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K̄ N N quasibound state and the K̄ N interaction: Coupled-channels Faddeev calculations of the
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Coupled-channels three-body calculations of an I = 1/2, J π = 0− K̄NN quasibound state in the K̄NN -π�N

system were performed and the dependence of the resulting three-body energy on the two-body K̄N -π�

interaction was investigated. Earlier results of binding energy BK−pp ∼ 50–70 MeV and width �K−pp ∼
100 MeV are confirmed [N. V. Shevchenko et al., Phys. Rev. Lett. 98, 082301 (2007)]. It is shown that a
suitably constructed energy-independent complex K̄N potential gives a considerably shallower and narrower
three-body quasibound state than the full coupled-channels calculation. Comparison with other calculations is
made.
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I. INTRODUCTION

Hadronic nuclei are useful tools for studying hadron-
nucleon interactions and in-medium properties of hadrons.
The recent interest in kaonic nuclei was motivated by the
strongly attractive antikaon-nucleus density-dependent optical
potentials obtained from K− atomic data fits [1]. Akaishi and
Yamazaki [2] using G-matrix one-channel K̄N interactions,
predicted the existence of deep and narrow K− bound states
in 3He, 4He, and 8Be. Of particular interest is the lightest
possible antikaon-nucleus system, K−pp, for which these
authors calculated in Ref. [3] values of 48 and 61 MeV for
the total binding energy and the decay width, respectively.
Deeply bound kaonic states were searched in 4He(K−, N )
reactions at KEK, with negative results so far [4], and by
the FINUDA spectrometer Collaboration at DA�NE [5] in
stopped K− reactions on nuclear targets such as lithium and
carbon. The latter experiment suggested evidence for a bound
state K−pp “observed” through its decay into approximately
back-to-back �-proton pairs. The deduced binding energy
(115 MeV), but not the width (67 MeV), differs considerably
from the theoretical prediction of Ref. [3]. However, this
interpretation of the measured �-proton spectrum in the
FINUDA experiment was challenged by Magas et al. [6],
who also criticized the Yamazaki-Akaishi calculations [3] for
using an effective K̄ optical potential in lieu of genuine K̄N

interactions.
The near-threshold K̄N interaction is mainly affected by

the subthreshold I = 0 resonance �(1405), which is usually
assumed a K̄N bound state and a resonance in the π� channel.
Numerous theoretical works were devoted to constructing
K̄N interactions within K-matrix models, dispersion relations,
meson-exchange models, quark models, and cloudy bag-
models and more recently by applying SU(3) meson-baryon
chiral perturbation theory (see, e.g., the recent review articles
[7,8]). Scattering experiments for K−p are rather old and
the data are not too accurate. Kaonic hydrogen provides
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additional information. Namely, there are two experimental
measurements of the 1s level shift and width caused by the
strong interaction, performed at KEK [9] and recently by the
DEAR Collaboration at DA�NE, Frascati [10]. The measured
upward shift appears as due to a repulsive strong interaction,
but in fact it is caused by an attractive interaction in the
I = 0 K̄N -π� channel, which is strong enough to generate
a quasibound strong-interaction state. The effect of such a
strong attractive interaction is to push the purely Coulomb
level upward. Using the Deser formula [11], it is possible
to obtain the K−p scattering length from the value of the
1s level energy shift. Unfortunately, several recent theoretical
models could not simultaneously reproduce the DEAR value
of the K−p scattering length together with the bulk of K−p

scattering data [12].
As should be clear from this brief introduction, the fields

of K̄N and K̄-nucleus interaction are abundant with open
questions and problems. The elucidation of K̄-nuclear proper-
ties would help considerably to derive significant information
on the in-medium K̄N interaction and on the possibility of
kaon condensation in dense nuclear matter, see Refs. [13,14]
and previous works cited therein. Among K̄-nuclear systems,
the study of three-body “exotic” systems offers the advantage
that Faddeev equations [15], which exactly describe the
dynamics of few particles, provide a proper theoretical and
computational framework. In the present work, we have gen-
eralized the Faddeev equations in the Alt-Grassberger-Sandhas
form [16] to include additional “particle” channels and
thus performed the first genuinely three-body K̄NN -π�N

coupled-channels Faddeev calculation in search for quasi-
bound states in the K−pp system. A preliminary report
of this work was given in Ref. [17]. The present article
provides a more detailed and complete version of the previous
one, especially concerning the dependence of the three-body
results on the two-body input. The main result of Ref. [17]
is reconfirmed, namely that a single K−pp I = 1/2, J π =
0− quasibound state exists with binding energy B ∼
50–70 MeV and width � ∼ 100 MeV. It is shown that “equiv-
alent” single-channel K̄NN calculations of the type reported
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by Yamazaki and Akaishi [3] underestimate considerably the
binding energy and particularly the width resulting within the
full K̄NN -π�N coupled-channels calculations.

