) is collected [6].

The extraction of the strength from the measured cross sec-
tions is far from being straightforward. However, due to their

�L = 0 character, the GTR and IAR angular distributions
are strongly peaked at 0◦, and an approximate proportionality
between the zero-degree cross section and the strength has
been found under the hypothesis of high incident energy, zero
momentum transfer, and neglect of the noncentral components
of the projectile-target interaction [7].

The problem of the so-called missing GT strengh has
attracted the considerable attention of nuclear physicists. Some
theorists have speculated that part of the missing GT strength
should be found at very high excitation energy (≈300 MeV)
because of the coupling with the internal 1+ excitation of the
nucleon, i.e., the � isobar (1232 MeV): the reader can consult
the references quoted in Ref. [1]. Other calculations [8] have
shown that the usual coupling of the one particle-one hole
(1p-1h) configurations involved in the GTR with two particle-
two hole (2p-2h) configurations is able to shift strength outside
the range accessible to experiments and explains in a more
conventional fashion the missing strength. Experimentally,
from the multipole-decomposition analysis (MDA) of the
cross sections measured in the 90Zr(p, n) experiment at Ep =
295 MeV [9], it has been argued that 90% of the GT strength
can be recovered below 50 MeV excitation energy, leaving
little room for the coupling with the � isobar. However, part
of the analysis (for instance, the estimate of the isovector
monopole contribution) has been somehow questioned.

The coupling of simple 1p-1h configurations with more
complex ones and the high-lying GT strength are not the
issue of the present paper. Using the Skyrme Hamiltonian,
the GTR in 208Pb has been calculated beyond the simple
random-phase approximation (RPA), taking into account the
coupling with the continuum as well as with configurations
made up with a p-h pair coupled with a collective vibration
[10]. This calculation has been able to reproduce the values of
the branching ratios associated with the proton decay of the
GTR; at the same time, it has been shown that the position of
the main GT peak does not change too much with respect to
the simple RPA. In Figs. 4 and 5 of Ref. [10] one can see that
the peak is indeed shifted downward by a few hundred keV.
The calculations reported in Ref. [11] (also based on the
coupling with phonons) are much more phenomenological, but
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the result is similar. The mentioned redistribution of strength
is instead quite sizable, and this point should be kept in
mind for the following discussion. No such complete and
fully microscopic calculation, at the level of four-quasiparticle
coupling, is available for the charge-exchange modes in open
shell systems. We still need, and this is our first aim here, to
assess in a clear way the properties of the Skyrme functionals,
complemented by an effective pairing force, in the spin-isospin
channel by studying the corresponding excitations within
the self-consistent mean-field framework. As self-consistent
calculations, we mean here quasiparticle random-phase ap-
proximation (QRPA) calculations based on a Hartree-Fock
plus Bardeen-Cooper-Schrieffer (HF-BCS) description of the
ground state. Our model has been introduced and applied to
the IAR in Ref. [12]. Some rather preliminary results using the
same model have been presented in conference proceedings
[13].

There are not many self-consistent QRPA calculations
available. The proton-neutron QRPA, based on Skyrme forces
in the particle-hole (p-h) channel (with a simplified form, i.e.,
with a separable approximation) and on the use of a constant
pairing gap in HF-BCS plus a free residual particle-particle
(p-p) interaction, has been intensively applied to the study
of both spherical and deformed nuclei [14]. The issue is to
know to what extent intrinsic deformations affect the measured
β-decay spectra, and the authors of Ref. [14] have explored
many isotopic chains, including heavy ones [15]. Later, the first
attempt to implement a self-consistent QRPA scheme based on
HF-BCS has been made in Ref. [16], which is another work
devoted to β decay (in this case, limited to spherical isotopes
lying on the r-process nucleosynthesis path). The same group
has studied the high-lying GTR and the behavior of different
Skyrme parameter sets [17]; we will discuss in detail, in what
follows, the comparison of that work with the present one.
The charge-exchange modes have also been attacked by using
relativistic charge-exchange RPA and QRPA [18–21].

But, aside from those mentioned, most of the QRPA
calculations are not self-consistent. To study the GTR in
208Pb, the quasiparticle-phonon model has been employed in
Ref. [22] and the so-called Pyatov method in Ref. [23]. Most
of the systematic calculations (done also for open-shell nuclei
and for β decay) are rather based on some empirical mean field
(e.g., Woods-Saxon) and residual interaction depending, in the
spin-isospin channel, on a parameter g′

0. A schematic model
of this type can certainly be useful in many respects. As we
discuss below, predictions of the schematic RPA model based
on these simple phenomenological ingredients can be regarded
as a guideline while understanding our results. However, we
stick to the idea of a full microscopic approach. This is of
special interest nowadays. If new radioactive beam facilities
aim at studying spin-isospin properties of the exotic systems,
constraining this channel in the microscopic Hamiltonian must
be envisaged, while sticking to phenomenological inputs may
be not appropriate.

The study of spin-isospin excitations is of interest with
regard to not only nuclear structure but also particle physics
and astrophysics. In fact, the detailed knowledge of spin-
isospin nuclear matrix elements (with ≈20% accuracy) is
required to extract from the ββ-decay experimental findings

the hierarchy of neutrino masses. And, in the astrophysical
sector, the details of the r-process nucleosynthesis can be
understood, once more, only if nuclear masses, photonuclear
cross sections, and β-decay probabilities are precisely known.
Last but not least, we mention the importance of knowing the
neutrino-nucleus interactions in different contexts (from the
stellar environment, to the case of materials which are used for
crucial experiments on the neutrinos). All these motivations
lie at the basis of the recent works concerning the spin-isospin
nuclear modes.

In the present work, as compared with Ref. [17], we
reexamine in particular the role of the so-called spin-gradient
(or J 2) terms of the Skyrme energy functionals, and we find
somewhat different results for the GT strength distributions.
Moreover, we perform a more general analysis, since we also
study the role of the pairing residual interaction (which was
neglected in Ref. [17]), and we devote some attention to the
case of another kind of spin-isospin excitation, namely, the
isovector spin-dipole (IVSD) resonance.

