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The Gamow-Teller transition operator is written as a polynomial in the dipole proton-neutron and quadrupole
charge-conserving quasiparticle random-phase approximation boson operators, using the prescription of the
boson expansion technique. Then, the 2νββ process ending on the first 2+ state in the daughter nucleus is allowed
through one-, two-, and three-boson states describing the odd-odd intermediate nucleus. The approach uses a
single particle basis that is obtained by projecting out the good angular momentum from an orthogonal set of
deformed functions. The basis for mother and daughter nuclei may have different deformations. The GT transition
amplitude as well as the half-lives were calculated for 18 transitions. Results are compared with the available
data as well as with the predictions obtained with other methods.

DOI: 10.1103/PhysRevC.76.044306 PACS number(s): 23.40.Hc, 21.10.Tg, 21.60.Jz, 23.20.Js

I. INTRODUCTION

One of the most exciting subjects of nuclear physics is
that of ββ decay. The interest is generated by the fact that
to describe the decay rate quantitatively one has to treat
consistently the neutrino properties as well as the nuclear
structure features. The process may take place in two distinct
ways: (a) by a 2νββ decay where the initial nuclear system,
the mother nucleus, is transformed in the final stable nuclear
system, usually called the daughter nucleus (two electrons and
two antineutrinos) and (b) by the 0νββ process where the final
state involves no neutrino. The latter decay mode is especially
interesting because one hopes that its discovery might provide
a definite answer to the question whether the neutrino is a
Majorana or a Dirac particle. The contributions over several
decades have been reviewed by many authors [1–6]. Although
none of the ββ emitters is a spherical nucleus, most formalisms
use a single-particle spherical basis.

In the mid-1990s we treated the 2νββ process in a proton-
neutron quasiparticle random-phase approximation (pnQRPA)
formalism using a projected spherical single-particle basis
that resulted in having a unified description of the process
for spherical and deformed nuclei [7,8]. Recently the single-
particle basis [9,10] has been improved by accounting for the
volume conservation while the mean field is deformed [11,12].
The improved basis has been used for describing quantitatively
the ground state to ground state ββ decay rates as well as the
corresponding half-lives [13,14]. The results were compared
with the available data as well as with the predictions of other
formalisms. The manners in which the physical observable is
influenced by the nuclear deformations of mother and daughter
nuclei are in detail commented. Two features of the deformed
basis are essential: (a) the single-particle energy levels exhibit
no gap and (b) the pairing properties of the deformed system
are different from those of spherical system. These two
aspects of the deformed nuclei affect the overlap matrix of
the pnQRPA states of mother and daughter nuclei. Moreover,
considering the Gamow-Teller (GT) transition operator in the
single-particle space generated by the deformed mean field,

one obtains an inherent renormalization with respect to the
one acting in a spherical basis.

In Ref. [15] we studied the higher pnQRPA effects on the
GT transition amplitude by means of the boson expansion
technique for a spherical single-particle basis. Considering
higher-order boson expansion terms in the transition operator,
significant corrections to the GT transition amplitude are
obtained, especially when the strength of the two-body
particle-particle (pp) interaction approaches its critical value
where the lowest dipole energy is vanishing. As we showed in
the quoted reference, there are transitions that are forbidden
at the pnQRPA level but allowed once the higher pnQRPA
corrections are included. An example of this type is the 2νββ

decay leaving the daughter nucleus in a collective excited
state 2+ [16]. The electrons resulting in this process can
be distinguished from the ones associated to the ground-to-
ground transition by measuring, in coincidence, the γ rays
due to the transition 2+ → 0+ in the daughter nucleus [17].

The aim of this work is to study the 2νββ decay 0+ → 2+,
where 0+ is the ground state of the emitter, whereas 2+ is
a single quadrupole phonon state describing the daughter
nucleus. The adopted procedure is the boson expansion method
as formulated in our previous article [15] but using a projected
spherical single-particle basis. It is worth mentioning that
despite the fact the boson expansion approach has been widely
used for two alike fermion operators, the procedure has been
extended for proton-neutron operators only since the beginning
of 1990s ([15]) for a spherical single-particle basis and recently
for a deformed mean field [16].

In conclusion, our formalism involves two basic ingredients
defined in some of our previous publications. (a) The first is
the boson expansion approach for the Gamow-Teller transition
operator; in this way the 2νββ decay 0+ → 2+, forbidden
in the framework of the pnQRPA formalism, becomes an
allowed process. (b) The second is the projected spherical
single-particle basis. Using such a basis one may unitarily treat
the transitions of spherical and deformed nuclei. Moreover,
situations when the mother and daughter nuclei have different
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nuclear deformations could be accounted for. Because here we
present for the first time results for ββ decay to excited states
in an extended article, we devote a separate section to each
of the mentioned ingredients. In this way we hope to get a
self-sustained description of the results.

The formalism and the results will be described along
several sections as follows. In Sec. II the projected single-
particle basis to be used is presented. The model Hamiltonian,
written in second quantization for the projected spherical
basis, is defined in Sec. II. The states of mother, daughter,
and intermediate odd-odd nucleus, which participate at the
considered process, are eigenstates of the chosen many-
body Hamiltonian. Section IV deals with the boson expan-
sion of the Gamow-Teller ββ transition operator. Results
for the ββ transition amplitude are presented in Sec. V.
Numerical applications to 18 nuclei are commented on in
Sec. VI. The main results and conclusions are summarized in
Sec. VII.

