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We present the first systematic calculations based on the angular momentum projection of cranked Slater
determinants. We propose the Iy → I scheme, by which one projects the angular momentum I from the
one-dimensional cranked state constrained to the average spin projection of 〈Îy〉 = I . Calculations performed
for the rotational band in 46Ti show that the AMP Iy → I scheme offers a natural mechanism for correcting
the cranking moment of inertia at low spins and shifting the terminating state up by ∼2 MeV, in accordance
with data. We also apply this scheme to high-spin states near the band termination in A ∼ 44 nuclei and
compare results thereof with experimental data, shell-model calculations, and results of the approximate analytical
symmetry-restoration method proposed previously.
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I. INTRODUCTION

The energy density functional (EDF) method in nuclear
physics is nowadays the approach of choice for large-scale
nuclear structure calculations. It has the same roots as the
density functional theory (DFT) [1] in atomic and molecular
physics, which is based on the Coulomb interaction between
electrons. In nuclear physics, the EDF approach still lacks firm
microscopic derivation and well-defined rules that would allow
for systematic construction of an exact (or optimal) functional.
In practice, the nuclear EDF is constructed phenomenolog-
ically, based on the knowledge accumulated within modern
self-consistent mean-field approaches built upon an effective
density-dependent two-body interaction.

These approaches, although successful in reproducing gross
nuclear properties and certain generic features of collective and
single-particle nuclear motion, are only coarse in confrontation
with precise spectroscopic data. This situation calls for im-
provement, which can be achieved in two directions, namely,
either explicitly, by using better and/or richer parametrizations
of the nuclear EDF, or implicitly, by going beyond the
mean-field or Hartee-Fock (HF) level. At present, intense
studies are being conducted in both directions, aiming at
exploring the limits thereof and answering the question of
whether these two directions can be considered equivalent,
complementary, or independent of one another. In this work
we will explore the second alternative, by employing the
angular-momentum-projection (AMP) method of cranked HF
(CHF) states.

A few words clarifying the terminology used in this paper
are in order. In principle, the EDF methods are supposed to
describe the exact ground states of many-fermion systems,
including many types of different correlations. This is exactly
the aim of our study, namely, to describe rotational properties
of correlated states forming rotational bands. The EDF
approach is not based on any HF approximation; however,
it leads to the mean-field equations, which have a form
analogous to that of the HF method. Therefore, the name
HF is widely used in nuclear physics, and in the present

study we also follow this well-accepted tradition. Nevertheless,
the methods used here rely in their spirit on the EDF
approach, and the Skyrme effective interactions are only
providing suitable parametrizations of the underlying density
functionals. Clearly, the energies of the AMP states are still
functionals of the unprojected one-body densities.

The spontaneous symmetry breaking (SSB) mechanism
is inherently built into the HF approach. In many cases, it
not only allows for incorporating a significant fraction of
many-body correlations into a single HF state, but it also
serves as a source of deep physical intuition. Emergence of
nuclear deformation (breaking of rotational invariance) leads
naturally to the collective rotational motion and is one of the
most spectacular manifestations of SSB in nuclear physics.

The CHF approximation treats collective (rotational) and
intrinsic degrees of freedom on the same self-consistent
footing. This fact is at the base of the success of this simple
approximation, because in atomic nuclei both energy scales are
strongly interwoven, and dramatic structural changes may take
place along rotational bands. Terminating rotational bands [2]
are the best examples of such possible changes, whereupon
the collective rotation is followed by the total alignment of
valence particles.

Although the energies of rotational states are correctly
reproduced by the CHF approach, and the changes of shape
and pairing as well as the recoupling processes of individual
nucleonic orbits are well captured, the price paid is high.
Indeed, the resulting wave packets (deformed CHF states)
|�Iy

〉 are well localized in the angular degrees of freedom
and thus they are broadly spread over many angular momenta
|�Iy

〉 = ∑
I wI |I 〉, with only the average value of the projec-

tion of angular momentum on one of the axes (the y axis in
our case) being constrained:〈

�Iy
|Îy |�Iy

〉 ≡ 〈Îy〉 = Iy. (1)