The IVSD resonance is excited by the operator

OIVSD±,J π =
A∑

i=1

ri[ �Y1(r̂i) ⊗ �σ (i)]Jπ Mt±(i), (2)

where Jπ = 0−, 1−, 2−. The charge-exchange experimental
measurements, whether (p, n) or (3He, t), show indeed ev-
idence of L �= 0 strength. Most of this strength is very
fragmented, and an unambiguous signature for the different
multipoles (monopole, dipole, etc.) is still missing. In the-
oretical calculations, the spin-dipole distributions look quite
broad, also because of the presence of three Jπ components.
Some calculations for magic nuclei have been available for
a long time; the reader can refer to the phenomenological
calculations of Ref. [24] or to the HF plus continuum-RPA
of Ref. [25]. Recently, there has been new interest in the
study of this channel: some low-lying transitions important
in the ββ decay have in fact a first-forbidden character, and
the reliability of theoretical models in predicting properties
of L �= 0 charge-exchange transitions is under discussion.
Moreover, it has been suggested that the precise determination
of the IVSD sum rule (analogous to the Ikeda sum rule) can
be a unique probe of the neutron skins, as it is proportional
to N〈r2〉n − Z〈r2〉p [26]. Since it would be highly desirable
to extract the key parameters governing the asymmetry part
of the nuclear equation of state from the difference of the
neutron and proton radii, and the experimental determination
of neutron radii by means of scattering data is not very
accurate, this alternative way of extracting the same quantity
is potentially of great interest [27] (see also Ref. [28]). In the
spirit of the present investigation, it is important of course to
establish whether the conclusions about the robustness of the
Skyrme-QRPA with given parameter sets remain valid when
another multipolarity is studied.

The outline of our paper is the following. We first provide
the basic information about our formalism in Sec. II by limiting
ourselves to what is essential for understanding the rest of
the discussion. One part of the Skyrme functionals that we
employ here, namely, that associated with the so-called J 2

terms, has been discussed recently, also in Ref. [17]; for
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this reason, we discuss at length the point of view emerging
from our calculations and results in Sec. III. We can then
analyze the results for the GT and IVSD strength distributions,
respectively, in Secs. IV and V, and draw relevant conclusions
on the performances of the existing Skyrme sets as well as
make suggestions for the future fits. Considerations on the
pairing correlations are made in Sec. VI, before coming to the
overall conclusions of Sec. VII.

II. FORMALISM

Our model has been introduced in Ref. [12], and we will
focus here only on those aspects which are important to the
understanding of our results. We start by dealing with the
HF-BCS coupled problem; that is, at each iteration we solve
in real space the HF equations and the BCS gap and number
equations. For 90Zr and 208Pb, pairing is neglected. For the Sn
isotopes, the pairing window is the 50–82 neutron shell, and
the pairing force is the same as that fitted in Ref. [12], namely,
a zero-range, density-dependent interaction of the type

V = V0

[
1 −

(
ρ
( �r1+�r2

2

)
ρC

)γ ]
· δ(�r1 − �r2), (3)

with V0 = 680 MeV fm3, ρC = 0.16 fm−3, and γ = 1. It has
been checked that when this pairing force is used in connection
with different Skyrme forces (we consider in this work the
parameter sets SIII [29], SGII [30], SLy5 [31], and SkO′ [32]),
the resulting pairing gaps do not vary too much along the Sn
isotope chain.

All the states at positive energy (either those in the BCS
pairing window or those outside this window, which have
occupation factors v2 equal to zero) are calculated using box
boundary conditions; that is, our continuum is discretized. Two
quasiparticle configurations (or particle-hole, in the cases in
which pairing is absent) with proper Jπ are built, and the
QRPA matrix equations(

A B

−B∗ −A∗

)(
X(n)

Y (n)

)
= En

(
X(n)

Y (n)

)
(4)

are solved in this model space. The upper limit for the
configurations is chosen so that the results are stable against
variations, and the proper sum rules, which are expected to hold
in full self-consistent calculations, are indeed exhausted with
high accuracy. In the charge-exchange case, it is known that
these sum rules are the difference of the non-energy-weighted
sum rules in the two isospin channels m0 ≡ m0(t−) − m0(t+),
and the sum of the energy-weighted sum rules m1 ≡ m1(t−) +
m1(t+). The analytic values of these sum rules in the case of
the Skyrme forces can be found, e.g., in Ref. [33].

In the p-h channel, for the charge-exchange modes, the
residual interaction reads

vph(�r1, �r2) = δ(�r1 − �r2)
[
v01(r) + v11(r) + v′

01

+ v′
11 + v

(s.o.)
1

]
. (5)

In this formula, the two indices for each of the first four terms
in square brackets refer to the projection in a given στ channel.
The terms with (without) a prime are those which are (are not)

velocity dependent. The last term is the isovector part of the
spin-orbit residual interaction.

In the following work, our considerations will focus on the
spin-isospin terms of the p-h residual interaction, the spin-
independent terms being far from dominant or even not active.
For the sake of completeness, we provide anyway the detailed
expressions of all terms:

v01(r) = 2C
ρ

1 [ρ(r)]�τ1 �τ2,

v11(r) = 2CS
1 [ρ(r)]�σ1 �σ2 �τ1 �τ2,

v′
01 = [(�k′2 + �k2) 1

2

(
Cτ

1 − 4C
�ρ

1

)
+ �k′ �k(

3Cτ
1 + 4C

�ρ

1

)]�τ1 �τ2, (6)

v′
11 = [

(�k′2 + �k2) 1
2

(
CT

1 − 4C
�S

1

)
+ �k′ �k(

3CT
1 + 4C

�S

1

)]�σ1 �σ2 �τ1 �τ2,

v
(s.o.)
1 = −2iC

�J

1 (�σ1 + �σ2)�k′ × �k�τ1 �τ2.

We recall that

�k′ = − 1

2i
( �∇′

1 − �∇′
2),

(7)
�k = 1

2i
( �∇1 − �∇2),

with the operators acting at right (left) in the case of k (k′).
The parameters entering the above expressions can be written
in terms of those of the Skyrme force. For the convenience
of the reader, this correspondence is explicitly provided in the
Appendix.