II. A PROJECTED SPHERICAL SINGLE-PARTICLE BASIS

The single-particle mean field is determined by a particle-
core Hamiltonian:

H̃ = Hsm + Hcore − Mω2
0r

2
∑
λ=0,2

∑
−λ � µ � λ

α∗
λµYλµ, (2.1)

where Hsm denotes the spherical shell-model Hamiltonian
and Hcore is a harmonic quadrupole boson (b+

µ ) Hamiltonian
associated to a phenomenological core. The interaction of the
two subsystems is accounted for by the third term of the above
equation, written in terms of the shape coordinates α00, α2µ.
The quadrupole shape coordinates and the corresponding
momenta are related to the quadrupole boson operators by
the canonical transformation:

α2µ = 1

k
√

2
[b†2µ + (−)µb2,−µ],

(2.2)

π2µ = ik√
2

[(−)µb
†
2,−µ − b2µ],

where k is an arbitrary C number. The monopole shape coor-
dinate is determined from the volume conservation condition.
In the quantized form, the result is:

α00 = 1

2k2
√

π

{
5 +

∑
µ

[2b†µbµ + (b†µb
†
−µ + b−µbµ)(−)µ]

}
.

(2.3)

Averaging H̃ on the eigenstates of Hsm, hereafter denoted by
|nljm〉, one obtains a deformed boson Hamiltonian whose
ground state is, in the harmonic limit, described by a coherent
state

�g = exp[d(b+
20 − b20)]|0〉b, (2.4)

with |0〉b standing for the vacuum state of the boson operators
and d a real parameter that simulates the nuclear deformation.
However, the average of H̃ on �g is similar to the Nilsson
Hamiltonian [18]. Due to these properties, it is expected that
the best trial functions to generate a spherical basis are

�
pc

nlj = |nljm〉�g. (2.5)

The projected states are obtained by acting on these deformed
states with the projection operator

P I
MK = 2I + 1

8π2

∫
DI∗

MK (	)R̂(	)d	, (2.6)

where DI
MK (	) denotes the rotation matrix corresponding to

the Euler angles 	. The subset of projected states


IM
nlj (d) = N I

nljP
I
MI [|nljI 〉�g] ≡ N I

nlj�
IM
nlj (d), (2.7)

are orthogonal with the normalization factor denoted by N I
nlj .

Although the projected states are associated to the particle-
core system, they can be used as a single-particle basis. Indeed,
when a matrix element of a particle-like operator is calculated,
the integration on the core collective coordinates is performed
first, which results in obtaining a final factorized expression:
one factor carries the dependence on deformation and one is a
spherical shell-model matrix element.

The single-particle energies are approximated by the
average of the particle-core Hamiltonian H ′ = H̃ − Hcore on
the projected spherical states defined by Eq. (2.7):

εI
nlj = 〈


IM
nlj (d)

∣∣H ′∣∣
IM
nlj (d)

〉
. (2.8)

The off-diagonal matrix elements of H ′ is ignored at this level.
Their contribution is, however, considered when the residual
interaction is studied. It is an open interesting question how
to determine the mean-field operator that admits the energies
given by Eq. (2.8) as eigenvalues.

As shown in Ref. [9], the dependence of the new single-
particle energies on deformation is similar to that shown by
the Nilsson model [18]. The quantum numbers in the two
schemes are, however, different. Indeed, here we generate
from each j a multiplet of (2j + 1) states distinguished by
the quantum number I , which plays the role of the Nilsson
quantum number 	 and runs from 1/2 to j and, moreover, the
energies corresponding to the quantum numbers K and −K

are equal to each other. However, for a given I there are 2I + 1
degenerate substates, whereas the Nilsson states are only
double degenerate. As explained in Ref. [9], the redundancy
problem can be solved by changing the normalization of the
model functions:〈


IM
α

∣∣
IM
α

〉 = 1 =⇒
∑
M

〈

IM

α

∣∣
IM
α

〉 = 2. (2.9)

Due to this weighting factor the particle-density function
provides the consistency result that the number of particles that
can be distributed on the (2I + 1) substates is at most 2, which
agrees with the Nilsson model. Here α stands for the set of
shell-model quantum numbers nlj. Due to this normalization,
the states 
IM

α used to calculate the matrix elements of a
given operator should be multiplied with the weighting factor√

2/(2I + 1).
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Finally, we recall a fundamental result, obtained in
Ref. [12], concerning the product of two projected states,
which comprises a product of two core components. Therein
we have proved that the matrix elements of a two-body
interaction corresponding to the present scheme are very
close to the matrix elements corresponding to spherical states
projected from a deformed state consisting of two spherical
single-particle states times a single collective core wave
function. The small discrepancies of the two types of matrix
elements could be washed out by using slightly different
strengths for the two-body interaction in the two methods.
This feature is caused by the coherent state properties.