The article is organized as follows: in Sec. II we describe the
derivation of the coupled-channels Faddeev equations in the
AGS form. The two-body potentials that enter these equations
are described in Sec. III. Results are given in Sec. IV for the
full coupled-channels calculations, along with suitably chosen
single-channel calculations that could provide a testground
for comparison with the single-channel calculation of Ref. [3].
Conclusions are given in Sec. V.

II. FORMALISM

Three-body Faddeev equations [15] in the Alt-Grassberger-
Sandhas (AGS) form [16]

Uij = (1 − δij )G−1
0 +

3∑
k=1

(1 − δik) TkG0Ukj (1)

define unknown operators Uij , describing the elastic and
rearrangement processes j + (ki) → i + (jk). The inputs for
the AGS system of equations (1) are two-body T -matrices,
immersed into three-body space. The operator G0 is the
free three-body Green’s function. Faddeev partition indices
i, j = 1, 2, 3 denote simultaneously an interacting pair and a
spectator particle. When the initial state is known, as is usually
assumed, the system (1) consists of three equations.

The AGS equations are quantum-mechanical ones, de-
scribing processes in which the number and composition of
particles are fixed. However, the two-body K̄N interaction,
which is essential for the K−pp quasi-bound-state calculation,
is strongly coupled to other channels, particulary to the π�

channel via �(1405). To take the K̄N -π� coupling directly
into account (we neglect the weaker coupled I = 1 π�

channel), it is necessary to extend the formalism of Faddeev
equations. To this end it is assumed that in addition to the usual
Faddeev channels, which represent different partitions of the
same set of particles, there are also “particle” channels. Each
of the three “particle” channels consists of three usual Faddeev
partitions (here we treat the two nucleons as distinguishable
particles, with proper antisymmetrization introduced at a later
stage). Thus, all three-body operators will have “particle”
indices (α) for each state in addition to the usual Faddeev
indices (i), see Table I.

All operators in Eq. (1) now act in this additional “particle”
space: Ti transform to T

αβ

i ,G0 → G
αβ

0 , and Uij → U
αβ

ij

TABLE I. Interacting two-body subsystems for three partition
(i) and three “particle” channel (α) indices. The interactions are
further labeled by the two-body isospin values, entering the AGS
equations with total three-body isospin I = 1/2.

i\α 1(K̄NN ) 2(π�N ) 3(πN�)

1 NNI=0,1 �NI= 1
2 , 3

2
�NI= 1

2 , 3
2

2 K̄NI=0,1 πNI= 1
2 , 3

2
π�I=0,1

3 K̄NI=0,1 π�I=0,1 πNI= 1
2 , 3

2

(α, β = 1, 2, 3). The two-body T -matrices have the following
form:

T1 →

T NN

1 0 0
0 T �N

1 0
0 0 T �N

1


 , T2 →


T KK

2 0 T Kπ
2

0 T πN
2 0

T πK
2 0 T ππ

2


 ,

T3 →

T KK

3 T Kπ
3 0

T πK
3 T ππ

3 0
0 0 T πN

3


 , (2)

where T NN
i , T πN

i , and T �N
i are the usual one-channel two-

body T -matrices in three-body space, describing NN,πN ,
and �N interactions, respectively. The elements of the
coupled-channels T -matrix, T KK

i , T ππ
i , T πK

i , and T Kπ
i , are

labeled by two meson indices:

T KK
i : K̄ + N → K̄ + N

T πK
i : K̄ + N → π + �

T Kπ
i : π + � → K̄ + N

T ππ
i : π + � → π + �.

The free Green’s function is diagonal in channel indices:
G

αβ

0 = δαβGα
0 , whereas the transition operators U

αβ

ij have the
most general form.

Searching for quasibound states assumes working at low
energies. Low-energy interactions are satisfactorily described
by s waves; hence, for all the relevant two-body interactions
we use Li = 0. The total orbital angular momentum is then
L = 0. For the K−pp system, the total spin is S = 0 due
to the spin zero of the two protons and spin zero of the
K− meson. All two-body baryon-baryon interactions are then
spin-zero interactions. The remaining quantum number is
isospin. It is possible to work in either particle or isospin
basis, but because the Coulomb interaction is not included in
the present calculation and charge independence is assumed
for all two-body interactions, it is quite natural to choose
the isospin basis. The total isospin I is a conserved quantum
number for charge-independent interactions, so a bound (or a
quasibound) state must have a definite value of I . For I = 1/2
there are two possible (unadmixed) states corresponding to
the total spin S of the system. In the K̄NN -π�N case S