Apart from strongly deformed states, this feature of the
cranking approximation precludes applications of this formal-
ism to compute transition rates, which constitute an extremely
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valuable source of structural information. The demand for
symmetry restoration is therefore well motivated. Starting
from the deformed CHF state |�Iy

〉, the goal can be achieved
by projecting onto the eigenspaces of the angular momentum.
Most of the calculations that have been performed so far invoke
the angular momentum method applied to nonrotating states
(see, e.g., Refs. [3–5] and the reviews in Refs. [6–9]). This
limits their applicability to low spin states, where the influence
of rotation on the intrinsic states can be neglected, and leads
to an overestimate of the nuclear moment of inertia (MoI) as
compared to the (realistic) cranking estimate.

After the ground-breaking studies performed within the
phenomenological [10,11] and self-consistent [12,13] mean-
field frameworks, the AMP of cranked states has not been
performed in modern calculations. Recently, in Ref. [14],
we presented results of such calculations for the test case
of collective rotation of a well-deformed nucleus 156Gd. The
AMP procedure we used has been implemented within the
code HFODD [15,16]. The calculational scheme proposed and
tested in Ref. [14], dubbed hereafter the Iy → I scheme,
assumes the AMP of spin component I of the self-consistent
CHF state |�Iy

〉, which is constrained to the same mean value
of the projection on the y axis (i.e., 〈Îy〉 = I ). It combines
the simplicity of the self-consistent one-dimensional cranking
approach, and its ability to reproduce the correct MoI, with the
AMP after variation method.

In this paper, within the same formalism, we present the first
systematic calculations of rotational states along terminating
bands in the A ∼ 44 mass region. The paper is organized as
follows. Methods of calculation and results are presented in
Secs. II and III, respectively. In particular, the AMP of cranked
states along the rotational band in 46Ti is discussed in Sec. III A
and the AMP of states near the band termination is presented
in Sec. III B. Finally, a summary and discussion are given in
Sec. IV.

II. METHODS

The angular-momentum-conserving wave function is
obtained by employing the standard operator P̂ I

MK [17,18]
projecting onto angular momentum I , with projections M and
K along the laboratory and intrinsic z axes, respectively,

|IMK〉= P̂ I
MK

∣∣�Iy

〉≡ 2I + 1

8π2

∫
DI∗

MK (�)R̂(�)|�Iy
〉d�.

(2)

Here, � represents the set of three Euler angles αβγ,DI∗
MK (�)

are the Wigner functions [19], and R̂(�) = e−iαÎz e−iβÎy e−iγ Îz

is the rotation operator.
Since K is not a good quantum number, different K

components must be mixed with the mixing coefficients
determined by the minimization of energy. The K-mixing is
realized in a standard way by assuming

|IM〉(i) =
∑
K

g
(i)
K |IMK〉 ≡

∑
K

g
(i)
K P̂ I

MK |�〉 (3)

and by solving the following Hill-Wheeler (HW) [20] equa-
tion:

Hḡ(i) = EiN ḡ(i), (4)

where HK ′K = 〈�|Ĥ P̂ I
K ′K |�〉 and NK ′K = 〈�|P̂ I

K ′K |�〉 de-
note the Hamiltonian and overlap kernels, respectively, and
ḡ(i) denotes a column of the g

(i)
K coefficients. The overlap and

Hamiltonian kernels have their standard functional form but
depend upon transition (or mixed) density matrices between
rotated states:

ραβ(�) = 〈�|a+
β aαR̂(�)|�〉

〈�|R̂(�)|�〉 . (5)

The transition density matrix is also used for the density-
dependent term. This is the only prescription available so
far satisfying certain consistency criteria, formulated and
thoroughly discussed in Refs. [5,21].

