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A meson-exchange model for pion-nucleon scattering was previously constructed using a three-dimensional
reduction scheme of the Bethe-Salpeter equation for a model Lagrangian involving π, η, N, �, ρ, and σ fields.
We thereby extend our previous work by including the ηN channel and all the πN resonances with masses
∼2 GeV, up to the F waves. The effects of the ππN channels are taken into account by introducing an effective
width in the resonance propagators. The extended model gives an excellent fit to both πN phase shifts and
inelasticity parameters in all channels, except F17, up to the F waves and for energies below 2 GeV. We present
a new scheme for extracting the properties of overlapping resonances. The predicted values for the resonance
masses and widths as well as resonance pole positions and residues are compared with the listing of the Particle
Data Group.
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I. INTRODUCTION

Pion-nucleon scattering is of interest because of its fun-
damental nature. In the 1950s, it was widely regarded as
the dynamical problem because of the special role pions and
nucleons play in the family of particles [1]. Soon it became one
of the main sources of information about the baryon spectrum.
The pion-nucleon interaction also plays a fundamental role
in the description of nuclear dynamics for which the πN

off-shell amplitude serves as the basic input to most of
the existing nuclear calculations at intermediate energies.
Knowledge about the off-shell πN amplitude is also essential
in interpreting the experiments performed at the intermediate-
energy electron accelerators in order to unravel the internal
structure of these hadrons. For example, the importance of
the πN off-shell t matrix in a dynamical description of pion
electromagnetic production has been demonstrated in recent
years [2–5]. To make further progress, it is now necessary to
improve our previous description of the πN interaction and to
extend it to higher energies.

It is commonly accepted that quantum chromodynamics
(QCD) is the fundamental theory of the strong interaction.
However, due to the confinement problem, it is still practically
impossible to derive the πN interaction directly from QCD.
On the other hand, models based on meson-exchange pictures
[6,7] have been very successful in describing the NN scattering.
Over the last decade, similarly successful models have also
been constructed for πN scattering [3,8–16]. Most of the
recent attempts in this direction were obtained by applying
various three-dimensional reductions of the Bethe-Salpeter
equation, except for Ref. [12], in which the four-dimensional
Bethe-Salpeter equation was solved. Because the effective
Lagrangian used in these models includes only the first few
low-lying resonances, in addition to pion and nucleon as well
as σ and ρ mesons, the energy region is restricted to low and
intermediate energies.

In previous works we constructed several meson-exchange
πN models within the Bethe-Salpeter formulation [3,10,14]

and investigated their sensitivity with respect to various
three-dimensional reduction schemes. The model Lagrangian
included only π,N,�, ρ, and σ fields, and it was found that all
the resulting meson-exchange models can yield similarly good
descriptions of the πN scattering data up to 400 MeV. The
model obtained with the Cooper-Jennings reduction scheme
[17] was recently extended up to a c.m. energy of 2 GeV in the
S11 channel by including the ηN channel and a set of higher
S11 resonances [18]. An excellent fit to the t matrix in both πN

and ηN channels was obtained. In addition, when analyzing
the pion photoproduction data, we obtained background con-
tributions to the imaginary part of the S-wave multipole which
differ considerably from the result based on the K-matrix
approximation. The resulting resonance contributions required
to explain the pion photoproduction data led to a substantial
change of the extracted electromagnetic helicity amplitudes.
In the present paper, we further extend our model to include the
higher partial waves up to the F waves. The spin- 3

2 resonances
are treated as Rarita-Schwinger particles, while we use simple
Breit-Wigner forms for the resonance propagators with spins
5
2 and 7

2 . Since the importance of ππN final states grows with
energy, these channels also have to be taken care of. Instead
of including them like the σN, ρN , and π� states directly
in the coupled-channels calculation as done in Ref. [15], we
follow the recipe of Ref. [18] to account for the ππN channels
by introducing a phenomenological term in the resonance
propagators. It turns out that this approximation works quite
well in most of the considered channels.

