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Benchmark calculations for 3H, 4He, 16O, and 40Ca with ab initio coupled-cluster theory
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We present ab initio calculations for 3H, 4He, 16O, and 40Ca based on two-nucleon low-momentum interactions
Vlow k within coupled-cluster theory. For 3H and 4He, our results are within 70 and 10 keV of the corresponding
Faddeev and Faddeev-Yakubovsky energies. We study in detail the convergence with respect to the size of the
model space and the single-particle basis. For the heavier nuclei, we report practically converged binding energies
and compare with other approaches.
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I. INTRODUCTION

Ab initio few- and many-body methods have been used with
great success to explore the structure of light nuclei based on
microscopic two- and three-nucleon interactions. For nuclei
with A <∼ 12 nucleons, several techniques provide practically
exact solutions to the nuclear many-body problem and have
been benchmarked to agree within numerical uncertainties
for the 4He ground-state energy and radius obtained from
the nucleon-nucleon (NN ) Argonne v8 potential [1]. These
methods include Faddeev-Yakubovsky equations [2], varia-
tional approaches [3–6], the Green’s function Monte Carlo
(GFMC) method [7], the no-core shell model (NCSM) [8,9],
and the effective interaction hyperspherical harmonics method
[10,11]. Many of the above approaches are, however, restricted
to the lightest nuclei.

In recent years, the coupled-cluster method [12,13] was
reintroduced in nuclear physics as a tool for ab initio nuclear
structure calculations [14–21]. Coupled-cluster theory is size
extensive and scales rather gently with an increasing number
of nucleons and with the size of the model space and
therefore has the potential to extend the reach to medium-
mass nuclei. In this article, we address the question of
whether the coupled-cluster method is as precise for few-body
systems as the well-established methods. Several findings
suggest that this is indeed the case. Mihaila and Heisenberg
performed a microscopic calculation of the electron scattering
structure function for 16O and found excellent agreement
with experimental data. Their calculations are based on a
particle-hole energy expansion of the cluster operator. More
recent applications [16–21] follow the “standard” approach of
coupled-cluster calculations from quantum chemistry [22–25].
In these calculations, several results for helium isotopes
[17,20] were found to be in good agreement with exact
diagonalizations in sufficiently small model spaces and with
corresponding renormalized interactions. However, except in
the recent study of three-nucleon forces (3NF) in coupled-
cluster theory [21], this approach has never been compared
in detail to well-established few-body methods in the larger
model spaces that are needed for convergence with modern

NN interactions. It is the purpose of this work to fill this gap
in nuclear physics and to place the coupled-cluster method in
the group of ab initio approaches.

This article is organized as follows. In Sec. II, we begin
with a brief discussion of the coupled-cluster method, the low-
momentum interactions, and the employed basis spaces. Our
main results for 3H and 4He are presented in Sec. III and for
16O and 40Ca in Sec. IV. We conclude with a summary in
Sec. V.

II. METHOD, INTERACTIONS, AND MODEL SPACES

A. Coupled-cluster method

Coupled-cluster theory was invented by Coester and
Kümmel almost 50 years ago [12,13]. During the 1970s,
this approach was further developed and was used in many
applications in nuclear physics. The review by the Bochum
group [26] summarizes the status of the field in 1978. From
there onward, applications in nuclear physics were more
of a sporadic nature [27]. This was most probably due
to the difficulty of hard NN interactions and their strong
short-range repulsion and short-range tensor force. Mihaila
and Heisenberg employed coupled-cluster theory in the late
1990s [14]. Their work culminated in the precise computation
of the electron scattering form factor for 16O based on the
Argonne v18 potential combined with leading contributions
from 3NF [15].

Parallel to the field of nuclear physics, coupled-cluster
theory saw its own career in ab initio quantum chemistry. After
the pioneering works by Čı́žek [28,29], the theory has become
one of the main workhorses in quantum chemistry [22–25].
The sheer number of applications and developments in that
field de facto established a “standard” or “canonical” way for
how the method is being used to solve quantum many-body
problems. Reference [22] gives a summary of state-of-the-art
coupled-cluster calculations in quantum chemistry.