coincides with the spin of the two baryons (Si = 0, 1) and
due to their indistinguishability the spin value also fixes the
isospin of the two nucleons, INN = 1, 0, respectively. In these
states—let us call them pp and d configuration—a more
attractive combination of K̄N I = 0, 1 forces and a weaker
NN singlet force in the pp is competing with a weaker K̄N

attraction and a stronger NN triplet force in d. Therefore it
is not clear a priori, which of them has a lower energy. We
have chosen to calculate the I = 1/2, S = 0 pp configuration
due to its connection to experiment. Moreover, simple isospin
recoupling arguments indicate that it might have a lower
energy. However, a similar calculation should be performed
for the other, I = 1/2, S = 1 d configuration, too. As for the
I = 3/2 state, it is governed by a weaker K̄N attraction than
the one in the I = 1/2 state under consideration in this work.

Separable potentials, and the corresponding T -matrices,
are widely used in Faddeev calculations for reducing the
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dimension of integrals in the equations. The separable-
potential approximation is justified by the fact that the kernels
of two-particle equations are of the Hilbert-Schmidt type, at
least under suitable conditions on the two-particle interactions
[18]. Namely, the separable approximation is valid when each
of the two-particle subsystems is dominated by a limited
number of bound states or resonances [19]. This condition
is satisfied for the “main” two-body interactions entering our
system, K̄N -π� and NN. For the remaining �N and πN

interactions we expect weaker contributions to the bound-
state complex energy (as already demonstrated for �N in
Ref. [17]). Hence we use for all two-body potentials a separable
form:

V
αβ

i,I = λ
αβ

i,I

∣∣gα
i,I

〉〈
g

β

i,I

∣∣, (3)

which leads to a separable form of T -matrices:

T
αβ

i,I = ∣∣gα
i,I

〉
τ

αβ

i,I

〈
g

β

i,I

∣∣. (4)

For α = β the corresponding T -matrix coincides with the
usual one. With the relation (4), the AGS system (1) can be
expressed using new transition and kernel operators:

X
αβ

ij,Ii Ij
= 〈

gα
i,Ii

∣∣Gα
0 U

αβ

ij,Ii Ij
G

β

0

∣∣gβ

j,Ij

〉
, (5)

Z
αβ

ij,Ii Ij
= δαβZα

ij,Ii Ij
= δαβ(1 − δij )

〈
gα

i,Ii

∣∣Gα
0

∣∣gα
j,Ij

〉
. (6)

Substituting isospin-dependent T
αβ

i , Zα
ij , and X

αβ

ij into the
AGS system (1) we obtain the following system of operator
equations:

X
αβ

ij,Ii Ij
= δαβ Zα

ij,Ii Ij
+

3∑
k=1

3∑
γ=1

∑
Ik

Zα
ik,Ii Ik

τ
αγ

k,Ik
X

γβ

kj,IkIj
. (7)

The number of equations in the system is defined by the number
of possible form factors gα

i,Ii
. As is seen from Table I, before

antisymmetrization our system consists of 18 equations.
Three sets of Jacobi momentum coordinates should be

introduced for each “particle” channel α: | �ki

α
, �pi

α〉, i =
1, 2, 3, α = 1, 2, 3. Here, �ki

α
is the center-of-mass momentum

of the (jk) pair and �pi
α is the momentum of spectator i with

respect to the pair (jk), i �= j �= k. In these coordinates the
three-body free Hamiltonian in the channel α is defined as

Hα
0 =

(
kα
i

)2

2mα
jk

+
(
pα

i

)2

2µα
i

, (8)

where the reduced masses also have “particle” channel indices:

mα
jk = mα

j mα
k

mα
j + mα

k

, µα
i = mα

i

(
mα

j + mα
k

)
mα

i + mα
j + mα

k

, i �= j �= k.

(9)

In contrast to the usual AGS formalism we have to use not
the kinetic energy but the total energy of the system, including
rest masses. We introduce threshold energies: zα

th = ∑3
i=1 mα

i ,
so that the total energy is ztot = zα

th + zα
kin, where zα

kin denotes
the kinetic energy in channel α. The integrations in Eqs. (5)
and (6) are performed over one of the Jacobi momenta, namely,
over �ki

α
, which describes the motion of an interacting pair of

particles j and k (i �= j �= k). Thus, the operators X and Z act
on the second momentum, �pα

i :

X
αβ

ij,Ii Ij
→ 〈 �pi

α
∣∣Xαβ

ij,Ii Ij
(ztot)

∣∣ �pj
′β 〉

= X
αβ

ij,Ii Ij

( �pi
α
, �pj

′β ; zα
kin + zα

th

)
, (10)

Zα
ij,Ii Ij

→ 〈 �pi
α
∣∣Zα

ij,Ii Ij
(ztot)