Owing to the overcompleteness of the |IMK〉 states,
Eq. (4) is solved within the so-called collective subspace
spanned by the natural states,

|mIM〉 = 1√
nm

∑
K

η
(m)
K |IMK〉, (6)

which are eigenstates of the norm matrixNK ′K having nonzero
eigenvalues (nm 	= 0):

N η̄(m) = nmη̄(m). (7)

In practical applications, the cutoff parameter ζ is used
and the collective subspace is constructed by using only those
natural states that satisfy nm � ζ . By ordering indices m of the
natural states in such a way that larger indices correspond to
smaller norm eigenvalues, we can write the solutions of the
HW equation (4) as

|IM〉(i) =
mmax∑
m=1

f (i)
m |mIM〉, (8)

where the mixing coefficients of Eq. (3) read

g
(i)
K =

mmax∑
m=1

f (i)
m η

(m)
K√

nm

. (9)

We can now define two types of the K-mixing. In kinematic
K-mixing we have the situation where only one collective
state is used (i.e., mmax = 1). Then, the solution of the HW
equation amounts to calculating only one matrix element of
the Hamiltonian kernel,

E1 = ḡ(1)†Hḡ(1) = η̄(1)†Hη̄(1)

n1
(10)

(i.e., f
(1)
1 = 1 and f (1)

m = 0 for m > 1). In kinematic K-
mixing, the mixing coefficients g

(1)
K = η

(1)
K /

√
n1 are entirely

determined by the norm kernel and do not depend on the
Hamiltonian kernel (i.e., they are entirely given by the
cranking approximation and Coriolis coupling). In contrast,
with dynamic K-mixing we have the full solution of the
HW equation for mmax > 1, where the cutoff parameter ζ is
adjusted to obtain a plateau condition for the lowest eigenvalue
E1. Here, the generator-coordinate-method (GCM) mixing of
different K components becomes effective, which potentially
can modify the cranking mixing coefficients. We stress here
that kinematic K-mixing does correspond to a K-mixed
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solution too and is not assuming any single given value
of K .

The deformed CHF states were provided by the code
HFODD, which solves the Hartree-Fock equations that corre-
spond to the Ritz variational principle,

δ

〈
�Iy

∣∣Ĥ − ωÎy

∣∣�Iy

〉
〈
�Iy

∣∣�Iy

〉 = 0, (11)

with angular frequency ω adjusted so as to fulfill constraint
(1) and the value of Iy being equal to I , according to
our Iy → I scheme. The y signature and parity symmetries
were conserved. The Hamiltonian and overlap kernels were
calculated by using the Gauss-Chebyshev quadrature in the α

and γ directions and the Gauss-Legendre quadrature in the β

direction [22]. In the numerical applications presented in this
work we used the SLy4 [23] Skyrme force, but similar results
were also obtained by using the SIII [24] force. The time-odd
terms in the Skyrme functional were fixed by using values of
the Landau parameters [25,26]. The harmonic-oscillator basis
was composed of 10 spherical shells. The integration over
the Euler angles was done by using a cube of 50 × 50 × 50
integration points.

III. RESULTS

In Ref. [14], we demonstrated that, in a well-deformed
nucleus 156Gd, the AMP Iy → I scheme reproduces well
the cranking MoI along the rotational band, after taking into
account dynamic K-mixing. Here, we study the AMP methods
applied to the terminating bands in the A ∼ 44 region of nuclei.

A. Ground-state rotational band in 46Ti

As a first example, consider the ground-state rotational
band in 46Ti. According to the CHF model, the shape of
this nucleus undergoes a gradual change along the band.
Starting from a well-elongated (β2 ∼ 0.23) shape at low spins,
the nucleus goes through the alignment processes of the
f7/2 protons and neutrons, and eventually reaches a nearly
spherical (β2 ∼ 0.05) shape at the terminating spin of I = 14,
as shown in Fig. 1(a). The calculated and experimental 46Ti
rotational bands are shown in Fig. 1(b). Results of the CHF
calculations (left) are compared to those of AMP (middle) and
to experimental data (right). To visualize the role of K-mixing,
we have depicted results of the AMP calculations separately
for kinematic and dynamic K-mixing. For dynamic K-mixing,
the AMP excitation energies were calculated from the plateau
condition. The stability of results with respect to the number
of natural states, mmax, is shown in Fig. 1(c). It can be seen that
already at mmax = 2, a perfect stability is obtained (i.e., here,
the difference between kinematic and dynamic K-mixing is
related to adding the m = 2 state to the collective subspace).
At higher values of mmax, one observes small departures from
the converged values, which are due to accidental mixing with
spurious solutions (with the largest such effect seen for I = 4
at mmax = 5). Nevertheless, physical converged solutions are
clearly seen well beyond the point where the spurious solutions
become lower in energy, as is well known for other GCM
calculations [28].
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FIG. 1. Results of the CHF and AMP calculations for the rota-
tional band in 46Ti obtained for the SLy4 interaction. (a) The evolution
of quadrupole and hexadecapole shape parameters along the band as
calculated using the CHF approximation. (b) The excitation spectra
calculated using the CHF approximation (left column) and AMP
method with kinematic and dynamic K-mixing (middle columns),
compared with the empirical data [27] (right column). (c) Deviations
�E of energy levels with spins I = 2, . . . , 12 from the converged
values corresponding to the plateau condition, as functions of the
number mmax of the norm eigenvalues used when solving the HW
equation.