The question of whether a resonance is a three-quark state
dressed by the meson cloud or is generated dynamically is
an issue still under investigation in the literature. At one
extreme, there is the conjecture [19] that baryon resonances
not belonging to the large-Nc ground states may be generated
by coupled-channel dynamics. On the other hand, in the
Jülich πN model [20,21], it was found that only the Roper
resonance P11(1440) can be understood in this way, while
other resonances such as S11(1535), S11(1650), and D13(1520)
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had to be included in the model explicitly, in direct contrast
to results of Ref. [9], where Roper resonance is included
explicitly but S11(1535) is generated dynamically. Here we
take another extreme and assume all the nucleon resonances
are fundamentally three-quark states dressed by coupling to
meson-nucleon channels. Such a picture has been found to
describe well the �(1232) [5,22,23] and S11 resonances up
to 2 GeV [18] in πN scattering and pion electromagnetic
production.

In Sec. II, we summarize the meson-exchange πN model
constructed in our previous work. We extend the model to
include the ηN channel and the higher resonances in Sec. III.
Our results are presented in Sec. IV, and some conclusions are
given in Sec. V.

II. MESON-EXCHANGE π N MODEL

Let us first outline the content of our previous meson-
exchange model describing the πN interaction at low and
intermediate energies [14]. The reaction of interest is

π (q) + N (p) → π (q ′) + N (p′), (1)

where q, p, q ′, and p′ are the four-momenta of the respective
particles. We further define the total and relative four-
momentum, P = p + q and k = pηπ (s) − qηN (s), respec-
tively, where s = P 2 = W 2 is the Mandelstam variable. The
dimensionless variables ηπ (s) and ηN (s) represent the freedom
in choosing a three-dimensional reduction and are constrained
by the condition ηN + ηπ = 1. An often used definition for
these variables is given by

ηN (s) = εN (s)

εN (s) + επ (s)
, ηπ (s) = επ (s)

εN (s) + επ (s)
, (2)

with εN (s) = (s + m2
N − m2

π )/2
√

s and επ (s) = (s − m2
N +

m2
π )/2

√
s. For further details, we refer the reader to Ref. [14].

The Bethe-Salpeter (BS) equation for πN scattering takes
the general form

TπN = BπN + BπNG0TπN, (3)

where BπN is the sum of all irreducible two-particle Feynman
amplitudes and G0 the free relativistic pion-nucleon propaga-
tor. The BS equation can be cast into the form

TπN = B̂πN + B̂πNĜ0TπN, (4)

with

B̂πN = BπN + BπN (G0 − Ĝ0)B̂πN , (5)

where a three-dimensional reduction of Eq. (3) is obtained by
use of an appropriate propagator Ĝ0(k; P ). It is also convenient
to choose Ĝ0 such that two-body unitarity is maintained by
reproducing the πN elastic cut. There is still a wide range
of possible propagators which satisfy this requirement. A
standard choice of the propagator has the form [17,24]

Ĝ0(k; P ) = 1

(2π )3

∫
ds ′

s − s ′ f (s, s ′)[α(s, s ′)P/ + k/ + mN ]

× δ(+)
(
[ηN (s ′)P ′ + k]2 − m2

N

)
× δ(+)

(
[ηπ (s ′)P ′ − k]2 − m2

π

)
, (6)

with P ′ =
√

s ′
s
P . The superscript (+) associated with δ

functions signifies that only the positive energy part is kept
in the propagator. Concerning the Dirac matrices and the
Lorentz metrics, we use the notation of Bjorken and Drell [25].
Furthermore, the variables f and α are dimensionless variables
containing the freedom of reduction; they are constrained by
the conditions f (s, s) = 1 and α(s, s) = ηN (s), which ensure
the reproduction of the elastic cut. In the Cooper-Jennings
reduction scheme [17], they take the form

α(s, s ′) = ηN (s), f (s, s ′) = 4
√

ss ′εN (s ′)επ (s ′)
ss ′ − (m2

N − m2
π )2

. (7)

The integral over s ′ in Eq. (6) can be performed. Expressed
in the c.m. frame, the result is

Ĝ0(k; s) = 1

(2π )3

δ(k0 − η̂(s�k, �k))√
s − √

s�k

2
√

s�k√
s + √

s�k
f (s, s�k)

× α(s, s�k)γ0
√

s + k/ + mN

4EN (�k)Eπ (�k)
, (8)

where EN (�k) and Eπ (�k) are the nucleon and pion energies
for the three-momentum �k,

√
s�k = EN (�k) + Eπ (�k) = E is

the total energy in the c.m. frame, and η̂(s, �k) = EN (�k) −
ηN (s�k)