III. THE MODEL HAMILTONIAN FOR THE STATES
INVOLVED IN THE PROCESS

In the present work we are interested in describing
the Gamow-Teller two-neutrino ββ decay of an even-even
deformed nucleus. In our treatment the Fermi transitions,
contributing about 20% to the total rate, and the “forbidden”
transitions are ignored, which is a reasonable approximation
for the two-neutrino ββ decay in medium and heavy nuclei.
The 2νββ process is conceived as two successive single β−
virtual transitions. The first transition connects the ground
state of the mother nucleus to a magnetic dipole state 1+ of
the intermediate odd-odd nucleus, which subsequently decays
to the first state 2+ of the daughter nucleus. The second leg
of the transition is forbidden within the pnQRPA approach
but nonvanishing within a higher pnQRPA approach [15].
The states, involved in the 2νββ process are described by
the following many-body Hamiltonian:

H =
∑
ταIM

2

2I + 1
(εταI − λτα)c†ταIMcταIM

−
∑
ταα′I

Gτ

4
P

†
ταIPτα′I

+ 2χ
∑

pn;p′n′;µ

β−
µ (pn)β+

−µ(p′n′)(−)µ

− 2χ1

∑
pn;p′n′;µ

P −
1µ(pn)P +

1,−µ(p′n′)(−)µ

−
∑

τ,τ ′=p,n

Xτ,τ ′QτQ
†
τ ′ . (3.1)

The operator c
†
ταIM (cταIM ) creates (annihilates) a particle

of type τ (=p, n) in the state 
IM
α , when acting on the

vacuum state |0〉. To simplify the notations, hereafter
the set of quantum numbers α(= nlj ) will be omitted. The
two-body interaction consists of three terms, the pairing,
the dipole-dipole particle-hole (ph), and the particle-particle
(pp) interactions. The corresponding strengths are denoted by
Gτ , χ, χ1, respectively. All of them are separable interactions,

with the factors defined by the following expressions:

P
†
τI =

∑
M

2

2I + 1
c
†
τIMc

†
τ̃ IM

,

β−
µ (pn) =

∑
M,M ′

√
2

Î
〈pIM|σµ|nI ′M ′〉

√
2

Î ′ c
†
pIMcnI ′M ′ ,

P −
1µ(pn) =

∑
M,M ′

√
2

Î
〈pIM|σµ|nI ′M ′〉

√
2

Î ′ c
†
pIMc

†˜nI ′M ′ , (3.2)

Î = √
2I + 1

Q
(τ )
2µ =

∑
i,k

q
(τ )
ik

(
c
†
i ck

)
2µ

, q
(τ )
ik =

√
2

Îk

〈Ii ||r2Y2||Ik〉.

The remaining operators from Eq. (3.1) can be obtained from
the above operators by Hermitian conjugation.

The one-body term and the pairing interaction terms
are treated first through the standard BCS formalism and
consequently replaced by the quasiparticle one-body term∑

τIM Eτa
†
τIMaτIM . In terms of quasiparticle creation (a†

τIM )
and annihilation (aτIM ) operators, related to the particle
operators by means of the Bogoliubov-Valatin transformation,
the two-body interaction terms, involved in the model Hamil-
tonian, can be expressed just by replacing the operators (3.2)
by their quasiparticle images. Thus, the Hamiltonian terms
describing the quasiparticle correlations become a quadratic
expression in the dipole and quadrupole two-quasiparticle and
quasiparticle density operators:

A
†
1µ(pn) =

∑
mp,mn

C
Ip In 1
mp mn µa

†
pIpmp

a
†
nInmn

,

B
†
1µ(pn) =

∑
mp,mn

C
Ip In 1
mp −mn µa

†
pIpmp

anInmn
(−)In−mn,

A
†
2µ(ττ ′) =

∑
mτ ,mτ ′

CIτ Iτ ′ 2
mτ mτ ′ µa

†
τIτ mτ

a
†
τ ′Iτ ′mτ ′ , (3.3)

B
†
2µ(ττ ′) =

∑
mτ ,mτ ′

C
Iτ Iτ ′ 2
mτ −mτ ′ µa

†
τIτ mτ

aτ ′Iτ ′mτ ′ (−)Iτ ′−mτ ′ ,

τ, τ ′ = p, n.

Because the pnQRPA treatment of the dipole-dipole in-
teraction in the particle-hole (ph) and pp channels run in an
identical way as in our previous publications [13,14], here we
provide no details about building the dipole proton-neutron
phonon operator:

�
†
1µ =

∑
k

[X1(k)A†
1µ(k) − Y1(k)A1,−µ(k)(−)1−µ]. (3.4)

We just mention that the amplitudes X and Y are determined
by the pnQRPA equations and the normalization condition.

The charge-conserving QRPA bosons

�
†
2µ =

∑
k

[X2(k)A†
2µ(k) − Y1(k)A2,−µ(k)(−)µ],

(3.5)
k = (p, p′), (n, n′)
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are determined by the QRPA equations associated with the
matrices:

Aττ ′(ik; i ′k′) = δττ ′δii ′δkk′
(
Eτ

i + Eτ
k

)
−Xττ ′

(
q

(τ )
ik ξ

(τ )
ik

)(
q

(τ )
i ′k′ξ

(τ )
i ′k′

)
,

(3.6)
Bττ ′(ik; i ′k′) = −Xττ ′

(
q

(τ )
ik ξ

(τ )
ik

)(
q

(τ )
i ′k′ξ

(τ )
i ′k′

)
,

i � k, i ′ � k′,

where

ξ
(τ )
ik = 1√

1 + δi,k

(
Uτ

i V τ
k + Uτ

k V τ
i

)
. (3.7)

Here V τ
i and Uτ

i denote the square roots of occupation and
nonoccupation probabilities of the state i of τ (=p, n) type,
respectively, given by the BCS equations. To distinguish
between the phonon operators acting in the RPA space
associated to the mother and daughter nuclei, respectively,
one needs an additional index. Also, an index labeling the
solutions of the RPA equations is necessary. Thus, the two
kinds of bosons will be denoted by

j�
†
1µ(k), j = i, f ; k = 1, 2, . . . N (1)

s ; j�
†
2µ(k),

(3.8)
j = i, f ; k = 1, 2, . . . N (2)

s .