∣∣ �pj
′α〉

= Zα
ij,Ii Ij

( �pi
α
, �pj

′α; zα
kin + zα

th

)
. (11)

The energy-dependent part of a two-body T -matrix, embedded
in the three-body space, is defined by the following relation:

τ
αβ

i,Ii
→ 〈 �pi

α
∣∣ταβ

i,Ii
(ztot)

∣∣ �pj
′β 〉

≡ δij δ
( �pi

α − �pj
′β)

τ
αβ

i,Ii

[
ztot − zα

th −
(
pα

i

)2

2µi

]
. (12)

It is worth noting that all elements of the two-channel two-
body K̄N -π� T -matrix depend on the kinetic energies in
both channels (z1

kin and z2
kin) simultaneously. Here we define

the argument of the corresponding ταβ using the left “particle”
index α. The second kinetic energy can be simply found from
the relation zα

kin + zα
th = z

β

kin + z
β

th.
The calculation of the kernels Z involves transformation

from one set of Jacobi coordinates to another one and isospin
recoupling, using the property of free Green’s function:〈 �pi

α
, I α

i

∣∣Gα
0

∣∣ �pj
′α

, I α
j

〉 = 〈 �pi
α
∣∣Gα

0

∣∣ �pj
′α〉

Iα
i I α

j

× 〈
iαj iαk

(
Iα
i

)
iαi , I Iz

∣∣iαi iαk
(
Iα
j

)
iαj , I Iz

〉
,

(13)

where iαj and Iα
j denote one-particle and two-particle isospins,

respectively, with partition subscripts i �= j �= k, the total
three-body isospin and its projection being I = 1/2, Iz = 1/2.

To search for a resonance or a bound state means to look
for a solution of the homogeneous system corresponding to
Eq. (7). But before solving the system

Xα
i,Ii

=
3∑

k=1

3∑
γ=1

∑
Ik

Zα
ik,Ii Ik

τ
αγ

k,Ik
X

γ

k,Ik
, (14)

we must antisymmetrize operators involving two identical
baryons with antisymmetric spin components (Si = 0) and
symmetric spatial components (Li = 0). Here, in Eq. (14), and
in the following we omit right-hand indices of X: X

αβ

ij,Ii Ij
→

Xα
i,Ii

, which are unnecessary for a homogeneous system. The
operator X1

1,0 has antisymmetric NN isospin components, so it
drops out of the equations. In contrast, the operator X1

1,1 has
the correct symmetry properties. All the remaining operators
form symmetric and antisymmetric pairs, the symmetric ones
that are used in the calculation are:

X
1,−
2,0 = X1

2,0 − X1
3,0, X

1,+
2,1 = X1

2,1 + X1
3,1,

X
3,−
2,0 = X3

2,0 − X2
3,0, X

3,+
2,1 = X3

2,1 + X2
3,1,

(15)
X

2,−
1, 3

2
= X2

1, 3
2
− X3

1, 3
2
, X

2,+
1, 1

2
= X2

1, 1
2
+ X3

1, 1
2
,

X
2,−
2, 3

2
= X2

2, 3
2
− X3

3, 3
2
, X

2,+
2, 1

2
= X2

2, 1
2
+ X3

3, 1
2
.
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Taking into account equalities of some kernel functions, we
end up with a system of nine coupled operator equations
in the eight new operators (15) and X1

1,1, all of which
have the required symmetry properties. Because the Faddeev
equations are dynamical ones, their final number after anti-
symmetrization corresponds to the number of different form
factors entering the interactions. Similar antisymmetrization
procedures have been implemented in several multichannel
Faddeev calculations, e.g., the fairly recent K−d work of
Ref. [20].

To solve the homogeneous system we transform the integral
equations into algebraic ones and then search for the complex
energy at which the determinant of the kernel matrix becomes
equal to zero. We are looking for a three-body pole, the
real part of which is situated between the K̄NN and π�N

thresholds, corresponding to a resonance in the π�N channel
and a quasibound state (a bound state with nonzero width) in
the K̄NN channel. Therefore, we must work on the physical
energy sheet of the first channel and on an unphysical sheet of
the second channel.

III. INPUT

The separable potential (3), in momentum representation,
has a form:

V
αβ

i,Ii

(
kα
i , k

′β
i

) = λ
αβ

i,Ii
gα

i,Ii

(
kα
i

)
g

β

i,Ii

(
k

′β
i

)
. (16)

For the NN,�N , and πN interactions we have α = β,
whereas for the coupled-channels K̄N -π� interaction α, β =
K (K̄N channel) or π (π� channel). We constructed our
own coupled-channels K̄N -π� interactions, plus complex
and real one-channel K̄N test potentials discussed below. We
also constructed one-channel �N interaction and used the
PEST NN potential [21]. Here we neglect the πN interaction
because its dominant part is in the (3,3) p-wave channel.