Recently, coupled-cluster theory has seen a renaissance in
nuclear physics starting with the calculations of Ref. [16]. This
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approach differs from the one by Mihaila and Heisenberg as
it employs coupled-cluster theory in the spirit of quantum
chemistry and uses softer interactions. So far, the present
approach has employed G matrices for the description of
ground and excited states in 4He [17] and 16O [18], and
for nuclei in the vicinity of 16O [19]. The most recent
calculations are based directly on low-momentum interactions
Vlow k [30,31], and the method has been developed to describe
weakly bound and unbound helium isotopes within a Gamow-
Hartree-Fock basis [20] and to include 3NF [21].

Within coupled-cluster theory, the ground state of a mass
A nucleus is written as

|ψ〉 = eT̂ |φ〉, (1)

where |φ〉 = ∏A
i=1 â

†
i |0〉 is a single-particle product state and

T̂ = T̂1 + T̂2 + · · · + T̂A (2)

is a particle-hole (p-h) excitation operator with

T̂k = 1

(k!)2

∑

i1,...,ik ;a1,...,ak

t
a1...ak

i1...ik
â†

a1
. . . â†

ak
âik . . . âi1 . (3)

Here and in the following, i, j, k, . . . label occupied single-
particle orbitals (as defined by the product state |φ〉), whereas
a, b, c, . . . refer to unoccupied orbitals.

We take the reference state |φ〉 as our vacuum state and
normal-order the Hamiltonian Ĥ with respect to this state.
In practice, we restrict ourselves to the truncation T̂ = T̂1 +
T̂2. This is the coupled-cluster singles and doubles (CCSD)
approximation, and the coupled-cluster equations are given by

E = 〈φ|H̄ |φ〉, (4)

0 = 〈
φa

i

∣∣H̄ |φ〉, (5)

0 = 〈
φab

ij

∣∣H̄ |φ〉. (6)

Here |φa1...an

i1...in
〉 = â

†
an

. . . â
†
a1 âi1 . . . âin |φ〉 is a np-nh excitation

of the reference state |φ〉, and

H̄ = e−T̂ Ĥ eT̂ = (Ĥ eT̂ )c (7)

is the similarity-transformed Hamiltonian (note that H̄ is
non-Hermitian). The last expression on the right-hand side of
Eq. (7) indicates that only fully connected diagrams contribute
to the construction. The CCSD Eqs. (5) and (6) determine the
amplitudes tai and tab

ij of the 1p-1h and the 2p-2h excitation
cluster operators, respectively. Once these nonlinear equations
are solved, the amplitudes can be inserted into Eq. (4) to
determine the ground-state energy.

We remind the reader that an exact solution of the many-
body problem would require us to employ the full excitation
operator Eq. (2). Such a calculation is as expensive as a full
diagonalization of the Hamiltonian and therefore impossible
for medium-mass nuclei. CCSD is very efficient in the sense
that it is a highly accurate approximation with the investment
of a modest numerical effort that scales as O(n2

on
4
u) with the

number no of occupied and the number nu of unoccupied
single-particle orbitals, respectively. The inclusion of the
3p-3h cluster operator T̂3 would further increase the accuracy

of the method. However, such singles-doubles coupled cluster
calculations including perturbative triples (CCSDT) come
at the expense of O(n3

on
5
u) and, at present, are already

prohibitively expensive compared to CCSD. For this reason,
there is need for more approximate treatments of the full triples
equations.

There are various approximations to the full CCSDT equa-
tions, and the most popular of these schemes is the CCSD(T)
approach [32]. CCSD(T) includes diagrams at the CCSDT
level that appear up to fifth order in perturbation theory. It is
a noniterative approach because, typically, converged singles
and doubles excitation amplitudes are used in the calculation
of the triples energy correction. The CCSD(T) approximation
is relatively inexpensive compared to CCSDT; no storage of
triples amplitudes is required and the computational cost is a
noniterative O(n3

on
4
u) step. There is also a family of iterative

triples correction schemes known as CCSDT-n [33]. Their
derivation is based on perturbation theory arguments,

CCSDT − 1 0 = 〈
φabc

ijk

∣∣(F̂ T̂3 + Ĥ T̂2)c|φ〉,
CCSDT − 2 0 = 〈

φabc
ijk

∣∣(F̂ T̂3 + Ĥ T̂2 + Ĥ T̂ 2
2

/
2
)
c
|φ〉,

CCSDT − 3 0 = 〈
φabc

ijk

∣∣(F̂ T̂3 + Ĥ eT̂1+T̂2 )c|φ〉,
CCSDT 0 = 〈

φabc
ijk

∣∣(Ĥ eT̂1+T̂2+T̂3 )c|φ〉.