Acting with i�
†
1µ(k) and f �

†
1µ(k) on the vacuum states |0〉i and

|0〉f , respectively, one obtains two sets of nonorthogonal states
describing the intermediate odd-odd nucleus. By contrast,
the states i�

†
2(k)|0〉i and f �

†
2(k)|0〉f describe different nuclei,

namely the initial and final ones, participating in the process
of 2νββ decay. The mentioned indices are, however, omitted
whenever their presence is not necessary.

IV. THE BOSON EXPANSION (BE) PROCEDURE

Within the boson expansion formalism, the basic opera-
tors A

†
1µ(p, n), A1µ, B

†
1µ(p, n), B1µ are written as polynomial

expansions in terms of the QRPA boson operators with
the expansion coefficients determined such that their mutual
commutation relations are preserved in each order of approx-
imation [19]. Based on this criterion the boson expansions of
the quadrupole two-quasiparticle and quadrupole quasiparticle
density charge conserving operators were obtained by Belyaev
and Zelevinsky in Ref. [19]. For charge nonconserving
two-quasiparticle and quasiparticle density dipole operators
the expansion has been derived by one of us (A.A.R., in
Collaboration) in Ref. [15]. The latter expansion has the
peculiarity that the commutator algebra cannot be satisfied
restricting the expansion to the proton-neutron dipole bosons.
However, this goal can be touched if the boson operators
space is enlarged by adding the charge-conserving quadrupole
two-quasiparticle bosons. The last step consists in expressing

the quasiboson operators
0
A

†

1µ (pn),
0
A1µ (pn),

0
A

†

2µ (pp),
0
A

†

2µ

(pp),
0
A

†

2µ (nn),
0
A2µ (nn) (these are, in fact the operators

denoted by the same symbol but without the index of the
superscript zero, with the commutators approximated to be of

boson type) as linear combinations of the QRPA bosons. In
this way the basic operators mentioned above are written as
polynomials of pn and pp + nn QRPA bosons. The expansions
involve not only the collective but also noncollective QRPA
bosons. The final expressions obtained in this way are

A
†
1µ(jpjn) =

∑
k1

{
A(1,0)

k1
(jpjn)�†

1µ(k1)

+A(0,1)
k1

(jpjn)�1−µ(k1)(−)1−µ
} +

∑
k1,k2,k3;l=0,2

× (
A(3,0);l

k3k2k1
(jpjn){[�†

2(k3)�†
2(k2)]l�

†
1(k1)}1µ

+A(0,3);l
k3k2k1

(jpjn){[�2(k3)�2(k2)]l�1(k1)}1µ

)
+

∑
k1,k2,k3;l=0,2

(
A1;(22̄)l

k1k2k3
(jpjn){�†

1(k1)

× [�†
2(k2)�2(k3)]l}1µ + A(22̄)l;1

k3k2k1
(jpjn)

×{[�†
2(k3)�2(k2)]l�1(k1)}1µ

)
B

†
1µ(jpjn) =

∑
k1k2

{
B(2,0)

k1k2
(jpjn)[�†

1(k1)�†
2(k2)]lµ

+B(0,2)
k1k2

(jpjn)[�1(k1)�2(k2)]lµ

+B11;12
k1k2

(jpjn)[�†
1(k1)�2(k2)]lµ

+B11;2l
k1k2

(jpjn)[�†
1(k2)�1(k1)]lµ

}
, (4.1)

where the expansion coefficients are those given in
Ref. [15], whereas the notations for the dipole and quadrupole
bosons introduced in the previous section have been used.
The boson expansions associated to the two-quasiparticle
and quasiparticle density proton-neutron operators have the
property that the two sides of Eqs. (4.1) have the same matrix
elements in a boson basis. Actually, this can be used as a
criterion to determine the expansion coefficients. For example
the first expansion coefficients in the above expression can be
determined as:

A(1,0)
k1

(jpjn) = 〈0|[�1µ(k1), A†
1µ(jp, jn)]|0〉,

B(2,0)
k1k2

(jpjn) =
∑
µ1,µ2

C121
µ1µ2µ

〈0|{�1µ1 (k1), (4.2)

× [
�1µ2 (k2), B†

1µ(jp, jn)
]}|0〉.

The properties of the nested commutators determine vanishing
values for the coefficients accompanying the operators involv-
ing an even number of bosons in the A† expansion and an
odd number of bosons in the B† expansion. Thus, the A

†
1µ

has an odd-order boson expansion, whereas B
†
1µ exhibits an

even-order expansion in bosons. It is worth mentioning that the
matrix element of the double commutator involved in Eq. (4.2)
does not depend on the order in which the commutators are
performed. Indeed, the same result is obtained when (a) first
the k2 boson is commuted with B† and the result is commuted
with the k1 boson and (b) first the dipole boson is commuted
with B† and the result is commuted with the quadrupole
boson. However, the commutation order is important when
one determines the remaining expansion coefficients. The
ordering in the mentioned commutators is chosen such that the
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mutual commutator equations of the basic operators A
†
1µ, B

†
1µ

are satisfied in each order of approximation. The comparison
of the boson expansion formulated in Ref. [15] and other
approaches [20–23] may be found in Ref. [24].