A. K̄ N interaction

1. Two-channel K̄ N-π�

There are many models of strangeness −1 meson-baryon
scattering, constructed using different methods, see, e.g.,
Refs. [12,22] and references therein. These recent articles
describe coupled-channels models of the K̄N interaction,
constructed within the framework of chiral perturbation theory.
The exclusive use of on-shell amplitudes and the amount of
coupled channels involved in such works renders them imprac-
tical for Faddeev calculations. We therefore constructed our
own potentials for the coupled-channels K̄N -π� interaction
in the form (16) with form factors

gα
I (kα) = 1

(kα)2 + (
βα

I

)2 . (17)

To obtain the parameters λ
αβ

I and βα
I we used the following

experimental data:

(i) Mass M� and width �� of the �(1405) resonance,
assuming that it is a quasibound state in the I = 0 K̄N

channel and a resonance in the I = 0 π� channel. For
the energy of �(1405) E� = M� − i ��/2, (c = h̄ =
1), we adopted the PDG value [23] EPDG

� = 1406.5 −
i 25 MeV. In some cases we used also other values of
M� and ��.

(ii) The K−p scattering length as derived from the atomic
1s level shift and width in the KEK experiment [9]

aK−p = (−0.78 ± 0.15 ± 0.03)

+ i (0.49 ± 0.25 ± 0.12) fm (18)

and in the DEAR Collaboration experiment [10]

aK−p = (−0.468 ± 0.090 ± 0.015)

+ i (0.302 ± 0.135 ± 0.036) fm. (19)

In the following we denote the KEK value as aKEK
K−p =

−0.78 + i 0.49 fm and the DEAR value as aDEAR
K−p =

−0.468 + i 0.302 fm. Due to the fairly large experimen-
tal errors and also the large difference between the results
of these two measurements, we fitted our parameters
to a variety of values for the K−p scattering length.
In Ref. [17] we studied the sensitivity of the Faddeev
calculations’ results to varying the KEK value within
its error bars. The three-body pole energy was found to
depend strongly on the input K−p scattering length. As
for the DEAR value of the K−p scattering length, we
note the controversy about its consistency with the bulk
of the K−p scattering data [12,22].

(iii) The very accurately measured threshold branching ratio
[24]:

γ = �(K−p → π+�−)

�(K−p → π−�+)
= 2.36 ± 0.04. (20)

The value 2.36 was used in our fits.
(iv) Elastic K−p → K−p and inelastic K−p → π+�− to-

tal cross sections. We chose these two reactions because
among all available cross section data they have sufficient
experimental data points with reasonable experimental
errors.

We fitted the potential parameters to points (i)–(iii) of
this list and then checked how well the resulting potential
reproduces the cross sections (iv). The calculated cross
sections for four sets of parameters, in comparison with the
experimental data, are shown in Figs. 1 and 2. These sets
differ from each other by the value of the range parameter β;
the remaining parameters were also changed to reproduce the
same γ, aKEK

K−p and EPDG
� data. We conclude from the figures that

the best value of the K̄N range parameter is β = 3.5 fm−1. In
the following we denote the set with aKEK

K−p, EPDG
� , and β = 3.5

fm−1 as the “best set.” Figure 3 shows the calculated I = 0
elastic π� cross section, demonstrating that �(1405) is indeed
a resonance in this channel.

We were unable to find a value for β, using the DEAR
scattering length aDEAR

K−p and EPDG
� , such that the corresponding

set of parameters provided a good description of both cross
sections. The elastic K−p → K−p cross sections can be
described with 1.5 � β � 2.5 fm−1, but the inelastic K−p →
π+�− cross sections for these values are situated much lower
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FIG. 1. Total K−p → K−p cross sections calculated for four
sets of K̄N -π� parameters with different values of β marked in
the inset. The experimental values are taken from Refs. [25] (open
squares), [26] (open triangles), [27] (solid circles), and [28] (stars).

than the experimental data points. Given this situation, we
did not perform three-body calculations with K̄N interaction
parameters that reproduce the DEAR value of the K−p

scattering length.

2. One-channel complex and real K̄ N

To investigate all possible dependencies of our three-body
results on two-body inputs we constructed additionally real
and complex one-channel K̄N potentials. The imaginary part
of the complex potential accounts for absorption to all other
channels. Both potentials have the same form factors as
the coupled-channels potential [Eq. (17)], but for only one
channel index α = β = K . To fit the strength parameters λ

FIG. 2. Total K−p → π+�− cross sections calculated for four
sets of K̄N -π� parameters with different values of β marked in
the inset. The experimental values are taken from Refs. [25] (open
squares), [26] (open triangles), [27] (solid circles), and [28] (stars).