Figure 1(b) clearly shows that, within the Iy → I scheme,
the AMP effectively causes a decrease of the mean MoI
within the band. This effect is expected to be generic for
rotational bands of decreasing collectivity. Indeed, in such
cases rotational correction is large at low spins and decreases
at higher spins. This is illustrated in Fig. 2, where the calculated
bands are shown in the absolute energy scale. In the case of
46Ti, a net increase in the excitation energy of the terminating
state, because of the AMP, amounts to about 2 MeV, but
it is almost entirely related to the lowering of the I = 0
state, whereas the terminating I = 14 state remains almost
unaffected by the AMP.

In the same figure, we also show for comparison the AMP
spectrum obtained by projecting from the 〈Îy〉 = 0 ground
state. In this case, the overall MoI turns out to be much too
small and the excitation energy much too high as compared
to the CHF or AMP Iy → I results. This fact once again
shows the importance of the structural changes that occur in
the system with increasing angular momentum.

Note that the 〈Îy〉 = 0 state is axial, and thus for all
spins it contains only the K = 0 component. Therefore, here,
the collective space contains only one state and there is
no K-mixing at all. Moreover, axial symmetry leads to a
tremendous simplification of the AMP method, whereby only
one-dimensional integration over the Euler β angle is needed.
Note also that the CHF states for 〈Îy〉 	= 0 are never axial,
because the Coriolis coupling always induces some nonzero

044304-3
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FIG. 2. Similar to Fig. 1(b), but shown in
the absolute energy scale. Results of the AMP
from the 〈Îy〉 = 0 ground state (first column)
are compared to those of the CHF (second
column), AMP with kinematic and dynamic
K-mixing (third and fourth columns), and CHFB
calculations (fifth column).

nonaxiality. Therefore, the full three-dimensional integration
over the Euler angles αβγ is needed in our Iy → I scheme.

In the right column of Fig. 2, we also show results of
the cranked Hartree-Fock-Bogolyubov calculations (CHFB)
performed by using a zero-range volume-type (density-
independent) interaction in the pairing channel. Its strengths
of Vn = −217.0 and Vp = −237.5 MeV fm−3 for neutrons
and protons, respectively, with a cutoff energy of εcut =
50 MeV [29], were adjusted to reproduce, on average, the
pairing gaps in this region of nuclei. For the 〈Îy〉 = 0 ground
state of 46Ti, the calculated gaps read �n = 1.394 and �p =
1.632 MeV.

One can see that, in comparison with the CHF results,
pairing correlations only affect states at low spins, I � 6, and
give about 1 MeV of additional binding at 〈Îy〉 = 0. Pairing
correlations vanish in the terminating state, and thus its energy
is the same within the CHF and CHFB methods. At present,
the code HFODD cannot perform the AMP of paired states, and
we are yet unable to evaluate the combined effects of pairing
and AMP from cranked states.

It is also interesting to observe that, in the case of 46Ti,
the dynamic K-mixing is effective essentially only for I = 2
and 4 [see Figs. 1(b) and 1(c)]. This result is rather surprising,
particularly in view of the fact that the only discontinuity in
spatial anisotropy of the CHF solutions can be seen around
spins I ∼ 6, 8. This behavior is also qualitatively different
from that found in 156Gd [14], where dynamic K-mixing
was effective up to the highest (I ∼ 20) calculated spins.
Apparently, the magnitude of K-mixing cannot be inferred
solely from the shape but it also depends on individual
(alignment) degrees of freedom.