(8)

Here, F̂ denotes the Fock operator (the one-body operator that
results from the normal ordering of the Hamiltonian). All these
approaches require the storage of the full triples amplitudes
tabc
ijk and are therefore computationally considerably more

expensive than the CCSD(T) approach. However, for cases
where the CCSD(T) scheme breaks down, one expects the
CCSDT-n approaches to perform better. The latter approaches
treat the triples corrections self-consistently and also involve
the corrections

〈
φa

i

∣∣(V̂ T̂3)c|φ〉, (9)

〈
φab

ij

∣∣(F̂ T̂3 + V̂ T̂3 + V̂ T̂3T̂1)c|φ〉, (10)

to Eqs. (5) and (6), respectively. These corrections thus modify
the values of the amplitudes tai and tab

ij .

B. Low-momentum interactions and model spaces

Nuclear interactions depend on the resolution scale at
which details are probed and resolved. This resolution scale
dependence is similar to scale and scheme dependences in
parton distribution functions. As a result, nuclear interactions
are defined by an effective theory for NN , 3N , and many-
nucleon interactions and corresponding effective operators,

V̂ = VNN (�) + V3N (�) + · · · , (11)

where the momentum cutoff � denotes the resolution scale.
Conventional nuclear forces are “hard” in the sense that
they have large cutoffs that complicate few- and many-body
calculations. These difficulties arise from high momenta and
associated strong short-range repulsion and short-range tensor
forces, which lead to slow convergence with increasing basis
size and requires resummations in practice.
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Low-momentum interactions Vlow k with variable momen-
tum cutoffs show great promise for nuclei [30,31,34–39].
Changing the cutoff leaves low-energy NN observables
unchanged by construction but shifts contributions between
the potential and the sums over intermediate states in loop
integrals. These shifts can weaken or largely eliminate sources
of nonperturbative behavior such as strong short-range repul-
sion [35,40]. An additional advantage is that the corresponding
3N interactions become perturbative at lower cutoffs in A =
3, 4 nuclei [34], and are thus tractable in coupled-cluster
theory [21]. The renormalization group (RG) evolution is
implemented by coupled RG equations in momentum space
[41] or by a corresponding Lee-Suzuki transformation [42–44]
and subsequent implementations by Suzuki et al. [45].

The evolution to low-momentum interactions Vlow k weak-
ens off-diagonal coupling and decouples the low-energy
physics from high-momentum details [46,47]. As a result,
few- and many-body calculations converge more rapidly for
lower cutoffs, which is important for extending ab initio
approaches to heavier systems. Finally, the cutoff variation
can provide estimates for theoretical uncertainties, which will
be left to future work. In this article, we use a sharp cutoff
� = 1.9 fm−1 for the 3H and 4He calculations, and Vlow k

is derived from the Argonne v18 potential [48] to benchmark
against the Faddeev and Faddeev-Yakubovsky results [34]. For
16O and 40Ca, we use a cutoff � = 2.1 fm−1 and compare to
the importance-truncated NCSM study [49].

Note that 3N interactions are important for the correct
saturation properties of nuclei. Nuclear saturation is a many-
body phenomenon and requires many-nucleon interactions.
This is true for “hard” potentials (such as the Argonne v18

potential) and for “soft” low-momentum interactions. The
main difference is that the former leads to underbinding in
many-nucleon systems, whereas the latter leads to overbinding
(for cutoffs around � ∼ 2 fm−1). Neither underbinding nor
overbinding agrees with experiment, and 3N interactions are
unavoidable for a correct description of nuclei.