FIG. 3. Calculated elastic π� cross section for I = 0, arbitrary
units.

of the complex variant, we used experimental data (i) and
(ii), i.e., the energy of �(1405) and aK−p. For the complex
K̄N potential we used “best set” plus one more set of data,
which is the same as was used in Refs. [2,3]: E AY

� = 1405 −
i 20 MeV, a AY

K−p = −0.70 + i 0.53 fm, and a range parameter
β = 1.5 fm−1. We denote it as “AY set.”

A one-channel real K̄N potential was constructed by fitting
its parameters to reproduce the real parts of EPDG

� and aKEK
K−p,

with β = 3.5 fm−1. Here we assumed that �(1405) is a real
bound state of the I = 0 K̄N subsystem.

B. �N interaction

Only few experimental data exist for this interaction. There
are different models of it, for example, several Nijmegen
models, but due to the lack of data it is not possible to give
preference to any of these over the other ones. A separable
potential (16) with Yamaguchi form factors

g�N
I (k) = 1

k2 + (
β�N

I

)2 (21)

was used for the two isospin states. The parameters of the
I = 3/2 �N interaction were fitted to:

(i) the scattering length and effective radius

a(I = 3/2) = 3.8 fm, reff(I = 3/2) = 4.0 fm (22)

from the Nijmegen potential model F [29] (we denote
this set of I = 3/2 �N parameters as �N set 1).

(ii) the Nijmegen model NSC97 YN phase shifts [30]. This
�N set 2 gives the following scattering length and
effective range:

a(I = 3/2) = 4.15 fm, reff(I = 3/2) = 2.4 fm.

(23)
(iii) the scattering length and effective radius

a(I = 3/2) = 4.1 fm, reff(I = 3/2) = 3.5 fm (24)
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TABLE II. Three-body pole energy EK−pp (in MeV) of the I =
1/2, J π = 0− quasibound state of the K̄NN system with respect
to the K−pp threshold calculated with the “best set” of K̄N -π�

parameters using �N set 1, �N set 2, �N set 3, and with both
I = 1/2 and I = 3/2 �N interactions switched off.

�N set 1 �N set 2 �N set 3 no �N

−55.1 − i 50.9 −55.4 − i 51.9 −55.3 − i 51.1 −52.9 − i 50.9

from the most recent Nijmegen potential ESC04a [31]
(�N set 3).

The dependence of the three-body pole position on the �N

parameters was investigated in Ref. [17]. Table II illustrates
the sensitivity of the binding energies and widths of the I =
1/2, J π = 0− quasibound state of the K̄NN system to the �N

interaction parameters. Due to the weak dependence of the
three-body pole position on the �N interaction we used in the
following only one (the first) set of I = 3/2 �N parameters.

For the I = 1/2 �N interaction only the scattering length
was approximately determined: a(I = 1/2) = −0.5 fm [32].
We fitted the separable-potential parameters to this value, re-
stricting the fit by imposing “natural” values on the parameters
and producing a reasonable value for the I = 1/2 effective
radius.

C. NN interaction

We used the nucleon-nucleon PEST potential from
Ref. [21], which is a separable approximation of the Paris
potential. The strength parameter was set to λ = −1 and the
form factor is:

gNN
I (k) = 1

2
√

π

6∑
i=1

cNN
i,I

k2 + (
βNN

i,I

)2 . (25)

The constants cNN
i,I and βNN

i,I are listed in Ref. [21]. PEST
is on- and off-shell equivalent to the Paris potential up to
E lab ∼ 50 MeV and is repulsive at distances shorter than
0.8 fm. It reproduces the deuteron binding energy E d =
−2.2249 MeV, as well as the triplet and singlet NN-scattering
lengths, a( 3S1) = −5.422 fm and a( 1S0) = 17.534 fm, re-
spectively.

IV. RESULTS

A. Results of full coupled-channels K̄ N N-π�N calculation

Full coupled-channels calculations were done system-
atically, studying various dependencies of the three-body
pole position on different input parameters of the K̄N -π�

potential. Here the three-body energy is defined as EK−pp =
−BK−pp − i �K−pp/2, where BK−pp is a binding energy with
respect to the K−pp threshold, �K−pp is a width of a
quasibound state. The dependence of the real and imaginary
parts of the three-body pole energy as function of the range
parameter β is shown in Figs. 4 and 5, respectively. It is
seen that the dependence of the real part on β is rather
weak, whereas the imaginary part strongly depends on this
parameter.

FIG. 4. Coupled-channels calculation: the real part of the three-
body K̄NN -π�N pole energy as function of the K̄N range
parameter β. The two-body K̄N -π� observables are fixed at aKEK

K−p

and EPDG
� .