√
s�k. By use of these relations, we obtain the following

πN scattering equation:

t( �k′, �k; E) = v( �k′, �k; E) +
∫

d �k′′v( �k′, �k′′; E)g0(�k′′; E)

× t( �k′′, �k; E). (9)

The explicit relations between the variables of Eqs. (9) and
(3) are

t( �k′, �k; E) =
∫

dk′
0dk0δ(k′

0 − η̂′)T (k′, k; E)δ(k0 − η̂),

v( �k′, �k; E) =
∫

dk′
0dk0δ(k′

0 − η̂′)B(k′, k; E)δ(k0 − η̂), (10)

g0(�k; E) =
∫

dk0Ĝ0(k; E),

with η̂′ = η̂(s �k′, �k′) and η̂ = η̂(s�k, �k).
Because our previous work concentrated on the πN

scattering process at low and intermediate energies, we only
considered the degrees of freedom due to the π,N, σ, ρ,

and �(1232) fields, and we approximated the sum of all
irreducible two-particle Feynman amplitudes, B(k′, k; E) in
Eq. (10), by the tree approximation of the following interaction
Lagrangian:

LI = f
(0)
πNN

mπ

N̄γ5γµ�τ · ∂µ �πN − g(s)
σππmπσ (�π · �π )

− g(v)
σππ

2mπ

σ (∂µ �π · ∂µ �π ) − gσNNN̄σN

− gρNNN̄

{
γµ �ρµ + κ

ρ

V

4mN

σµν(∂µ �ρν − ∂ν �ρµ)

}
· 1

2
�τN

− gρππ �ρµ · (�π × ∂µ �π )
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− gρππ

4m2
ρ

(δ − 1)(∂µ �ρν − ∂ν �ρµ) · (∂µ �π × ∂ν �π )

+ gπN�

mπ

�̄µ

[
gµν −

(
Z + 1

2

)
γ µγ ν

]
�T�NN · ∂ν �π,

(11)

with �µ the Rarita-Schwinger field operator for the �

resonance and �T�N the isospin transition operator between
the nucleon and the �. The resulting driving term consists
of the direct and crossed N and � diagrams as well as the
t-channel σ - and ρ-exchange contributions.

The procedure of Afnan and collaborators [26] was
followed to constrain the P11 phase shift by imposing the
nucleon pole condition. This treatment leads to a proper
renormalization of both nucleon mass and πNN coupling
constant. It also yields the important cancellation between
the repulsive nucleon pole contribution and the attractive
background, such that a reasonable fit to the πN phase shifts
in the P11 channel can be achieved.

To complete the model, we further introduced form factors
to regularize the driving term v(�k, �k′) of Eq. (10). For this
purpose, covariant form factors of the form

F (p2) =
[

n�4

n�4 + (m2 − p2)2

]n

, (12)

are associated with each leg of the vertices, where p is the
four-momentum and m the mass of the respective particle.
This parametrization is similar to the prescription of Ref. [8],
and in Ref. [14] both n = 10 and 2 were considered. However,
in our previous work, we used the value n = 10 [18].

The parameters that were allowed to vary in fitting the
empirical phase shifts are the products gσNNg(s)

σππ , gσNNg(v)
σππ ,

and gρNNgρππ as well as δ for the t-channel σ and ρ exchanges,
m

(0)
� , g

(0)
πN�, and Z for the � mechanism, and the cutoff

parameters � of the form factors given by Eq. (12). In the
crossed N diagram, the physical πNN coupling constant
is used. For the crossed � diagram, the situation is not so
clear, since the determination of the “physical” πN� coupling
constant depends on the nonresonant contribution in the P33

channel. In principle, it can be determined by carrying out a
renormalization procedure similar to that used for the nucleon.
However, this would require a much more difficult numerical
task, because the � pole is complex. In accordance with Refs.
[3,8,9], we therefore did not carry out such a renormalization
for the � but simply determined the coupling constant in the
crossed � diagram by a fit to the data. The resulting coupling
constant was denoted as gπN�.