Consistent 3N forces could be constructed by performing
the RG evolution to low-momentum interactions in the two-
and three-nucleon sector. Recall that the RG is an exact
method. For instance, if the evolution starting from chiral EFT
interactions were carried out in the NN and 3N sector, the RG
would reproduce the same observables up to truncation errors
in the EFT. However, the RG evolution of 3N forces has not
yet been performed and is presently approximated by fitting
the leading-order chiral 3N interactions [50,51] to Vlow k for
various cutoffs [34]. It has been checked in all applications
that the resulting low-momentum 3N contributions are con-
sistent with 〈V3N〉 ∼ (Q/�)3〈Vlow k〉, as expected from power-
counting estimates [34,35,52]. This choice of 3N interactions
with Vlow k is well motivated because both approaches aim
at a description of nuclei through low-momentum degrees
of freedom. Nevertheless, in this work we will neglect
3N interactions and limit ourselves to low-momentum NN

interactions. This is a significant simplification and allows us
to perform our calculations in very large model spaces. We thus
sacrifice saturation at the experimental energies and densities
for the purpose of clean benchmark calculations that reach up
to 40Ca.

Coupled-cluster theory is employed in a single-particle
basis, and we use a model space consisting of spherical
harmonic-oscillator states. The basis parameters are the num-
ber of orbitals and the oscillator frequency h̄ω. Our largest
model spaces include about 103 single-particle orbitals.

III. RESULTS FOR 3H AND 4HE

In this section, we present our coupled-cluster calculations
for the ground-state energies of 3H and 4He, and we compare
our results to the exact Faddeev and Faddeev-Yakubovsky
energies of Ref. [34]. We first discuss in detail the dependence
on the size of the model space and the single-particle
basis. The coupled-cluster calculations initially used a single-
particle basis of oscillator states whose principal and angular
momentum quantum numbers n and l obey 2n + l � N , so
N + 1 is the number of major oscillator shells included.
Note that in previous calculations [14–17] N denoted the
number of major oscillator shells. However, we observed that
the convergence with respect to the angular momentum l is
much quicker, because only low partial waves contribute to
low-energy properties, whereas the convergence with respect
to the principal quantum number n is slower. This slower
convergence is due to the sharp momentum cutoff used
for Vlow k . It is intuitively clear that a harmonic-oscillator
representation of an interaction with a sharp cutoff needs a
considerable number of radial wave functions to be accurate.
The recent work of Refs. [39,53] confirms this picture and
demonstrates that smooth cutoffs improve the convergence in
few-body calculations.

Figures 1 and 2 show the convergence of our CCSD and
CCSD(T) energies for 3H and 4He using a model space with
fixed N = 2n + l = 12 and fixed h̄ω = 14 MeV as a function
of the maximum orbital angular momentum l. This implies
that for l = 0 we include oscillator functions with n � 6 nodes;
for l � 1 we include oscillator functions with n � 6 for the s

states (l = 0) and n � 5 for the p states (l = 1), and so on.
Clearly, the angular momentum quantum number needs not to

FIG. 1. (Color online) CCSD and CCSD(T) energies for 3H using
a model space with fixed maximum N = 2n + l = 12 and fixed h̄ω =
14 MeV as a function of the maximum orbital angular momentum l.
For comparison, we also show the exact Faddeev result of Ref. [34].
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FIG. 2. (Color online) CCSD and CCSD(T) energies for 4He as a
function of the maximum orbital angular momentum l and the exact
Faddeev-Yakubovsky (FY) result of Ref. [34]. For details, see the
caption to Fig. 1.

exceed l = 5 for the ground-state energies of s-shell nuclei.
Therefore, we limit our single-particle basis to l � 5 for the
following coupled-cluster calculations of 3H and 4He.

In Figs. 3 and 4, we present our CCSD and CCSD(T) results
for the ground-state energies of 3H and 4He as a function of the
model-space size N , with fixed l � 5 and fixed h̄ω = 14 MeV.
Both CCSD and CCSD(T) energies converge with respect to
the model space size for N ≈ 12 . . . 14. For the largest model
space with N = 16, we obtain for 3H,

ECCSD(3H) = −8.09 MeV,

ECCSD(T)(
3H) = −8.40 MeV,

and for 4He,

ECCSD(4He) = −28.92 MeV,

ECCSD(T)(
4He) = −29.18 MeV.

The CCSD(T) energies are within 70 and 10 keV of the
Faddeev and Faddeev-Yakubovsky (FY) results [34] E(3H) =
−8.470(2) MeV and E(4He) = −29.19(5) MeV.

FIG. 3. (Color online) CCSD and CCSD(T) results for the
ground-state energy of 3H as a function of the model-space size N =
2n + l, with fixed l � 5 and fixed h̄ω = 14 MeV. For comparison, we
also show the exact Faddeev result of Ref. [34].