In the p-p channel, we fix self-consistently the residual
isovector pairing force by exploiting the isospin symmetry;
that is, we take the isovector proton-neutron pairing interaction
to be the same as the neutron-neutron one used in the BCS
description of the ground state. The proton-neutron isoscalar
pairing cannot be constrained: presently, we miss a clear
indication from empirical data about the parameter of the
isoscalar pairing force. Using a quite conservative approach,
we present in the following results which, unless otherwise
stated, correspond to an isoscalar pairing force equal to the
isovector one. We have tried to give some indication about
the sensitivity of our results when in the isoscalar channel a
strength V

(T =0)
0 different from V

(T =1)
0 is adopted. This kind of

study has been done in connection with the Relativistic Mean
Field (RMF) analysis of the charge-exchange modes. No such
analysis has been available so far in the case of the Skyrme
calculations; we have found results which are to some extent
consistent with those associated with the RMF study. In that
case, a finite-range Gogny pairing force is employed, but this
does not seem to produce macroscopic differences with respect
to the use of zero-range effective pairing forces.

III. TREATMENT OF THE J2 TERMS OF THE
ENERGY FUNCTIONAL

As mentioned above, the energy functional includes the
so-called spin-gradient, or J 2, terms which are built on the
spin-orbit densities. They arise from the exchange part of
the central Skyrme interaction [34]. The spin-orbit densities
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vanish in the ground state of spin-saturated nuclei, but they
provide a contribution to the spin and spin-isospin parts of the
residual p-h interaction. In the past (with some exceptions), the
J 2 terms were neglected when fitting the Skyrme parameters;
some more recent parametrizations include them, and in
particular we will consider in the following the sets SLy5
and SkO′. In the discussion below, for the sake of simplicity,
we will call type I forces the Skyrme sets which do not include
the J 2 terms in the fit, and type II forces those which do
include them. To our knowledge, there is not a clear indication
emerging from the nuclear phenomenology of whether these
J 2 terms must be included in a physically sound energy
functional. Of course, if the functional is derived from a
two-body force of the Skyrme type, which has a momentum
dependence, it looks questionable to drop the J 2 terms. We
should also notice that the J 2 terms are neither hard to evaluate
nor time-consuming if the HF calculation is performed in
coordinate space as in the present case.

In the past, many RPA calculations have been performed
with type I forces. The authors of Ref. [17] pointed out that
such calculations (e.g., those of Ref. [30]) do not respect the
full self-consistency, since the contributions from the J 2 terms
are included in the residual interaction but not in the mean
field (the authors of Ref. [30] also neglected the spin-orbit
residual interaction, but this has practically no effect). To
respect the Galilean invariance, the authors of Ref. [17],
when employing type I forces in their work, adopted the
prescription of removing from the residual interaction not
only the contribution from the J 2 term but also that from
the so-called S · T term in the functional. This amounts to
setting CT

1 equal to zero [cf. Eq. (6)] and leads to a substantial

quenching of the velocity-dependent part in the spin-isospin
channel, since C

�S

1 is not as large. Therefore, we deem that
the issue should be further discussed here.

We start from the fact that fitting the Skyrme parameters
is usually done by using, in addition to nuclear (or neutron)
matter quantities, binding energies and charge radii of a few
selected isotopes (with the spin-orbit strength W0 separately
adjusted). In 208Pb, the binding energy (charge radius) changes
by 0.22% (0.15%), using the force SLy4, when the J 2 terms
are omitted or inserted. These variations are too small to allow
a clear statement about the manifestation of the J 2 terms in
the benchmarks used for the fit, because it must be noted that
in the protocol for the parameter fitting presented in Ref. [31],
larger errors on binding energies and charge radii are imposed
in the χ2 formula to let the fit converge (we mean here, larger
than the experimental error bars and larger than the ≈0.1–0.2%
variations we just mentioned). Even in 120Sn, which is not used
for the parameter fitting but is studied in the present paper, we
find a similar pattern.

On the other hand, the effect of the J 2 terms on the single-
particle spectrum becomes appreciable. In Fig. 1 we display the
highest occupied and lowest unoccupied proton and neutron
levels in 208Pb. With few exceptions the spectra of SLy4 and
SLy5 are similar, the proton (neutron) levels being in general
slightly lower (higher) in energy in the case of SLy4. The
spectrum associated with SLy4 plus the J 2 terms is instead
somewhat different; in fact, one notices that the j> (j<) spin-
orbit partners are raised (lowered) in energy, both for protons
and neutrons, up to 400 keV. Accordingly, the unperturbed
energies of the j> → j< configurations are reduced. The net
overall effect is that the main GTR peak varies only by 60 keV

{

FIG. 1. Single-particle levels of 208Pb, calculated using Skyrme-HF and employing, respectively, the parametrization SLy4 with and without
the J 2 terms and the parametrization SLy5. The left (right) part refers to protons (neutrons). The lower (upper) panels include levels below
(above) the Fermi energy.
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FIG. 2. GTR peak energies, along the Sn
isotope chain, calculated by using either the force
SLy5 (full line) or the force SLy4 with (dotted
line) and without (dashed line) the contribution
associated with the J 2 terms in the mean field.
See the text for the discussion.

between SLy4 and SLy5, but it varies by 0.5 MeV when the
J 2 terms are added to the SLy4 mean field. This is because
only j> → j< configurations are present in the GTR wave
function calculated with the Lyon parameter sets. We show
the variation of the GTR peak energy along the Sn isotopes in
Fig. 2. A stronger effect of the J 2 terms is that associated with
the spin-isospin residual p-h force. In fact, if we remove the
part corresponding to the J 2 term in the energy functional from
the p-h interaction, the GTR peak energy changes by about
2 MeV. Qualitatively similar conclusions can be deduced from
the study of the Sn isotopes.

This detailed study led us to the following conclusions. The
J 2 terms do not manifest themselves so much in the ground
state observables used for the fit of the Skyrme parameters, but
they do affect some other properties of the nuclear ground state
such as the spin-orbit splitting. Moreover, they play a major
role when GT calculations are performed, mainly because of
their contribution to the p-h interaction. Looking at our results,
we believe that the most natural and physical choice is to
omit the contribution of the J 2 terms when calculating the
ground state with type I forces, but retain the corresponding
contribution in the residual p-h force. For nuclei which are not
spin saturated, we agree with Ref. [17] that this choice breaks
self-consistency. If one insists on self-consistency, the choice
of inserting the J 2 contribution into the ground state alters the
GTR energy by about 0.5 MeV, whereas the alternative choice
of neglecting the J 2 contribution systematically appears to
be quite unnatural. After all, we definitely suggest that fits of
new Skyrme parameters are systematically done by inserting
the J 2 terms.