III. EXTENSION TO HIGHER ENERGIES: INCLUSION OF
THE ηN CHANNEL AND HIGHER RESONANCES

As the energy increases, two-pion channels such as
σN, ηN, π�, ρN as well as a nonresonant continuum of
ππN states become increasingly important; at the same time,
more and more nucleon resonances appear as intermediate
states. The πN model described in Sec. II was therefore
extended for the S11 partial wave by explicitly coupling the

π, η, and ππ channels and including the couplings with higher
baryon resonances [18]. In particular, in the case of only one
contributing resonance R, the Hilbert space was enlarged by
the inclusion of a bare S11 resonance R which acquires a
width by its coupling with the πN and ηN channels through
the Lagrangian

LI = ig
(0)
πNRR̄τN · π + ig

(0)
ηNRR̄Nη + h.c., (13)

where N,R, π, and η denote the field operators for the
nucleon, bare resonance R, pion, and η meson, respectively.
The full t matrix can be written as a system of coupled
equations,

tij (E) = vij (E) +
∑

k

vik(E)gk(E)tkj (E), (14)

with i and j denoting the π and η channels and E = W is the
total c.m. energy.

In general, the potential vij is the sum of nonresonant (vB
ij )

and bare resonance (vR
ij ) terms,

vij (E) = vB
ij (E) + vR

ij (E). (15)

The nonresonant term vB
ππ for the πN elastic channel is given

by the results of Sec. II and contains contributions from the s

and u channels, Born terms, and t-channel contributions with
ω, ρ, and σ exchange. The parameters in vB

ππ are fixed from
the analysis of the pion scattering phase shifts for the s and
p waves at low energies (W < 1300 MeV) [14]. In channels
involving the η, the potential vB

iη is taken to be zero, because
the ηNN coupling is very small [27].

The bare resonance contribution arises from the excitation
and deexcitation of the resonance R,

vR
ij (E) = h

(0)†
iR h

(0)
jR

E − M
(0)
R

, (16)

where h
(0)
iR and M

(0)
R denote the bare vertex operator for

R → π/η + N and the bare mass of the resonance R,
respectively. The matrix elements of the potential vR

ij (E) can
be symbolically expressed in the form

vR
ij (q, q ′; E) = fi(�̃i, q; E)g(0)

i g
(0)
j fj (�̃j , q

′; E)

E − M
(0)
R + i

2�2π
R (E)

, (17)

where q and q ′ are the pion (or η) momenta in the initial
and final states, and g

(0)
i/j is the resonance vertex couplings.

As in Ref. [14], we associate with each external line of the
particle α in a πNR vertex a covariant form factor Fα =
[n�4

α/
(
n�4

α + (p2
α − m2

α)2
)
]n, where pα,mα , and �α are the

four-momentum, mass, and cutoff parameter of particle α,
respectively, and n = 10. As a result, fi depends on the product
of three cutoff parameters, i.e., �̃π ≡ (�N,�R,�π ).

In Eq. (17) we have included a phenomenological term
�2π

R (E) in the resonance propagator to account for the ππN

decay channel. Therefore, our “bare” resonance propagator
already contains some renormalization or “dressing” effects
due to the coupling with the ππN channel. With this
prescription, we assume that any further nonresonant cou-
pling mechanism with the ππN channel is small. Following
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Refs. [28,29], we take

�2π
R (E) = �

2π(0)
R

(
q2π

q0

)2l+4 (
X2

R + q2
0

X2
R + q2

2π

)l+2

, (18)

where l is the pion orbital momentum, q2π = q2π (E) the
momentum of the compound two-pion system, q0 = q2π (E =
M

(0)
R ), and the quantity �

2π(0)
R is the 2π decay width at reso-

nance. We note that this form accounts for the correct energy
behavior of the phase space near the three-body threshold [28].
In our present work, �

2π(0)
R and XR are considered as free

parameters. As a result, one isolated resonance will in general
contain six free parameters, the bare mass M

(0)
R , the decay

width �
2π(0)
R , two bare coupling constants g

(0)
i and g

(0)
j , and

two cutoff parameters �R and XR . The generalization of the
coupled-channels model to the case of N resonances with the
same quantum numbers is then given by

vR
ij (q, q ′; E) =

N∑
n=1

v
Rn

ij (q, q ′; E), (19)

with free parameters for the bare masses, widths, coupling
constants, and cutoff parameters for each resonance.