FIG. 4. (Color online) CCSD and CCSD(T) results for the
ground-state energy of 4He as a function of the model-space size
N = 2n + l and the exact Faddeev-Yakubovsky (FY) result of
Ref. [34]. For details, see the caption to Fig. 3.

Finally, we study the dependence of our results on the
oscillator frequency h̄ω. This is shown in Fig. 5 for fixed
N = 12 and l � 5. Although the CCSD results exhibit a very
small variation over the shown h̄ω range, the variation of the
perturbative triples corrections CCSD(T) is somewhat larger.
Moreover, the downward trend of the CCSD(T) energies with
decreasing h̄ω indicates that perturbative triples corrections
are starting to break down for smaller values of h̄ω. The
noniterative perturbative triples correction assumes that we
work in a basis where the Fock matrix is diagonal. However,
our oscillator basis does not diagonalize the Fock matrix, so
strict calculations would have to iterate triples corrections
until self-consistency is reached. From Fig. 5 we observe
that iterative CCSD(T) improves on the noniterative CCSD(T)
results, but also has a downward trend with decreasing
h̄ω. Finally, we present calculations based on the iterative
CCSDT-1 approximation to full CCSDT. CCSDT-1 includes
all diagrams through fourth order in perturbation theory,
but contrary to the perturbative CCSD(T) corrections, the
CCSDT-1 approximation is treated self-consistently and the
singles and doubles amplitudes are modified by the triples

FIG. 5. (Color online) CCSD and various approximate CCSDT
energies for 4He as a function of the oscillator frequency h̄ω, for
fixed N = 12 and l � 5. For comparison, we also show the exact
Faddeev-Yakubovsky (FY) result.
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FIG. 6. (Color online) CCSD and CCSD(T) results for the
binding energy of 16O using a model space with fixed maximum
N = 2n + l = 10 and fixed h̄ω = 20 MeV as a function of the
maximum orbital angular momentum l.

amplitude according to Eqs. (9) and (10). We clearly find
that CCSDT-1 improves on the triples corrections and leads
to a very weak dependence on h̄ω. Note that these CCSDT-1
results are also the first step toward full CCSDT calculations
in nuclear physics.

Our results for the light nuclei 3H and 4He demonstrate
that coupled-cluster theory meets the benchmarks set by exact
methods. It is therefore interesting to use this method to
establish benchmark energies for heavier nuclei that other
ab initio approaches can compare to. This is the subject of
the next section.

IV. RESULTS FOR 16O AND 40Ca

Next, we present our coupled-cluster calculations for 16O
and 40Ca. In Fig. 6, we show the convergence of the CCSD and
CCSD(T) results for the binding energy of 16O using a model
space with fixed N = 2n + l = 10 and fixed h̄ω = 20 MeV
as a function of the maximum orbital angular momentum l.
For 16O, we find that l � 7 is sufficient to reach convergence at
the 10-keV level. Therefore, we restrict the following coupled-
cluster calculations for 16O to l � 7.

Figure 7 shows the dependence of the CCSD binding
energies of 16O on the oscillator frequency h̄ω for increasing
sizes of the model space N with fixed l � 7. The largest
calculations for N = 13 include more than 103 single-particle
orbitals. We observe that the CCSD energies are converged at
the 0.5-MeV level and can be used to extrapolate to infinite
model space. This is demonstrated in Fig. 8 where we give
the CCSD energies (taken at the h̄ω minima) as a function
of the model-space size N at fixed l � 7. Using the CCSD
minima, we make an exponential fit of the form E(N ) =
E∞ + a exp (−bN ) to the data points. The result is also shown
in Fig. 8 and yields the extrapolated infinite model space
value ECCSD,∞(16O) = −142.78 MeV. Our largest N = 13
result is ECCSD(16O) = −142.40 MeV. The conservative error

FIG. 7. (Color online) CCSD results for the binding energy of
16O as a function of the oscillator frequency h̄ω for increasing sizes
of the model space N = 2n + l with fixed l � 7.

estimate due to the finite size of the model space is thus about
0.5 MeV.