We conclude this section by mentioning that in the recent
literature there have been claims about the necessity of
complementing the usual Skyrme forces with tensor terms.
Together with other collaborators, we have shown that the
contribution of the tensor force can reduce qualitative dis-
crepancies between the single-particle levels predicted within
the Skyrme framework and those which are experimentally
observed [35]. Similar discussions can be found in Ref. [36].

The reason for mentioning this here is that the two-body
zero-range tensor force gives the same kind of contribution
to the mean field of even-even nuclei as the J 2 terms. The
tensor force may affect the GT centroid energy. A simple
estimate based on sum rule arguments can be found in
Ref. [35]. Since the aim of this work is the discussion
of the performance of the existing functionals, we do not
return to this point in the following. If a new general fit of
Skyrme functionals plus tensor contribution is made, and the
corresponding (Q)RPA becomes available, new steps can be
undertaken.

IV. RESULTS FOR THE GAMOW-TELLER RESPONSE

As stated in the Introduction, the strength distributions
associated with the Gamow-Teller operator

∑A
i=1 �σ (i)t−(i)

are expected to display a main resonance located at energy
EGTR. In Fig. 3 we show the behavior of EGTR − EIAR, where
EIAR is the isobaric analog energy, as function of (N − Z)/A.
Experimental data are from Refs. [37–39]. The theoretical
(Q)RPA calculations have been performed with some of the
most recent and/or widely used Skyrme interactions, that is,
SIII, SGII, SLy5, and SkO′. For SIII and SGII, based on the
discussion in the previous section, the J 2 terms are included
in the residual interaction and not in the mean field. When
our calculations produce a resonance which is fragmented in
more than one peak, the exact definition of the values of EGTR

used in the figure is the centroid m1(t−)/m0(t−) where the
two sum rules are evaluated in the interval of the resonance.
This interval is 15–24 MeV for Pb and 12–22 MeV for the Sn
isotopes (in Zr, there is a single GT main state). In some cases,
we face the well-known problem of (Q)RPA instabilities,
and (quasiparticle) Tamm-Dancoff approximation ((Q)TDA)
values are reported (in particular, this happens for 90Zr and
118,120Sn when the force SkO′ is employed, and for 114Sn when
using SGII). In Ref. [12] we showed that our model provides

044307-5
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FIG. 3. Differences between the GTR and
the IAR energies in some selected spherical
nuclei as a function of (N − Z)/A. Theoret-
ical results associated with different Skyrme
parametrizations are compared with experimen-
tal values from Refs. [37–39]. The related dis-
cussion, including details on how the energies
have been defined, can be found in the text.

quite accurate values of EIAR, but in the figure, for simplicity,
we used the experimental values for this quantity.

From Fig. 3, we can draw two initial conclusions. First,
one should notice that the linear behavior of EGTR − EIAR

vs. (N − Z)/A was already checked, on the experimental
data, in Ref. [40] as it was expected on the ground of simple
schematic models [1,41]. In fact, if one performs a simple RPA
calculation using a separable interaction in a restricted space
(made up with the excess neutrons and the proton spin-orbit
partners), one finds that

EGTR − EIAR = �Els + 2
κστ − κτ

A
(N − Z), (8)

where �Els is (an average value of) the spin-orbit splitting
and κτ /A (κστ /A) is the coupling constant of the separable
schematic isospin (spin-isospin) residual force. The result of
Fig. 3 suggests that our calculations, which are microscopically

based and much more sophisticated, obey in first approxima-
tion this simple pattern.

Second, one would also infer from the figure that some
forces account well for the experimental findings while others
perform less well. SkO′ and SLy5 lie close to experiment,
although their predictions drop below the experimental trend
in 208Pb. SGII and SIII tend to overestimate the experimental
energies, but the trend of SGII looks qualitatively similar to the
experimental one on the neutron-rich side. The result obtained
with the force SIII corresponds, within ≈400 keV, to the
one found in Ref. [42]. The trend associated with the energy
location of the GTR is not the only significant experimental
observable: we should also analyze the fraction of m0(t−) or
collectivity of the GTR.

In Figs. 4 and 5 we show the GT strength distributions, for
208Pb and 120Sn, respectively, associated with different forces.
The strength functions in Sn display more fragmentation,
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as expected in keeping with its open-shell character. As
mentioned in the Introduction, the experimental result is that
about 60% of the total strength is exhausted by the GTR.
In Table I we show the fraction of strength in the resonance
region, for the different forces, both for 208Pb (where the result
obtained with force SIII is very close to the 63.6% of Ref. [42])
and a few selected Sn isotopes. The results present a clear
systematics: all forces concentrate ≈60–70% of the strength
in the resonance region, apart from SLy5 (we recall again that
our model does not include the coupling with 2p-2h).

Looking at the results for the GTR associated with the
different forces, we ask ourselves if their performances depend
more on the features of the associated mean field, on the
effective interaction in the spin-isospin channel, or on a
delicate balance between the two ingredients. As far as the
GTR energies are concerned, we did not find clear correlations
between them and any simple parameter. On the other hand,
interesting correlations are found if one analyzes the GT
collectivity. This will allow us to draw quite strong conclusions
about the Skyrme parameter sets under study.

In the cases of the three forces SIII, SGII, and SkO′, the
wave functions are qualitatively similar, i.e., they display a
large number of p-h components: the wave function associated
to the main GT state, in the case of 208Pb and of the force SkO′,
is reported in Table II. The wave function resulting from SLy5,
shown for the same nucleus in Table III, instead displays fewer
components. It has been checked that the reduced collectivity

TABLE I. Percentages of the sum rule m0(t−) exhausted in the
giant resonance region. This region is 12–22 MeV in the Sn isotopes
and 15–24 MeV in 208Pb.