Other values that are varied are the mass M� and the width
�� of the �(1405) resonance. The results of such variations
are shown in Table III. All other input data used in this
calculation are fixed at β = 3.5 fm−1 and aKEK

K−p. As expected,
the broadening of �(1405) leads to a considerable increase
of the three-body width, whereas the three-body binding
energy depends on �� rather weakly. However, increasing
the �(1405) resonance mass strongly affects both real and
imaginary parts of the three-body pole, leading to a fast
decrease of both.

B. One-channel real and complex K̄ N N calculations

We also performed a test calculation for the one-channel
K̄NN system using a one-channel real K̄N potential (T -
matrix). For fitting we used the real part of aKEK

K−p, the real part

of EPDG
� , and assumed �(1405) as a real bound state of the

I = 0 K̄N subsystem. For these data, and using β = 3.5 fm−1,
we found a real bound state for I = 1/2, J π = 0− K̄NN at
−43.8 MeV below the K−pp threshold (the first column in
Table IV).

Another test calculation was performed with a one-channel
complex K̄N potential. The strength parameters λ of the
potential were fitted to the aKEK

K−p and EPDG
� data, and the

TABLE III. Calculated three-body pole energy EK−pp in MeV,
of the I = 1/2, J π = 0− quasibound state of the K̄NN system
with respect to the K−pp threshold, for different two-body input,
mass M� and half-width ��/2 of the �(1405). For E� = 1420 −
i 20 MeV no reasonable TK̄N-π� parameters can be found.

��/2\M� 1400 1410 1420

20 −62.1 − i 46.9 −47.5 − i 37.6 No TK̄N-π�

25 −64.9 − i 58.4 −50.8 − i 47.4 −40.6 − i 39.4
30 −65.7 − i 72.2 −52.5 − i 59.8 −42.8 − i 50.8
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TABLE IV. Results of different calculations of the three-body pole energy EK−pp in MeV, with
respect to the K−pp threshold: real and complex K̄NN one-channel (first two columns) and full
coupled-channels calculations (third column) using the “best set” of K̄N -π� parameters. Fourth
column: complex K̄NN one-channel calculation with “AY set.” Fifth column: AY’s result [3].

Ebest
1 real Ebest

1 complex Ebest
2 coupled E AY

1 complex E from Ref. [3]

−43.8 −40.2 − i 38.7 −55.1 − i 50.9 −46.6 − i 29.6 −48.0 − i 30.5

dependence of the three-body pole on the range parameter
β was investigated. Results are presented in Fig. 6.

It is seen from the plot that increasing the range of
the K̄N interaction, by decreasing the range parameter β,
gives rise to a deeper and somewhat narrower three-body
level. The dependence of the calculated K̄NN energy on the
range parameter β, as displayed in Fig. 6, is rather strong.
Therefore, using a too large or a too small range parameter
for the complex K̄N interaction leads to substantial underes-
timate or overestimate, respectively, of the three-body energy.
The “best set” of K̄N parameters with a fixed value for the
range parameter, β = 3.5 fm−1, yields the three-body pole
energy E best

1 complex shown in the second column of Table IV.
The result of the full coupled-channels calculation E best

2 coupled is
shown in the third column.

The transition within a three-body single-channel K̄NN

calculation from using a real K̄N interaction to using the
complex K̄N interaction, fitted to EPDG

� and to aKEK
K−p, is

demonstrated in Fig. 7 by the trajectory of complex three-body
energies starting with the real E best

1 real at the upper-left corner and
ending with the complex E best

1 complex at the lower-right corner.
This trajectory is generated by varying a real parameter ε

between 0 to 1, ε = 0 for E best
1 real and ε = 1 for E best

1 complex, such
that the imaginary parts of the fitted EPDG

� and aKEK
K−p are scaled

FIG. 5. Coupled-channels calculation: the imaginary part of the
three-body K̄NN -π�N pole energy as function of the K̄N range
parameter β. The two-body K̄N -π� observables are fixed at aKEK

K−p

and EPDG
� .

down by ε:

Im EPDG
� → ε Im EPDG

� , Im aKEK
K−p → ε Im aKEK

K−p. (26)

It is interesting to note that although the I = 0 and I = 1
strength parameters λcomplex provide stronger attraction in
the K̄N systems than the attraction provided by λreal, yet
E1 complex signifies less binding than E1 real. This generalizes the
well-known property in two-body problems where including
absorptivity leads effectively to adding repulsion. Here we
find that absorption of flux from the K̄N channel into other
unspecified channels represented by an imaginary part of a
complex K̄N potential reduces also the three-body binding
energy.