In Fig. 9, we study triples corrections to the binding
energy of 16O via the CCSD(T) and CCSDT-1 approaches
as a function of the oscillator frequency h̄ω for increasing
sizes of the model space N (l � 7). We present results up to
N = 7 (eight major oscillator shells), which was the largest
model space we could handle for the CCSDT-1 scheme due
to storage limitations. The CCSD(T) and CCSDT-1 energies
agree nicely for the range of oscillator frequencies and model
spaces considered. The only difference is that, as for 4He,
the CCSD(T) approach gives slightly more binding than
CCSDT-1 for the largest model spaces. The close agreement
between CCSD(T) and CCSDT-1 gives us confidence that the
perturbative triples corrections work well over this regime.

Let us study the contributions of the triples amplitudes
to the binding energy of 16O in more detail. Figure 10
shows the energy differences �E = E − ECCSD that are

8 10 12 14 16 18 20 22 24 26 28 30

N=2n+l

-143

-142

-141

-140

-139

E
C

C
SD

(16
O

) 
[M

eV
]

FIG. 8. CCSD results (taken at the h̄ω minima) for the binding
energy of 16O as a function of the model-space size N = 2n + l at
fixed l � 7 and exponential fit (solid line).
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FIG. 9. (Color online) CCSD(T) and CCSDT-1 results for the
binding energy of 16O as a function of the oscillator frequency h̄ω for
increasing sizes of the model space N = 2n + l (l � 7).

due to triples corrections “(T )” and “T − 1” as a function
of the model-space size N at fixed h̄ω = 22 MeV and
l � 7. The corresponding exponential extrapolations to infinite
model spaces yield −5.45 MeV from the (T ) correction and
−5.00 MeV from the T − 1 correction. This suggests that the
error estimate for the CCSD(T) and CCSDT-1 calculations is
about 0.5 MeV. This can be viewed as an error estimate due
to the truncation of the cluster operator. Combined with the
0.5 MeV uncertainty due to the size of the model space, we
thus arrive at an error estimate of about 1 MeV for 16O.

We note that 16O is overbound by about 20 MeV when
compared to the experimental binding energy. A similar result
has been found by Fujii et al. [54]. However, a comparison
of results based only on NN interactions to experiment is
meaningless, because 3NF are crucial to describe few- and
many-body observables (see, for instance, the discussion in
Refs. [21,34,35]). In nuclear matter, the corresponding 3NF

FIG. 10. (Color online) Contributions to the binding energy of
16O from triples corrections CCSD(T) and CCSDT-1 as a function
of the model-space size N = 2n + l at fixed h̄ω = 22 MeV and
l � 7. The dashed and dotted lines are exponential fits and yield
the extrapolated energy corrections.

FIG. 11. (Color online) CCSD results for the binding energy of
40Ca as a function of the oscillator frequency h̄ω for increasing sizes
of the model space N = 2n + l. (Note that there is no restriction on
l for these model spaces.)

contribution is repulsive and the expectation values remain
consistent with chiral effective field theory power-counting
estimates [35].

Finally, we turn to the more challenging case of 40Ca.
Figure 11 shows the CCSD binding energy of 40Ca as a
function of the oscillator frequency h̄ω for model spaces up
to N = 8 (nine major oscillator shells). (Note that there is no
restriction on l for these model spaces.) This represents the
largest coupled-cluster calculation to date in nuclear physics.
In these largest calculations, we have 40 active particles in 660
single-particle orbitals. The effective shell-model dimension
in this space would be of the order of 1063. From Fig. 11, we
find that the CCSD energies of 40Ca are converging reasonably
well. We again expect that low-momentum interactions with
smooth cutoffs will lead to even improved convergence. In
Fig. 12, we present the CCSD energies for 40Ca (taken at
the h̄ω minima) as a function of the model-space size N .

4 6 8 10 12 14 16 18

N=2n+l

-500

-480

-460

-440

-420

-400

-380

E
C

C
SD

(40
C

a)
 [

M
eV

]

FIG. 12. CCSD results (taken at the h̄ω minima) for the binding
energy of 40Ca as a function of the model-space size N = 2n + l

(without restriction in l) and exponential fit (solid line).
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FIG. 13. (Color online) Contributions to the binding energy of
40Ca from triples corrections CCSD(T) as a function of the model-
space size N = 2n + l at fixed h̄ω = 22 MeV (without restriction
in l) and exponential fit (dashed line).