V. THE GAMOW-TELLER TRANSITION AMPLITUDE

If the energy carried by leptons in the intermediate state
is approximated by the sum of the rest energy of the emitted
electron and half the Q value of the ββ decay process from
the ground state of the mother nucleus to the first excited state
2+ of the daughter nucleus,

�E = mec
2 + 1

2Q
(0→2)
ββ , (5.1)

the reciprocal value of the 2νββ half-life can be factorized as

T 2ν
1/2(0+

i → 2+
f )−1 = G02

∣∣M (02)
GT

∣∣2
, (5.2)

where G02 is the Fermi integral which characterizes the phase
space of the process, whereas the second factor is the GT
transition amplitude which, in the second order of perturbation
theory, has the expression:

M
(02)
GT =

√
3

∑
k,m

× i〈0‖β+‖k,m〉ii〈k,m|k′,m′〉ff 〈k′,m′‖β+‖2+
1 〉f

(Ek,m + �E2)3
.

(5.3)

Here �E2 = �E + E1+ , with E1+ standing for the experi-
mental energy for the first state 1+. The intermediate states
|k,m〉 are k-boson states with k = 1, 2, 3 labeled by the index
m, specifying the spin and the ordering label of the RPA
roots. Note that by contrast to the case of ground-to-ground
transition here the denominator has a cubic power which
results in obtaining a suppression of the corresponding GT
amplitude. Inserting the boson expansions from Eq. (4.1) into
the expression of the β+ transition operator one can check that
the following nonvanishing factors, at numerator, show up:

i〈0||i�1(k1)||1, 1k1〉if 〈1, 1k2 ||f �
†
1(k2)f �2(1)||1, 21〉f ,

i〈0||i�1(k1)i�2(ik2)||2, 1k1 2k2〉if 〈2, 1j1 21||f �
†
1(j1)||1, 21〉f ,

i〈0||i�1(k1)i�2(k2)||2, 1k1 2k2〉if 〈2, 1j1 2j2
(5.4)

||f �
†
1(j1)f �

†
2(j2)f �2(1)||1, 21〉f ,

i〈0||i�1(k1)i�2(k2)i�2(k3)||3, 1k1 2k2 2k3〉if
〈3, 1j1 2j2 21||f �

†
1(j1)f �

†
2(j2)||1, 21〉f .

The term Ek,m from the denominator of Eq. (5.3) is the
average of the energies of the mother and daughter states
|k,m〉 normalized to the average energy of the first pnQRPA
states 1+ in the initial and final nuclei. The left low indices i

and f suggest that the phonon operators are built up with
quasiparticle operators characterizing the initial and final
nuclei, respectively. Acting with the i and f dipole single
or dipole multiphonon operators on the states |0〉i and |2+

f 〉
(or |0〉f ) one populates two sets of states |1+〉i and |1+〉f ,

(a) (b)

(c) (d)

FIG. 1. One illustrates various GT transitions 0+ → 2+ via one
(a) two (b) and (c) and three (d) phonon states.

respectively, characterizing the odd-odd intermediate nuclei.
The two sets are not orthogonal onto each other.

The matrix elements, listed above, are associated to partial
transition amplitudes represented pictorially in Fig. 1.

VI. NUMERICAL APPLICATION

Calculations were performed for 18 nuclei which have
been previously considered in Refs. [13,14] for studying the
ββ ground to ground decay. Among these, 11 are proved
to be, indeed, ββ ground to ground emitters, whereas the
remaining ones are suspected to have this property due to
the corresponding positive Q value. Because the excitation
energies for the states 2+ in the daughter nuclei are not large,
the Q values characterizing the ββ transition 0+ → 2+ are
also positive. For some of the selected nuclei, experimental
data either for the half-life of the process or for the low bounds
of the half-lives are available.

The single-particle space, the pairing interaction treatment
and the pnQRPA description of the dipole states describing
the intermediate odd-odd nuclei used in the present article
are identical with those from Refs. [13,14] for ground-
to-ground transition. Therefore, to save the space, we do
not present them again. The parameters determining the
single-particle energies and the strengths of the pairing and
dipole interactions are taken from our previous publications.
However, the microscopic Hamiltonian used here involves in
addition to the terms considered in the quoted references the
quadrupole-quadrupole interaction between alike nucleons.
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TABLE I. The experimental and calculated energies for the first 2+ states in mother and daughter nuclei are given.
The strength parameter of the quadrupole-quadrupole interaction was fixed such that the experimental energies are
reproduced. In our calculations we considered Xpp = Xnn = Xpn. The oscillator length is denoted by b = (h̄/Mω)1/2.

Nucleus E
exp.

2+ (keV) Eth.
2+ (keV) b4Xpp(keV) Nucleus E

exp.