In Fig. 3, we show probabilities WI of finding the angular
momentum components in the intrinsic CHF states, that is,

WI =
I∑

K=−I

〈�Iy
|P̂ I

KK |�Iy
〉. (12)

The inset also shows probabilities WK of finding the given K

components,

WK = 〈
�Iy

∣∣P̂ I
KK

∣∣�Iy

〉/
WI, (13)

in one of the intrinsic states, 〈Îy〉 = 6. At low spins, the
WI probability distributions follow the general pattern of
deformed collective states. This pattern suddenly disappears
at the termination point of 〈Îy〉 = 14, where the CHF state
becomes totally aligned, and therefore it contains only the
single I = 14 component. The WK probabilities do not
follow the standard pattern of collective rotation, where they
correspond to the Coriolis mixing only (cf. Fig. 2 in Ref. [14]).

FIG. 3. Probabilities WI (12) and WK (13) of finding the given
I and K components, respectively, in the intrinsic CHF states for
different values of the projection on the y axis 〈Îy〉. Solid lines are
drawn only to guide the eye. Note that because of the conserved
y-signature symmetry, one has WI = 0 for odd values of I and
W−K = WK .
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FIG. 4. Excitation spectra calculated using the AMP of CHF
states constrained to different values of 〈Îy〉, with kinematic
K-mixing. Solid lines connect states of given projected angular
momenta I and are drawn only to guide the eye. Arrows indicate
the minimum energies as a function of 〈Îy〉. For comparison, the right
column shows the CHF spectrum.

Here, the aligning state causes the values of WK to decrease
with I and induces the crossing of those corresponding to
even and odd K values as a function of I . Note also that
the angular momentum aligns along the y axis, whereas the
standard projections K are calculated with respect to the
z axis. Therefore, we do not expect to see a single K component
of the aligned 〈Îy〉 = 14 state.

We conclude this section by analyzing excitation spectra
calculated by using the AMP of CHF states constrained to
different values of 〈Îy〉, as shown in Fig. 4. It turns out that the
AMP energies minimized with respect to 〈Îy〉, or equivalently
with respect to the angular frequency ω, significantly differ
from those obtained within our Iy → I scheme. Indeed,
although the minimum I = 0 energy is obtained by projecting
the 〈Îy〉 = 0 CHF state, this is not the case for I > 0 states. For
example, the minimum I = 2 and 14 energies are obtained by
projecting the 〈Îy〉 = 0 and 10 CHF states, respectively. The
resulting excitation spectrum (in Fig. 4 indicated by arrows) is
quite irregular and can hardly be associated with the physical
result. This is because the minimization over ω does not consti-
tute the full variation-after-projection minimization of energy,
which should be performed in the complete parameter space,
including, for example, the deformation parameters. Moreover,
the fact that the I = 14 state may gain energy by using
collective correlations on top of the fully aligned (terminating)
state points out a possible inadequacy of the EDF method when
it is used within the variation-after-projection procedure, and
not within the Iy → I projection-after-variation scheme.

B. Angular momentum projection near the band termination

In the vicinity of band termination, the number of contribut-
ing configurations drops and the physics simplifies signifi-
cantly. Reliable approximate analytical symmetry restoration
schemes can be easily derived for these cases; for details
we refer the reader to the analysis presented recently in
Refs. [30,31]. In the present paper we aim at further study
and testing of these approximate methods against rigorous
AMP results.