114Sn 118Sn 120Sn 124Sn 208Pb

SIII 60.44 60.98 61.44 62.76 60.68
SGII 61.75 61.30 61.49 63.36 67.24
SLy5 46.38 42.06 41.16 41.41 44.76
SKO′ 66.06 67.08 67.19 72.76 79.80

of the GTR calculated using SLy5 (and characteristic of not
only Pb but also the Sn isotopes) cannot be explained simply
in terms of the differences between the unperturbed energies
associated with this parameter set and those of the other sets.
Indeed, we have observed that the p-h matrix elements of the
SLy5 force are, on the average, smaller than those of the other
forces.

In our analysis, we have also singled out the role of
the velocity-dependent terms. In particular, we observed that
the (�k′2 + �k2) and the �k′ �k contributions [cf. Eq. (6)] are
comparable. If we drop these terms from the SLy5 p-h
interaction, the GTR wave function becomes closer to that
of the other forces, leading to an increase in the strength
of ≈20% (the GT energy is of course also affected). In the
case of the force SKO′, the increase in collectivity when the
velocity-dependent terms are dropped is extremely small. In
fact, for SkO′, the coefficient CT

1 , characterized by a positive

TABLE II. Wave function of the main
GT state in 208Pb obtained with the SkO′

force. Under the label “weight” we report
the absolute value of the quantity Xph +
(−)S(J+L)Yph, which enter the calculation of
the B(GT) value.

Configuration Weight

νi13/2 → π i11/2 0.69
νh11/2 → πh9/2 0.49
νf7/2 → π f5/2 0.28
νi13/2 → π i13/2 0.20
νf7/2 → π f7/2 0.16
νh9/2 → πh9/2 0.16
νp3/2 → πp1/2 0.13
νp3/2 → πp3/2 0.13
νf5/2 → π f5/2 0.11
νf5/2 → π f7/2 0.15
νp1/2 → πp3/2 0.11
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TABLE III. Same as Table II, but
for the SLy5 force.

Configuration Weight

νi13/2 → π i11/2 0.79
νh11/2 → πh11/2 0.59
νf7/2 → π f5/2 0.11
νi13/2 → π i13/2 0.04

value of t2, is smaller than that of the other forces. We conclude
that both the velocity-independent and velocity-dependent
terms in the residual interaction are important.

This discussion already points out that, although it is not
our purpose here to discuss in too much detail the strategy for
improving the fits of effective Skyrme forces, we would like
to strongly encourage the use of realistic constraints coming
from the GT properties. We show in Fig. 6 direct correlations
between the percentage of m0(t−) associated with the GTR
and combinations of Skyrme parameters (actually, we find
correlation also with the t1, t2 parameters separately and with
the quantity �S defined in Ref. [31]). We are well aware
that the (t0, t3) part of the interaction is mainly connected to
the saturation properties of symmetric nuclear matter and the
related value of the incompressibility, and the t1, t2 part must
be fitted together with finite nuclei ground state properties. The
best choice should probably be to check a posteriori that the
value of t0 and t3 are compatible with the upper panel of Fig. 6,
and impose a priori the constraint associated with the lower
panels on the t1, t2 part, together with the other ones which are
usually imposed. An alternative strategy is represented by the
possibility of fixing the odd parameter CT

1 in an independent
way with respect to the even part of the functional.

In some works, values of the Landau parameters have been
fitted. Therefore, in Fig. 7 we show the correlation between the
percentage of m0(t−) exhausted by the GTR and either g′

0 or g′
1.

Future fits of Skyrme parameter sets can certainly also benefit
from the use of one of these two constraints, which set either
g′

0 or g′
1 around 0.45 or 0.5. We believe that this estimate is

more appropriate than the one based on the empirical g′
0 since

this latter is, as a rule, extracted from calculations based on a
Woods-Saxon mean field instead of a Hartree-Fock one.

In summary, our results show clearly how the differences
in the residual spin-isospin interaction (in particular in the
velocity-dependent part), between various Skyrme parameter
sets, manifest themselves if one studies the collectivity of the
GTR. In particular, we point to the necessity of new fits which
include the GT data as an additional constraint, mainly to cure
such forces as SLy5 which display a kind of anomaly in this
respect.

Before concluding, we would like to show another kind
of correlation with a physical parameter (cf. Fig. 8). In fact,
the GT collectivity is also related to the quantity which we
denote by aστ . This quantity is analogous, in the spin-isospin
case, to the well-known asymmetry parameter aτ (we recall
that sometimes notations like a4 or J are used for this latter
quantity). It is

aστ = 1

2

∂2

∂ρ2
11

E

A
, (9)

where we consider infinite matter with a generic spin and
isospin asymmetry, and variations with respect to the spin-
isospin density ρ11 defined as

ρ11 = ρn↑ − ρn↓ − ρp↑ + ρp↓
ρ

. (10)

Although the spirit of our discussion is connected with the
points raised in Ref. [17], our conclusions are different. In fact,
we find different results than those published in Ref. [17]. We
have tried to analyze in detail the sources of this difference,
and in particular we have checked the numerical effects in the
case of 90Zr [43]. First, the energies in charge-exchange QRPA
are naturally defined with respect to the target nucleus ground
state. Since the experimental values of the charge-exchange
resonances are provided in the final, or daughter, systems,
we find it quite straightforward (as we did in the past and as
other authors do) to transform the experimental value into a
corresponding value with respect to the target nucleus ground
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state by using experimental binding energies. However, this is
not done in Ref. [17] where a theoretical estimate of the binding
energy difference is carried out. In 90Zr, the two alternative
choices produce a discrepancy of 1.2 MeV. A second source
of difference, already discussed, is the treatment of the J 2

terms; in the case of 90Zr, this produces another ≈1 MeV
of difference. After considering these two facts, part of the
discrepancy (in 90Zr, another 1.3 MeV for SLy4 and 0.6 MeV
for SkO′) has remained unexplained, and it is quite hard to
attribute it simply to the different numerical implementations.