2+ (keV) Eth.
2+ (keV) b4Xpp(keV)

48Ca 983.00 983.00 71.30 130Te 839.49 831.03 12.12
48Ti 983.52 979.02 42.80 130Xe 536.07 534.2 17.28
76Ge 562.93 558.88 50.80 134Xe 847.04 841.75 20.00
76Se 559.10 558.87 65.20 134Ba 604.72 607.98 17.56
82Se 654.75 654.73 19.10 136Xe 1313.027 1314.90 16.37
82Kr 776.52 776.84 25.84 136Ba 818.49 810.30 14.82
96Zr 1750.49 1465.62 2.00 148Nd 301.702 298.00 24.29
96Mo 778.24 776.81 38.10 148Sm 550.250 553.00 24.64

100Mo 535.57 534.43 31.50 150Nd 130.21 135.24 27.32
100Ru 539.5 536.11 19.70 150Sm 330.86 333.12 22.45
104Ru 358.03 358.45 29.80 154Sm 81.976 83.05 22.62
104Pd 555.81 561.83 20.90 154Gd 123.070 123.35 20.37
110Pd 373.8 370.45 44.65 160Gd 75.26 73.13 18.70
110Cd 657.76 662.85 25.10 160Dy 86.788 87.25 19.03
116Cd 513.49 514.50 30.50 232Th 49.369 48.32 15.25
116Sn 1293.56 1179.16 7.00 232U 47.572 45.22 14.94
128Te 743.22 746.12 12.12 238U 44.916 47.34 12.91
128Xe 442.91 449.58 19.43 238Pu 44.076 46.15 14.83

As we already mentioned this interaction is needed to define
the charge conserving quadrupole phonon operators used by
the boson expansion procedure. Moreover, this interaction is
used to describe the final state, i.e., 2+, in the daughter nucleus.
The strength of the QQ interaction was fixed by requiring that
the first root of the QRPA equation for the quadrupole charge
conserving boson is close to the experimental energy of the
first 2+ state. The results of the fitting procedure are given in
Table I.

Having the RPA states defined, the GT amplitude has been
calculated by means of Eq. (5.3), whereas the half-life with
Eq. (5.2). The Fermi integral for the transition 0+ → 2+,
denoted by G02, was computed by using the analytical result
given in Ref. [4].

The final results are collected in Table II. Therein one
may find also the available experimental data as well as some
theoretical results obtained with other approaches. One notices
that the half-life is influenced by both the phase-space integral
(through the Q value) and the single-particle properties that
determine the transition amplitude. Indeed, for 128Te and 134Xe
the small Q value causes a very large half-life, whereas in
48Ca the opposite situation is met. By contrary, the Q value
of 110Pd is about the same as for 76Ge but, due to the specific
single-particle and pairing properties of the orbits participating
coherently to the process, the half-life for the former case is
more than three orders of magnitude less than in the later
situation.

To isolate the deformation effect on the process half-life
we repeated the calculations in the spherical limit, i.e.,
d → 0. In this limit the single-particle energies coincide with
the spherical shell-model energies. The process of going to
the spherical limit alters the pairing properties as well as the
energies of the quadrupole collective states 2+ in mother and
daughter nuclei. We modified the the strengths for pairing and

QQ interactions such that the pairing gaps and the 2+ energies
are the same as in the deformed picture. Also we preserved
the dimension for single-particle space for both protons and
neutrons. For illustration we give here the result for the case of
100Mo where the half-life for the deformed situation, 1.21 ×
1025, becomes in the spherical limit equal to 0.46 × 1024. Thus,
one may conclude that the nuclear deformation enhances the
decay half-life. The same effect of deformation on the GT
matrix elements was pointed out by Zamick and Auerbach
in Ref. [26]. Indeed, they calculated the GT transition matrix
elements for the neutrino capture νµ + 12C → 12N + µ− using
different structures for the ground states of 12C and 12N:
(a) spherical ground states, (b) asymptotic limits of the
wave functions, and (c) deformed states with an intermediate
deformation of δ = −0.3. The results for the transition rate
were 16

3 , 0, and 0.987, respectively. Similar results are obtained
also for the spin M1 transitions in 12C. The ratio between the
transition rates obtained with spherical and deformed basis
explains the factor of 5 overestimate in the calculations of
Ref. [27], where a spherical basis is used. It is worth
mentioning the good agreement between our prediction for
100Mo and that of Ref. [23] obtained with a deformed SU(3)
single-particle basis.

As we mentioned in Ref. [13], the experimental data for the
energy of first 1+ in the odd-odd isotopes of 150Pm and 238Np
are not yet available. For these cases we took the values 137
and 1000 keV, respectively. These values are suggested by the
energies in the neighboring odd-odd isotopes. Although the
GT amplitude M0→0

GT is not very sensitive to the experimental
energy to which the first pnQRPA energy is normalized,
the situation for M0→2

GT is different because in this case the
energy denominator has a cubic power. Indeed we repeated
the calculations for 150Nd by taking for the first 1+, an energy
equal to 1 MeV. The half-life that corresponds to this choice
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TABLE II. The GT transition amplitudes and the half lives of the ββ decay 0+ → 2+ are given. Also, the
Q values are given in units of mec

2. �E2 is the energy shift defined in the text. For comparison, we give also
the available experimental results as well as some theoretical predictions obtained with other formalisms: a,bRef. [23],
cRef. [21],d,e [23] for different nuclear deformations, β = 0.28 and β = 0.19, respectively. The MGT values for the
ground to ground transitions are also listed. For 100Mo we mention the result of Ref. ([23]) obtained with an SU(3)
deformed single particle basisa and with a spherical basisb.