Let us first consider the energy splittings between the
favored- and unfavored-signature terminating states, [f n

7/2]Imax

and [f n
7/2]Imax−1, respectively, within the [f n

7/2] configurations,
where n denotes the number of particles in the f7/2 subshell.
Within the naive noncollective cranking model, the unique
aligned |�Imax〉 states can be considered as many-body ref-
erence states (HF vacua) with projections of the angular
momentum being conserved quantum numbers equal to the
maximum allowed values, Iy = Imax. From these local HF
vacua, the |�(τ )

Imax−1〉 states can be generated by particle-hole
(ph) excitations, in particular, by changing the signature of
either a single neutron (τ = ν) or a single proton (τ = π ). In
spite of the fact that the underlying CHF solutions are almost
spherical, they manifestly break the rotational invariance.
Indeed, the two Imax − 1 CHF solutions have conserved
projections of the angular momentum, Iy = Imax − 1, but are
in this case linear combinations of the total angular momentum
states with I = Imax and Imax − 1, that is, up to a normalization
factor:

∣∣�(π)
Imax−1

〉 ∼ b|Imax; Imax − 1〉 + a|Imax− 1; Imax − 1〉,
(14)∣∣�(ν)

Imax−1

〉 ∼ a|Imax; Imax − 1〉 − b|Imax− 1; Imax − 1〉.
The simplicity of the encountered situation allows for

an approximate analytical estimate of mixing coefficients a

and b [30,31]. Equivalently, one can find these coefficients by
performing the exact AMP of the |�(π)

Imax−1〉 or |�(π)
Imax−1〉 states.

The resulting probabilities P (Imax − 1) of finding the Imax − 1
components within the |�(π)

Imax−1〉 states are shown in Fig. 5(a).
The AMP results match perfectly the analytical results
obtained in Refs. [30,31], confirming the reliability of the
approximate method.

Calculated energy differences E(Imax) − E(Imax − 1) are
shown in Fig. 5(b). Because the CHF solutions break the
isobaric invariance, the AMPs of the |�(π)

Imax−1〉 and |�(ν)
Imax−1〉

states are not fully equivalent and lead to slightly different
energies. Results shown in Fig. 5 represent arithmetic averages
of both AMP energies. The only exception is 42Sc, where we
were able to perform numerical integration with a desired
accuracy only when projecting from the |�(ν)

Imax−1〉 CHF state,
and the depicted point represents this single result. It is evident
from the figure that, except for 42Sc and 45Sc, the quality of
the results is comparable to the state-of-the-art shell-model
calculations of Refs. [31,32].

The unfavored-signature Imax − 1 CHF states just discussed
were created by building the signature-inverting ph excitations
on top of the Imax reference state. A similar procedure applied
to create Imax − 2 CHF solutions leads to several nearly
spherical states, located, on average, above the reference state.

In this case, however, the SSB mechanism enters the game
by pushing the collective (deformed) CHF solution down,
below the reference state, and relatively close to the empirical
energy. Hence, by going from the Imax − 1 to Imax − 2
states, the physics changes quite dramatically, showing clearly
two contrasting facets of the SSB mechanism of rotational
symmetry in nuclear physics.

In the case of the Imax − 1 states, the symmetry restoration
results in a repulsion of two nearly degenerate proton and
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FIG. 5. (a) Probabilities of finding the Imax − 1 spin components
in the |�(π )

Imax−1〉 CHF solutions. Squares and dots show results
calculated using the exact AMP and approximate method of
Ref. [30], respectively. (b) Energy differences between the favored-
and unfavored-signature terminating states, [f n

7/2]Imax and [f n
7/2]Imax−1,

respectively. Values calculated using the AMP method (diamonds) are
compared to those obtained within the shell model [30] (circles) and
empirical data [33–38] (dots).

neutron CHF states, which are located above the reference Imax

state. On the one hand, the reorientation mode, |Imax; Imax − 1〉,
is shifted downward and becomes degenerate with the
|Imax; Imax〉 solution, as required by the rotational invariance.
On the other hand, the physical mode, |Imax − 1; Imax − 1〉, is
shifted upward and becomes the unfavored-signature termi-
nating state.

In the case of the Imax − 2 states, the SSB mechanism
results in a repulsion of several nearly degenerate proton
and neutron ph states. The collective CHF mode, |�Imax−2〉,
is shifted below the reference Imax state, in accordance
with data. By the AMP mixing, the symmetry-restored
collective mode projected from |�Imax−2〉 (i.e., the |Imax − 2;
Imax − 2〉 state) gains some additional binding energy. This
situation is schematically illustrated in the inset of Fig. 6.