V. RESULTS FOR THE SPIN-DIPOLE RESPONSE

The spin-dipole strength is not extracted experimentally in
a straightforward manner. In the absence of a well-established
proportionality between the cross section at a given angle and

the dipole strength, either spectra subtraction or multipole
decomposition analysis has to be attempted. Furthermore, the
three different Jπ components are mixed; the similarity of the
associated angular distributions would require sophisticated
techniques to disentangle these components, such as the use
of polarized beams or the study of the γ decay of the IVSD to
the GTR and to low-lying states, performed with high energy
resolution and high γ -ray detection efficiency [44].

Theoretically, a systematic clear picture of the IVSD is
still missing. The two references [24,25] mentioned in the
Introduction predict, respectively, the IVSD in 208Pb to lie at
21.3 and 24.0 MeV. Only recently self-consistent calculations
have been carried out in the same nucleus [42], but we learned
from the previous discussion on the GTR that we need to
consider several isotopes and to extract a global trend if we
wish to understand which interactions provide reliable results.
Therefore, our present discussion is quite timely.
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We of course can separate the three Jπ components;
however, to compare with experiment, we have to make a
global average of the different Jπ centroids. In particular, we
estimate

EIVSD− =
∑

Jπ =0−,1−,2− m1(Jπ )m1(Jπ )(t−)∑
Jπ =0−,1−,2− m0(Jπ )m0(Jπ )(t−)

, (11)

for different nuclei. We evaluate the sum rules in the whole
energy region where the transition strength is not negligible.
We report the difference between these energies and the
IAR energies in Fig. 9, and we compare these values with
experimental data from Refs. [9,26,41,45].

It is rather satisfactory to have found that the different
Skyrme forces behave quite similarly, as far as the IVSD
is concerned, to how they behave for the simpler GTR. We
have also looked in more detail to the strength distributions
obtained by using the forces SkO′ and SLy5. These distribu-

tions, for the nuclei 90Zr, 208Pb, and 120Sn, are displayed in
Figs. 10–12 (SkO′) and Figs. 13–15 (SLy5). The QRPA
strength functions are shown in the upper panels and compared
with the unperturbed strength functions which appear in the
lower panels. The integral features of the distributions are
resumed in Tables IV and V, for the two forces, respectively.
It is evident that the unperturbed centroids, whose values are
reported in parentheses, follow the known energy hierarchy
[24], the 2− being the lowest and the 0− the highest centroid.
This is because the 0− wave functions are entirely composed
of particle-hole (or two-quasiparticle) excitations between
proton-neutron states with opposite parity and the same total
angular momentum, which are in general widely separated in
energy. This trend is retained when the residual interaction is
turned on, pushing up the centroids. The comparison between
the unperturbed and the QRPA distributions highlights the
large values of the repulsive matrix elements of the residual
interaction.
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FIG. 14. Same as Fig. 13, but for the nucleus
208Pb.

The IVSD spectra are rather fragmented. This fragmenta-
tion increases with the value of L, the 2− distribution being
broader than the 1− and 0−. Because of the degeneracy factor,
when the energy is averaged over the three spin components,
the contribution from 0− is less weighted than the 1− and 2−. It
has been checked that the sum rules of 2−, 1−, and 0− respect
the ratio 5:3:1.

In the spectrum of 90Zr, most of the IVSD strength predicted
by the two forces we employed lies in the energy range between
12 and 40 MeV with respect to the target ground state. This
is in agreement with the experimental trend [27]. In addition,
some low-lying IVSD strength shows up clearly. In particular,
with the force SkO′, the strength distribution displays a 1−
peak around 1 MeV (with respect to the daughter nucleus
ground state), which absorbs 6% of the total strength in the
t− channel. Experimentally, it has been already pointed out
in Ref. [46] that in the (p, n) reaction, a state at 1 MeV is

visible, which does not have a completely 1+ character. The
presence of L � 1 components in the transitions between 1 and
3 MeV is somehow confirmed in Ref. [9] as well. In Ref. [47],
the presence of L = 1 peaks has been reported, in the (n, p)
reaction, at about 5 and 30 MeV. If we look at our t+ strength
distributions, we find strength up to around 13.5 MeV. The
ratio m0(t−)/m0(t+) is equal to 2.25 (2.03) in the case of the
force SLy5 (SkO′), in good agreement with the experimental
prediction of 2.52 [27].

In the 2− spectrum of 208Pb, it is possible to recognize
a low-lying state, due to the νi13/2 → πh9/2 particle-hole
transition. Our findings are in reasonable agreement with the
experimental peak observed, for the first time, at 2.8 MeV
(6.5 MeV referred to the target ground state) in Ref. [46].

It can be concluded that the behavior of the considered
Skyrme forces seems to be quite robust in reproducing proper-
ties of the isovector resonances which involve the spin-isospin
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TABLE IV. QRPA (HF-BCS) summed transition strengths and
centroid energies for the three spin-dipole components. The total
centroid defined by Eq. (11) is also reported. All results correspond
to the SkO′ force, as in Figs. 11 and 12.

J π mJπ (0) (t−) (fm2) mJπ (1)/mJπ (0) (t−) (MeV)

0− 33.0 (39.0) 29.14 (22.40)
90Zr 1− 132.3 (106.3) 24.20 (18.58)

2− 119.0 (142.7) 18.63 (12.51)
Tot. 284.3 (288.0) 22.44 (16.09)

0− 147.9 (162.5) 28.21 (20.16)
208Pb 1− 467.9 (436.0) 25.84 (18.49)

2− 650.0 (667.0) 21.32 (14.62)
Tot. 1265.8 (1265.5) 23.18 (16.67)

0− 57.6 (65.9) 26.82 (20.11)
120Sn 1− 207.3 (179.5) 24.58 (18.19)

2− 235.2 (256.5) 19.54 (14.49)
Tot. 500.2 (501.9) 22.47 (16.55)

degrees of freedom. Our results, reported in the figures and
tables for different forces, can be compared with detailed
forthcoming experimental findings (cf., e.g., Ref. [48]).