Nucleus Q2+
ββ �E2 |M (0→0)

GT | |M (0→2)
GT | T

(0→2)
1/2 (yr)

(mec
2) (MeV) (MeV−1) (MeV−3) Present Exp. Ref. [20]

48Ca 6.432 2.473 0.043 0.901 × 10−3 1.72 × 1024

76Ge 2.894 1.295 0.222 0.558 × 10−3 5.75 × 1028 >1.1 × 1021 1.0 × 1026

82Se 4.37 1.708 0.096 0.259 × 10−3 1.7 × 1027 5.8 × 1023 3.3 × 1026c

96Zr 5.033 2.913 0.113 0.834 × 10−3 2.27 × 1025 >7.9 × 1019 4.8 × 1021

100Mo 4.874 1.756 0.305 0.136 × 10−2 1.21 × 1025 >1.6 × 1021 3.9 × 1024

2.5 × 1025a

1.2 × 1026b

104Ru 1.456 0.883 0.781 0.028 6.2 × 1028

110Pd 2.646 1.182 0.263 0.050 1.48 × 1025

116Cd 2.967 1.269 0.116 0.507 × 10−2 3.4 × 1026 >2.3 × 1021 1.1 × 1024

128Te 0.836 1.305 0.090 0.229 × 10−2 4.7 × 1033 >4.7 × 1021 1.6 × 1030

130Te 3.902 2.358 0.055 0.620 × 10−3 6.94 × 1026 >4.5 × 1021 2.7 × 1023

134Xe 0.460 0.806 0.039 0.621 × 10−2 5.29 × 1035

136Xe 3.251 1.518 0.039 0.249 × 10−2 3.88 × 1026 2.0 × 1024

148Nd 2.7 1.99 0.559 1.408 · 10−3 9.97 × 1027

150Nd 5.9 3.087 0.546 2.668 × 10−3 1.5 × 1023 >8 × 1018 7.2 × 1024d

1.2 × 1025e

154Sm 2.2 1.172 0.311 1.238 × 10−3 1.41 × 1029

160Gd 3.2 1.739 0.624 6.799 × 10−3 4.56 × 1025

232Th 1.6 1.084 0.262 2.142 × 10−3 1.399 × 1030

238U 2.2 1.344 0.152 0.692 × 10−3 2.84 × 1029

is 1.08 × 1024. Thus, the discrepancy between our result and
that from Ref. [23] is likely to be caused by different values
for the first 1+ energy and nuclear deformations.

The transition matrix elements reported in Refs. [20,21] are
larger than those given here. The discrepancies are caused by
the differences between the two approaches: (a) in the quoted
references one uses a spherical single-particle basis, whereas
here a deformed one is considered; and (b) the single-particle
energies used there are Woods-Saxon energies adjusted so that
the quasiparticle spectrum in the odd-odd system be realisti-
cally described. We recall that the spherical limit of our model
provides spherical shell-model single-particle energies. Also,
the single-particle spaces are different in the two formalisms;
(c) the higher RPA approach from Ref. [20] is the multiple
commutator method (MCM) applied to the pnQRPA bosons
or, alternatively [21], the renormalized pnQRPA bosons. A
detailed comparison of the boson expansion formalism and
MCM were performed in Ref. [24]. It is a difficult task to
make explicit the quantitative effect brought by the factors
(a), (b), (c), which, as a matter of fact, is beyond the
scope of the present article. However, concerning the sources
(a) and (c) for the deviations one could draw some qualitative
conclusions. Indeed, as we have already seen before, the
nuclear deformation decreases the transition matrix element
and consequently enhances the process half-life. The MCM
and boson expansion approaches provide different expressions

for the terms that are cubic in bosons, involved in the transition
operator. Indeed, the coefficients of these terms given by
MCM are cubic in the forward amplitudes (X), whereas in
the boson expansion formalism the expansion coefficients of
the mentioned terms are at most quadratic in the amplitudes
X. One expects, therefore, that MCM provides larger matrix
elements for these terms, which results in having a shorter
half-life. Thus, the effects caused by the factors (a) and (c)
are consistent with the sign of the discrepancies of results
corresponding to the two approaches.

To have a reference value for the matrix elements associated
to the transition 0+ → 2+, Table II also lists the MGT values
for the ground-to-ground transitions [14]. The ratio of the
transition 0+ → 0+ and 0+ → 2+ matrix elements is quite
large for 76Ge (398), 100Mo (224), and 96Zr (136) but small for
110Pd (5.26), 134Xe (6.3), and 150Nd (20.46). However, these
ratios are not directly reflected in the half-lives, because the
phase-space factors for the two transitions are very different
from each other and, moreover, the differences depend on the
atomic mass of the emitter.

The composing terms of the transition amplitude are
represented in Fig. 1 as suggestions. The term corresponding
to Fig. 1(d) has a negligible contribution and, therefore, has
been ignored. The terms corresponding to the panels (a), (b),
and (c) of Fig. 1 are denoted by M

(1)
GT,M

(2)
GT,M

(3)
GT respectively.

To see the relative contribution of the three terms to the
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TABLE III. The values of the partial Gamow-Teller transition
amplitudes M

(1)
GT, M

(2)
GT, M

(3)
GT, are given for some of the nuclei studied

in the present article. Their sum is denoted by M
(0→2)
GT .

Nucleus M
(0→2)
GT × 106 M

(1)
GT × 106 M

(2)
GT × 106 M

(3)
GT × 106

(MeV−3) (MeV−3) (MeV−3) (MeV−3)

48Ca 901.100 900.000 0.07 −0.004
76Se −258.722 −269.412 9.380 1.31

105Ru 28281.530 26110.000 1583.810 587.72
148Nd −1408.148 3734.201 −5360.949 218.60
150Nd 2668.170 3909.451 −1417.082 175.80
154Sm 1237.572 358.452 916.240 −37.12
160Gd −6799.463 −5813.393 −820.580 −165.49
232Th 2142.316 1780.647 −165.981 527.65
238U 692.181 −88.013 815.784 −35.59

total amplitude, in Table III we give the partial contribution
for some of the nuclei. We see that for some nuclei the
term M

(1)
GT prevails, whereas for others M2

GT is the dominant
partial amplitude. Similar situations are met for the nuclei
not listed here. None for the cases has M

(3)
GT as a dominant

term. The leading contributions coming from M
(1)
GT and M

(2)
GT

have opposite sign. There are, however, two exceptions, the
cases of 104Ru and 154Sm, where the two contributions add
coherently.