The calculated energy differences, E(Imax) − E(Imax − 2),
are shown in Fig. 6. The CHF solutions, except for 42Ca and
42,43Sc, correspond to collective states having β2 ∼ 0.10–0.12.
The AMP shifts these states almost uniformly down by
about 300–400 keV, enlarging the splitting by that amount
and improving an overall agreement between theory and
experiment. It is, however, evident from the figure that, here,
the AMP does not improve upon the incorrect isotopic/isotonic
dependence of the CHF results. The magnitude of rotational
correction is determined predominantly by the shape change
and does not vary from case to case. One can speculate that
a detailed agreement with data would require an additional
isospin-symmetry restoration.

A similar trend was found for the Imax − 2 states for
configurations involving one-proton ph excitation from the
d3/2 to f7/2 subshell (see Fig. 7). Here, all the lowest Imax − 2

FIG. 6. Energy differences between the [f n
7/2]Imax terminating

states and the lowest [f n
7/2]Imax−2 states. Filled and unfilled circles

represent the empirical data [33–39] and SM results of Ref. [30],
respectively. Unfilled diamonds label the lowest CHF solutions,
which are collective except for the cases of 42Ca and 42,43Sc. Filled
diamonds represent the AMP results. Relative energies among the Imax

reference state, noncollective ph Imax − 1 and Imax − 2 excitations
(thin lines), SSB effect in the Imax − 2 state (thick dashed line),
and final AMP configuration mixing (solid lines) are schematically
illustrated in the inset.

states are found to be deformed. The energy gain from the
AMP is again of the order of 300–400 keV and weakly depends
on N and Z, thus merely reflecting an increase of deformation
between nearly spherical Imax states and terminating collective
cranking solutions for Imax − 2. This example confirms that
the onset of collectivity causes a uniform mixing of various
angular momenta, regardless of individual features of specific
nuclei. Indeed, in the studied nuclei, the probabilities of finding
the Imax − 2 spin component within the |�Imax−2〉 = ∑

I wI |I 〉
CHF deformed wave packets are |wImax−2|2 = 0.34 ± 0.05
(i.e., they depend extremely weakly on N and Z). Moreover,
values of |wImax−2|2 appear to be very similar to |wImax |2, which
are equal to 0.35 ± 0.04, and again these almost do not change
from one nucleus to another.
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FIG. 7. Energy differences between the [d−1
3/2f

n+1
7/2 ]Imax terminat-

ing states and the lowest [d−1
3/2f

n+1
7/2 ]Imax−2 states. Filled and unfilled

circles represent empirical data [33–39] and SM results of Ref. [30],
respectively. Filled and unfilled diamonds label the AMP results and
the collective CHF solutions, respectively.
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FIG. 8. Energy differences between the [d−1
3/2f

n+1
7/2 ]Imax ter-

minating states and the lowest unfavored-signature terminating
d−1

3/2f
n+1

7/2 ]Imax−1 states. Filled circles represent empirical data [34–39]
and unfilled and filled diamonds represent the CHF and AMP results,
respectively. The inset shows the probabilities of finding the Imax − 1
components within the lowest CHF solution |�Imax−1〉.

The situation changes quite radically for the unfavored-
signature [d−1

3/2f
n+1
7/2 ]Imax−1 states. Within the CHF approx-

imation, in N 	= Z and N 	= Z + 1 nuclei there are three
Imax − 1 configurations that can be created from the Imax

reference state. Indeed, this can be done by a signature-
inverting ph excitation involving either the neutron (ν) or
proton (π ) f7/2 particle, or the proton d3/2 hole (π̄ ) (see
Ref. [30]). The CHF solutions represent, therefore, mixtures
of two physical |Imax − 1; Imax − 1〉i , i = 1, 2, states with the
spurious reorientation |Imax; Imax − 1〉 mode.