VI. THE EFFECT OF ISOVECTOR AND
ISOSCALAR PAIRING

Our calculations are in principle sensitive to the effect
of both isovector and isoscalar pairing. We recall that the
empirical evidence of isovector pairing, in the ground state of
open-shell nuclei as well as in their low-lying excitations, has
been clear for a long time; but in connection with microscopic
calculations based on energy functionals, there is still debate
about the proper pairing force (for instance, whether it should
have volume, or surface, or mixed character). About isoscalar
pairing, the situation is much less clear. The existence of a
T = 0 condensate has been questioned; if any exists, it is
expected to show up only in the ground state of nuclei having
an equal number of protons and neutrons, or others lying very
near. In our HF-BCS calculations, as stated in Sec. II, we fix
the T = 1 pairing force in order to have reasonable values
for the empirical pairing gaps. The corresponding residual

TABLE V. Same as Table IV, but for the SLy5 force.

J π mJπ (0) (t−) (fm2) mJπ (1)/mJπ (0) (t−) (MeV)

0− 37.9 (39.6) 30.81 (24.80)
90Zr 1− 115.2 (107.8) 27.45 (21.66)

2− 137.9 (142.8) 22.91 (17.54)
Tot. 290.9 (290.2) 25.73 (20.06)

0− 158.8 (159.8) 29.84 (23.30)
208Pb 1− 432.7 (428.0) 27.21 (21.16)

2− 645.8 (653.2) 21.25 (16.14)
Tot. 1237.3 (1241.1) 24.44 (18.79)

0− 64.8 (66.5) 28.31 (22.17)
120Sn 1− 187.7 (181.4) 25.72 (20.08)

2− 249.7 (257.9) 20.83 (15.93)
Tot. 502.1 (505.9) 23.63 (18.24)

p-p force has been fixed by using the isospin invariance. If
we change its strength, even by producing a drastic change
on the pairing gap, the energy of the GTR is only slightly
affected (≈200 keV). As already said, in keeping with the
lack of possible constraints, we vary the strength of the T = 0
residual p-p interaction.

In the case of the GTR, that is, in the 1+ channel, only the
isoscalar residual pairing is active when a zero-range force is
assumed. We studied the effects of the pairing correlations
on the GT strength distributions and found qualitatively
similar outcomes in connection with different Skyrme forces.
In the following, we will mention some specific results
emerging from the calculations carried out using SLy5, just
for illustrative purposes. Since SLy5 does not produce highly
collective GT states, the analysis of the effects produced by
pairing is simpler, but our general conclusions will remain
valid for other Skyrme sets.

The effect of the residual p-p isoscalar (IS) pairing is shown
for the isotope 118Sn in Fig. 16. This effect is clearly visible,
but it is small for the main peak, which varies only by 300 keV
when the pairing strength is changed from zero to a value equal
to that of the T = 1 pairing (i.e., 680 MeV fm3). The IS pairing
does not affect the total collectivity of the GTR, leaving the
considerations made in Sec. IV basically unchanged.

In the absence of residual pairing, two peaks appear
above 15 MeV: the first one at 15.30 MeV is mainly due
to the |νg9/2, πg7/2〉 configuration, while the second one at
18.47 MeV is dominated by the |νh11/2, πh9/2〉 configuration.
This so-called configuration splitting has been predicted
[19,49], but it is smaller than the spreading width of the GTR.
The |νh9/2, πh11/2〉 configuration gives a small QRPA solution
at 18.68 MeV, which is not visible in the figure because of its
negligible strength.

When the IS pairing is turned on, three new QRPA states
show up, in which the mentioned configurations are mixed
(cf. Table VI). The reduction of the configuration splitting
(already remarked in Ref. [19], and which we have observed
as a linear function of the pairing strength), and the mixing of
spin-flip and back spin-flip configurations associated with the
h orbitals, can be understood by analyzing the matrix elements

V
J,ph

ab̃cd̃
= 〈(ad−1)J |Vph|(cb−1)J 〉(uavducvb

+ vaudvcub)
(12)

V
J,pp

abcd = 〈(ab)J |Vpp|(cd)J 〉(uaup2up′
1
uc

+ vavp2vp′
1
vc).

In the case at hand, with normal proton and superfluid neutron
components, the previous equations reduce to

V
J,ph

pñp′ñ′ = 〈(pn′−1)J |Vph|(p′n−1)J 〉vnvn′

(13)
V

J,pp

pnp′n′ = 〈(pn)J |Vpp|(p′n′)J 〉unun′ .

The |νg9/2, πg7/2〉 configuration is not very sensitive to the
isoscalar pairing, because the associated p-p matrix elements
are weighted by factors which include a very small un. On the
other hand, the un factors associated with the h11/2 and h9/2

are not so small, and the |νh11/2, πh9/2〉 and |νh9/2, πh11/2〉
configurations have p-p matrix elements larger than the
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FIG. 16. GT strength distributions obtained
in the nucleus 118Sn by using the force SLy5 and
varying the strength of the residual p-p isoscalar
force.

corresponding p-h ones, which are about one-half or negli-
gible. Therefore, the |νh9/2, πh11/2〉 is exclusively admixed
in the GT wave function by the residual (isoscalar) pairing.

By looking also at the neighboring isotope 120Sn, and
comparing it with the results obtained with the force SkO′,
we have reached the following conclusion. Although the
presence of the nonspin-flip components in the GT wave
function depends on the p-h interaction (as discussed in
Sec. IV), the isoscalar pairing favors this admixture. Moreover,
if we increase the strength of the isoscalar pairing force,
more back-spin-flip configurations (which are energetically
less favored) mix in the GT wave function.

In summary, the effect of pairing (both T = 0 and T = 1
pairing, the latter being responsible for the u and v factors) in
the resonance region mainly concerns the detailed microscopic
structure of the RPA states, besides their individual strength
and energy, the GTR centroid energy being less affected
and the associated total strength much less. In principle,
particle decay experiments could shed light on the microscopic
structure of the GTR; quantifying the presence of other

TABLE VI. Wave functions of the QRPA states obtained for the
GTR in 118Sn, with the interaction SLy5, when the isoscalar residual
pairing is included and its strength is set equal to that of the isovector
pairing (namely, 680 MeV fm3).