VII. CONCLUSIONS

In the previous sections we presented the formalism as well
as the numerical results for the two neutrino ββ decay to the
collective excited state 2+. The Gamow-Teller transition rate
has been calculated within a boson expansion formalism that
is essentially a higher random-phase approximation approach.
The single-particle basis is generated through an angular
momentum projection procedure from a deformed set of
states. The projected basis depends on a real parameter d

that simulates the nuclear deformation. In the limit of d → 0
the spherical shell-model basis is obtained, whereas for d

different of zero, the single-particle energies depend on the
deformation parameter in a similar manner as the energies
predicted by the Nilsson model. Due to these features the
present formalism is able to describe in an unified fashion the
spherical and deformed nuclei. In our previous publications
we treated various situations when the mother and daughter
had different deformations, in the context of the ground-to-
ground ββ transition. We have seen that deformation causes
a fragmentation of the single β decays strength among the
pnQRPA states. One expects that for the transition 0+ → 2+
the nuclear deformation is even more important. This can
be understood even at the first glance because the larger the
deformation of the daughter nucleus the lower the energy of
the first 2+ state. Consequently, the Q value is expected to be
larger.

It is worth noticing that during the transition 0+ → 2+
several symmetries might be broken. Indeed, the second
leg of the transition connects a magnetic state 1+ from the

intermediate odd-odd nucleus to an electric state 2+ in the
daughter nucleus. Among the nuclei considered in the present
work there are situations when the mother nucleus is spherical,
whereas the daughter is a quadrupole deformed system.
Moreover, in the case of 160Gd decay there are suspicions that
the mother has not a good space reflection symmetry [25],
whereas the daughter satisfies this symmetry. Because the
GT transition operator involves quadrupole phonon operators
it may excite states whose isospin is different from that
characterizing the mother ground state by �T = 1, 2. The
isospin mixing is also favored by the inclusion of the pp
interaction. However, each symmetry breaking causes a new
nuclear phase with specific properties. To our knowledge it
is still an open question how these symmetry breaking are
reflected in the decay rate. On this line, the results of the present
work suggest to what direction the decay rate is modified by
the nuclear deformation.

Concerning the quantitative description, the results pre-
sented in Table II reveal the following features. There are
five nuclei whose half-lives fall in the range accessible to
experiment. These are 48Ca, 96Zr, 100Mo, 110Pd, 150Nd, 160Gd.
Comparing with the results obtained by Toivanen and Suhonen
[20] or Civitarese and Suhonen [22], the half-lives obtained
in the present work are larger. The reason is that we use a
deformed single-particle basis, whereas the quoted authors
use a spherical one. The agreement we obtain for 100Mo with
the calculations from Ref. [23], where a deformed SU(3) basis
is used, support the above statement.

It is worth mentioning that the ββ transitions to excited
states have been considered by several authors in the past, but
the calculations emphasized the role of the transition operator
and some specific selection rules. Many calculations regarded
the neutrinoless process. Thus, in Ref. [28] it was shown
that the neutrinoless transition to the excited 0+ for medium
heavy nuclei might be characterized by matrix elements that
are larger than that of ground-to-ground transition and that
happens because in the first transition, the change of the
K quantum number is less. In Ref. [29] it has been stated
that the 0+ → 2+ matrix element depends on the left-right
current coupling and not on the neutrino mass. This could
provide a way of fixing the strength of the left-right coupling
if the transition matrix element is experimentally known.
However, according to the calculations of Haxton et al. [2],
the matrix element is strongly suppressed and, therefore, the
mentioned method of fixing the coupling parameter would
not be reliable. Although the transition operator might have
a complex structure, many calculations have been performed
with the approximate interaction [σ (1) × σ (2)]λ=2t+(1)t+(2)
to test some selection rules. Thus, this interaction was used in
Ref. [30] for the transition 0+ → 2+ of 48Ca, using a single j

calculation. It has been proved that the matrix element for this
transition is suppressed due to the signature selection rules.
Actually, this result confirms the feature of suppression for
the 0+ → 2+ ββ transition matrix element pointed out by
Vergados [31] and Haxton et al. [2].

The transition to 0+
1 was examined for A = 76, 82, 100, 136

nuclei by assuming light and heavy Majorana neutrino ex-
change mechanism and trilinear R-parity contribution. Higher
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RPA as well as renormalization effects for the nuclear matrix
elements were included [32].

Here we show that the transition 0+ → 2+ in a 2νββ

process is allowed by renormalizing the GT transition operator
with some higher RPA corrections, which results in making
the matrix elements from Eq. (5.4) nonvanishing.

The calculated MGT values of the present work are
smaller than those from Ref. [20] obtained with a spher-
ical single-particle basis, which agrees with the earlier
calculations of Zamick and Auerbach for 12C, showing
that the nuclear deformation suppresses the GT matrix
elements.
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