In such a case, the Iy → I AMP scheme only removes
the spurious mode, not affecting the mixing ratio of the two
physical solutions |Imax − 1; Imax − 1〉i , i = 1, 2. Hence, in
contrast with the case of the [f n

7/2]Imax−1 states, the quality of
the results strongly depends on the quality of the underlying
CHF field. The AMP results corresponding to the π̄ CHF
solutions, which in 42−45Sc, 44−46Ti, and 47V are the lowest
in energy, show that the admixtures of spurious components
are of the order of 10% (see the inset in Fig. 8). The obtained
rotational corrections are, therefore, small—of the order of
100–20 keV, and the disagreement with data remains quite
large, as shown in Fig. 8. We show these results only as
an example of possible AMP calculations. However, for a
complete analysis, one should, in principle, perform the GCM
mixing of the AMP states corresponding to any possible CHF
Imax − 1 configuration. A study in this direction is left for
future work.

IV. SUMMARY AND DISCUSSION

The present work reports on the first systematic calculations
using the AMP of cranked Hartree-Fock states. The technique
used, called the Iy → I projection scheme, assumes the
projection of the angular momentum component I from
the one-dimensional (1D) cranked Hartree-Fock solution
constrained to 〈Îy〉 = I . The method benefits naturally from
such nice physical features of the 1D cranking model as the
shape-spin self-consistency or the ability to get a realistic

estimate of the nuclear MoI. It is shown that the Iy → I AMP
scheme leads to values of MoI that are much more realistic
than those obtained by using the AMP of nonrotating 〈Îy〉 = 0
states, as was the common practice up to now.

In particular, application of the scheme to the rotational
band in 46Ti clearly improves the MoI at the bottom of the
band. It also reveals a simple mechanism by which rotational
corrections allow for improving upon an incorrect excitation
energy of the terminating state, �EImax , obtained in the CHF
calculations, which account only for roughly half of the
empirical value.

Pairing correlations that are active in the ground state, but
do not affect the fully aligned terminating state, can heal
the situation only partially. Indeed, there is an upper limit
for pairing correlation energy in the ground state, which can
be sustained by a deformed A ∼ 44 system, equal to about
2 MeV. Further enhancement of pairing would induce the
phase transition from deformed to spherical shape [40], and
the rotational band could not have been built, contradicting
the experimental data. Together, the rotational and pairing
effects can bring �EImax to about 9 MeV (i.e., some ∼10%
below the experimental value). Let us mention here that for
the I = 14 state projected from the 〈Îy〉 = 0 ground state one
obtains �EImax 
 19 MeV (i.e., a result that is well above the
empirical excitation energy of the terminating state).

For nearly spherical unfavored-signature [f n
7/2]Imax−1 termi-

nating states, our AMP calculations give results in excellent
agreement with data, and they validate the approximate
projection methods introduced in Refs. [30,31]. We also show
that the onset of collectivity in the [f n

7/2]Imax−2 states is quite
correctly reproduced by the CHF calculations, on top of which
the AMP gives only a small correction going in the right
direction in comparison with data. However, details of the
isotopic dependence are not reproduced here.

Similar conclusions are obtained for the [d−1
3/2f

n+1
7/2 ] con-

figurations that involve one-proton ph excitation across the
Z = 20 shell gap. In this case, in both Imax − 1 and Imax − 2
states near the band termination the collectivity sets in, whereas
the energy differences with respect to terminating Imax states
are underestimated in the CHF and AMP calculations.

The AMP of cranked Hartree-Fock states presented in
this work was performed by applying the standard projection
techniques to the CHF solutions obtained within the EDF
method. We have checked that all the results are stable
with respect to numerical parameters such as, for example,
numbers of integration points used when integrating kernels
over the Euler angles. Nonetheless, one should be aware of
potential risks caused by difficult-to-control, uncompensated
poles plaguing projection techniques of states obtained within
the EDF method [14,41]. Clearly, the future of projection
methods crucially depends on a satisfactory solution of the
problem of such singularities.
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[3] K. W. Schmid, F. Grümmer, and A. Faessler, Phys. Rev. C 29,
291 (1984).

[4] A. Valor, P.-H. Heenen, and P. Bonche, Nucl. Phys. A671, 145
(2000).

[5] R. Rodriguez-Guzmán, J. L. Egido, and L. M. Robledo, Nucl.
Phys. A709, 201 (2002).
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