Energy (percentage of m0(t1)) Configuration Weight

νg9/2, πg7/2 0.93
15.25 MeV (26.4%) νd5/2, πd3/2 0.07

νh11/2, πh9/2 0.31
νg9/2, πg7/2 0.30

16.49 MeV (9.7%) νh11/2, πh9/2 0.62
νh11/2, πh11/2 0.11
νh9/2, πh11/2 0.67
νg9/2, πg7/2 0.15

18.59 MeV (6.0%) νh11/2, πh9/2 0.68
νh9/2, πh11/2 0.69

components than the pure direct spin-flip ones in the GT wave
function may highlight the features of corresponding pairing
matrix elements. Accordingly, the theoretical framework based
on the RPA plus the coupling with the continuum and the
more complex configurations, which has explained the proton
decay from the GTR of 208Pb, should be extended to superfluid
systems. This is left for future work. The present study of the
behavior of different Skyrme sets is one of the requirements
before going to more ambitious calculations.

We have also checked the effect of isoscalar pairing on
the IVSD. The shifts on the Jπ = 0−, 1−, and 2− centroids,
induced by the T = 0 pairing with V

(T =0)
0 = V

(T =1)
0 , amounts

to a few hundred keV. In 118Sn, the total IVSD centroid is
affected by 500 keV. This effect is not negligible but remains
smaller than the variations associated with the choice of the
p-h interaction.

VII. CONCLUSIONS

In this work, we have tried to shed light on the systematic
behavior of the nuclear collective spin-isospin response, in
different spherical medium-heavy nuclei, calculated by using
the microscopic Skyrme functionals. Our model is a self-
consistent QRPA based on HF-BCS, and we have studied both
the Gamow-Teller and the spin-dipole strength distributions.
We believe that the importance of our work stems from
the fact that constraining the microscopic functionals in the
spin-isospin channel is highly desirable if studies of exotic
nuclei and applications for particle physics or astrophysics
are envisaged, in which the spin-isospin transitions must be
accurately obtained.

Pairing must be considered if the study has to be extended
to different systems for which experimental measurements are
available. The resonance properties depend of course mainly
on the p-h interaction. We have not only elucidated the features
of the existing functionals, but also made suggestions for
future fits. In fact, the Lyon force SLy5 does not predict the
correct GT collectivity. The other forces we have considered
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more or less reproduce this collectivity (within our mean field
approximation), SGII and SIII overpredicting somewhat the
GT centroid, and SkO′ lying closer to it. We have found a clear
correlation between the GT collectivity and either selected
combinations of Skyrme parameters or Landau parameters.
These correlations may be used to improve the existing Skyrme
parametrizations.

The IVSD has been systematically studied using our
microscopic QRPA. No such study is available in the literature
so far. The IVSD behavior does not introduce new constraints
but somewhat confirms what has been deduced from the study
of the GTR.

Finally, we have also singled out the effect of pairing
(mainly its contribution to the residual proton-neutron inter-
action). Its effect is not large enough to alter the conclusions
which have been drawn concerning the interaction in the p-h
channel. However, some conclusions of this part are also
interesting. Even if pairing does not affect so much the GT
centroid and collectivity, it induces specific admixtures in
the wave functions. If experimental evidence coming, e.g.,
from the particle decay was available, we could say that the
microscopic structure of the collective spin-isospin states may
help pin down the features of the effective proton-neutron
force in the p-p channel, which is one of the open questions in
nuclear structure.
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APPENDIX: EXPLICIT FORM OF THE RESIDUAL
p-h INTERACTION

The coefficients appearing in Eq. (6) are

C
ρ

1 [ρ] = −1

8
(t0 − 2t0x0) − 1

48
ρα(t3 + 2t3x3),

CS
1 [ρ] = − t0

8
− t3

48
ρα,

Cτ
1 = 1

64
(−4t1 − 8t1x1 + 4t2 + 8t2x2),

C
�ρ

1 = 1

64
(3t1 + 6t1x1 + t2 + 2t2x2), (A1)

CT
1 = 1

16
(−t1 + t2),

C
�S

1 = 1

64
(3t1 + t2),

C
�J

1 = −1

4
W0

(When the spin-orbit part of the functional is generalized by
introducing the parameters b4 and b′

4 [50], the last expression
becomes − 1

2b′
4.) If we insert these expressions into Eq. (6), we

find

v01(r) =
[

2

(
− t0

8
− 1

4
t0x0

)
− 1

24
ρα(r) (t3 + 2t3x3)

]
�τ1 �τ2,

v11(r) =
[
− t0

4
− t3

24
ρα(r)

]
�σ1 �σ2 �τ1 �τ2,

v′
01 =

[
− t1

8
(2x1 + 1)(�k′2 + �k2) + t2

4
(2x2 + 1)(�k′ �k)

]
�τ1 �τ2,

v′
11 =

[
− t1

8
(�k′2 + �k2) + t2

4
�k′ �k

]
�σ1 �σ2 �τ1 �τ2,

v
(s.o.)
1 = iW0

2
(�σ1 + �σ2) �k′ × �k�τ1 �τ2, (A2)

keeping the same notation as used in Sec. II.
The choice of neglecting the contribution to the residual

interaction from the J 2 terms amounts to writing

v′
01 =

[
1

16
[ �∇1 �∇2 + �∇′

1
�∇′

2](2x1t1 − t1)

+ 1

4
�k′ �k(2x2t2 + t2)

]
�σ1 �σ2, (A3)

v′
11 =

[
− t1

16
[ �∇1 �∇2 + �∇′

1
�∇′

2] + t2

4
�k′ �k

]
�τ1 �τ2 �σ1 �σ2.

As mentioned in Sec. II, it is appropriate to give here the
expressions for the Landau parameters discussed in the paper.
In symmetric nuclear matter, the � = 0 and 1 spin-isospin
parameters are

g′
0 = −N0

[
1

4
t0 + 1

24
t3ρ

α + 1

8
k2
F (t1 − t2)

]
,

(A4)

g′
1 = N0

(
t1

8
− t2

8

)
k2
F ,

where N0 = 2kF m∗/π2h̄2 and kF is the Fermi momentum.
The Landau parameters are zero for � > 1. If we rewrite the
Landau parameters in terms of the coefficients of Eq. (6), they
read

g′
0 = N0

(
2CS

1 + 2CT
1 k2

F

)
,

(A5)
g′

1 = −2N0C
T
1 k2

F .
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