The exponential extrapolation to infinite model space yields
ECCSD,∞(40Ca) = −492.6 MeV, and we find that the CCSD
energy for N = 8 is about 4 MeV from the fully converged
CCSD result.

We then perform CCSD(T) calculations and show in Fig. 13
the triples energy corrections as a function of the model-space
size N at fixed h̄ω = 22 MeV. Due to memory limitations,
we were not able to perform CCSDT-1 calculations in model
spaces reaching up to N = 7. The exponential extrapolation to
infinite model space yields −11.70 MeV, whereas the largest
N = 7 result is −10.21 MeV. The convergence we find with
respect to the size of the model space is similar to the recent
results by Fujii et al. [55]. Recall that the different triples
corrections for 16O differed by about 10% from each other.
Thus, we estimate that the error due to the truncation of the
cluster operator is about 1 MeV for 40Ca. The total error
estimate for 40Ca is thus about 5 MeV and is dominated by the
uncertainty due to the finite size of the model space.

We summarize our coupled-cluster results for the binding
energies of 4He, 16O, and 40Ca in Table I, which gives the
extrapolated correlation energies �ECCSD and �ECCSD(T). We

TABLE I. Reference vacuum energies, E0, CCSD, and CCSD(T)
correlation energies, �ECCSD and �ECCSD(T), and binding energies
ECCSD(T) for 4He, 16O, and 40Ca. The vacuum energies, E0, are
for h̄ω = 14 MeV in the case of 4He and h̄ω = 22 for 16O and
40Ca. The CCSD and CCSD(T) energies are the extrapolated infinite
model space results. The exact Faddeev-Yakubovsky result is from
Ref. [34].

4He 16O 40Ca

E0 −11.8 −60.2 −347.5
�ECCSD −17.1 −82.6 −143.7
�ECCSD(T) −0.3 −5.4 −11.7

ECCSD(T) −29.2 −148.2 −502.9

Exact (FY) −29.19(5)

find that for 4He, 16O, and 40Ca, the triples corrections are a
factor of ≈0.015, 0.066, and 0.081 smaller than the CCSD
correlation energies. From this, we again estimate the missing
correlation energy from quadruples, pentuplets, and so on,
to be of the order of 1 MeV for 40Ca. We note that 16O is
overbound by about 20 MeV and 40Ca by about 150 MeV
when compared to the experimental binding energies. This is
not surprising and points to the importance of 3NF for nuclear
structure calculations [21,34,35].

We can compare the coupled-cluster energies to the recent
importance-truncated NCSM results of Roth and Navrátil
[49] which are based on the same Vlow k interaction. The
importance-truncated NCSM combines a particle-hole trun-
cation scheme (4p-4h for 16O and 3p-3h for 40Ca in Ref. [49])
with importance sampling of many-body states based on
perturbation theory. The particle-hole truncation scheme
leads to unlinked diagrams and hence is not size extensive
[22]. Using an exponential extrapolation, Roth and Navrátil
[49] find binding energies E = −137.75 MeV for 16O and
E = −461.83 MeV for 40Ca at the minimum in h̄ω. Our
coupled-cluster results indicate that the converged energies
are approximately 10 and 40 MeV lower for 16O and 40Ca,
respectively. Note also that CCSD scales computationally
more favorably than a full 4p-4h calculation, whereas it already
includes a considerable part of linked 4p-4h excitations [22].

V. SUMMARY

In summary, we have performed ab initio coupled-cluster
calculations for 3H, 4He, 16O, and 40Ca based on low-
momentum interactions Vlow k . At the CCSD(T) level, the
ground-state energies for 3H and 4He are practically converged
with respect to the size of the model space and exhibit a very
weak dependence on the oscillator frequency. The resulting
energies are within 70 and 10 keV of the corresponding Fad-
deev and Faddeev-Yakubovsky benchmarks. For 16O and 40Ca,
we estimate that the CCSD(T) binding energies are converged
within 1 and 5 MeV, respectively. Future calculations will
include convergence studies for low-momentum interactions
with smooth cutoffs [46,53] and advancing the 3NF frontier
to medium-mass nuclei based on the findings of Ref. [21].
Our results confirm that coupled-cluster theory is a powerful
ab initio method that meets and sets benchmarks.
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