Comparing the result of the one-channel complex K̄NN

calculation with the coupled-channels K̄NN (see Table IV)
shows that E2 coupled is much deeper and broader than E1 complex.
This means that the π� channel, within a genuinely three-body
coupled-channels calculation plays an important dynamical
role in forming the three-body resonance (quasibound state),
over its obvious role of absorbing flux from the K̄N channel.
The poor applicability of an optical potential approach (or
some low-order perturbation calculation) in searching for a
quasibound state was shown, for example, by Ueda [33],
who studied the ηNN -πNN coupled-channels system using
Faddeev equations, finding a large deviation of the calculated
results from optical-model predictions.

FIG. 6. One-channel calculation with complex K̄N potential: the
dependence of the real (solid circles) and imaginary (open circles)
parts of three-body K̄NN pole energy on the K̄N range parameter
β. The two-body K̄N observables are fixed at aKEK

K−p
and EPDG

� .
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FIG. 7. Trajectory of the three-body pole in the complex energy
plane from Ebest

1 real, corresponding to a real K̄N potential with ε = 0
(solid point), to Ebest

1 complex for a complex K̄N potential with ε = 1 (see
text for details).

To compare the present results with the results of calcula-
tions by Yamazaki and Akaishi [3], the one-channel K̄NN

calculation was repeated using the complex K̄N potential
corresponding to the “AY set” of K̄N parameters. The result
obtained by us (E AY

1 complex) and E from Ref. [3] are shown in
the last two columns of Table IV. It is remarkable that in spite
of different forms of the two-body potentials and different
three-body formalisms, the calculated three-body energies in
these single-channel K̄NN calculations come out very close
to each other, provided the same set of K̄N parameters is fitted
to. Nevertheless, both values of three-body energy are far away
from the three-body energy of the complete coupled-channels
calculation. One of the reasons is the use of a complex K̄N

potential in the single-channel K̄NN calculations, another
reason is the too small value, β = 1.5 fm−1, for the range
parameter used in these approximate calculations.

V. CONCLUSION

We performed coupled-channels few-body calculations of
the I = 1/2, J π = 0− K̄NN system, finding a deeply bound
and broad quasibound state, which is a resonance in the π�N

channel. The calculations yielded binding energy BK−pp ∼
50–70 MeV and width �K−pp ∼ 100 MeV, in agreement
with our earlier results [17]. It was shown that the explicit
inclusion of the second channel is crucial for this system. The
dependence of the three-body energy pole on different forms
and parameters of the K̄N interaction, and on different ways
of reproducing K̄N -π� observables, was studied. Most of
these dependencies were found to be strong. In particular,

it was shown that a complex K̄N potential gives much
shallower and narrower three-body quasibound state than the
full coupled-channels calculation, which has the same range
parameter and reproduces the same K̄N -π� observables.

We compared our results with those of Yamazaki and
Akaishi [3], demonstrating the shortcomings of these single-
channel K̄NN calculations. Two more calculations of the same
system appeared recently. Dote and Weise [34] have presented
preliminary results of a variational antisymmetrized molecular
dynamics calculation for the K−pp system within a single-
channel K̄NN framework. Their calculation focuses attention
to the dependence of the calculated real three-body binding
energy on the range parameter of the Gaussian K̄N interaction
used. It includes perturbatively also a p-wave K̄N interaction.
Whereas a direct comparison between our coupled-channels
calculations and these single-channel calculations cannot be
made, the general criticism expressed above of the use of a
single-channel formalism applies also to this work.

A coupled-channels K̄NN -π�N calculation of the same
K−pp system was performed recently by Ikeda and Sato [35]
with less emphasis on reproducing low-energy K̄N data. The
obtained binding energies are in a similar range to those
presented here, whereas the widths are consistently lower than
those calculated in the present work.

It is worthwhile to note that all the theoretical calculations
discussed above, including the present calculations, obtain
binding energies that are considerably below the binding
energy ≈115 MeV deduced for the K−pp identification
proposed in Ref. [5]. This FINUDA K−

stop experiment on
lithium and heavier targets, as mentioned in the Introduction,
leaves room for other interpretations as well. The use of a more
restrictive 3He target to search for a K−pp quasibound state
in a (K−, n) reaction was approved as a “day 1” experiment
in J-PARC [36]. The spectrum calculated recently for this
reaction [37] demonstrates how the large width predicted for
K−pp in the present work is expected to wipe out any clear
peak structure in this reaction.

Additional calculations are necessary to study other features
of the coupled K̄NN system. These include the secondary
effect of the π� channel beyond that of the primary inelastic
π� channel incorporated here, of p-wave K̄N and πN

interactions, and the use of relativistic kinematics. Finally, to
understand better the K̄N interaction, it is desirable to perform
coupled-channels Faddeev calculations of a quasibound state
in the S = 1 K̄NN system as well.
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