Having solved the coupled-channels equations, our next
task is the extraction of the physical (or “dressed”) masses,
partial widths, and branching ratios of the resonances. It
is known that this procedure is model dependent, because
the background and the resonance contributions cannot be
separated in a unique way. Of course, the solution to this
problem becomes more and more difficult with an increasing
number of overlapping resonances in the same channel. In
the literature, there are two schemes used to separate the total
t matrix into background and resonance contributions. For
simplicity, we illustrate these two methods for the uncoupled
channel case, i.e., assuming that only the πN channel is open.
In this case, the potential operator describing the excitation of
a bare resonance R takes the form

vR
πN (E) = h

(0)†
πR h

(0)
πR

E − M
(0)
R

, (20)

with h
(0)
πR the bare vertex.

The first scheme was suggested by Afnan and collaborators
[30] and recently used in the dynamical model calculation of
pion scattering and pion photoproduction [4]. By use of the
two-potential formulation, the t matrix is written as

tπN (E) = t̃BπN (E) + t̃RπN (E), (21)

where t̃BπN (E) is defined as

t̃BπN (E) = vB
πN + vB

πNg0(E)t̃BπN (E). (22)

We will call t̃BπN (E) the nonresonant background, because
it does not contain any resonance contribution from vR

πN of
Eq. (20). The resonance term t̃RπN (E) takes the form

t̃RπN (E) = h̄πR(E)
1

E − M
(0)
R − �R(E)

hπR(E), (23)

with the definitions

hπR(E) = h
(0)
πR + h

(0)
πRg0(E)t̃BπN (E), (24)

h̄πR(E) = h
(0)†
πR + t̃BπN (E)g0(E)h(0)†

πR , (25)

=
hπR

+

h
(0)
πR t̃BπN h

(0)
πR

FIG. 1. Dressed and bare πNR vertex.

and the self-energy �R(E) given by

�R(E) = h
(0)
πRg0h̄πR(E)

= h
(0)
πRg0h

(0)†
πR + h

(0)
πRg0 t̃

B
πN (E)g0h

(0)†
πR . (26)

Graphical representations of the dressed vertex hπR(E) and the
self-energy �R(E) are depicted in Figs. 1 and 2, respectively,
where the solid circle on the left-hand side of Fig. 1 denotes
the dressed vertex hπR , while the πNR vertices, h

(0)
πR , on the

right-hand side of Fig. 1 correspond to the excitation of a bare
resonance R. The small solid circles in Figs. 1 and 2 represent
the nonresonant background t̃BπN (E) as defined in Eq. (22).

The information about the physical mass and total width
of the resonance R is contained in the dressed resonance
propagator given in Eq. (23). The complex self-energy �(E)
leads to a shift from the real “bare” mass to a complex
and energy-dependent value. However, we characterize the
resonances by energy-independent parameters obtained by
solving the equation

E − M
(0)
R − Re �R(E) = 0. (27)

The solution of this equation, E = MR , corresponds to the
energy at which the dressed propagator in Eq. (23) becomes
purely imaginary and is used to define the physical or dressed
mass,

MR = M
(0)
R + Re �R(MR), (28)

and the width of the resonance,

�R(MR) = −2 Im�R(MR). (29)

All of the above equations are based on the two-potential
formulation [31]. The extension of this method to the case
of several overlapping resonances in the same partial channel
α complicates the problem. In particular, we cannot express
the t matrix as a simple sum of a smooth background and
overlapping resonances,

tπN (E) �= t̃BπN (E) +
N∑

i=1

t̃
Ri

πN (E). (30)

We therefore prefer to separate the resonance and back-
ground contributions in the framework of Refs. [5,18]. In
this approach, the full pion-nucleon scattering matrix is
decomposed into

tπN (E) = tBπN (E) + tRπN (E), (31)

Σ∆

= +

t̃BπN

FIG. 2. Resonance self-energy.
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FIG. 3. (Color online) Real and imaginary
parts of tπN in the S waves as function of the total
c.m. energy W . The solid (red) lines are the best
fits of our meson-exchange model, the dashed
(blue) lines correspond to the contributions of
the nonresonant background t̃ B

πN of Eq. (22). The
open circles are the results of the partial wave
analysis of Ref. [34].

where
tBπN (E) = vB

πN + vB
πNg0(E)tπN (E), (32)

tRπN (E) = vR
πN + vR

πNg0(E)tπN (E). (33)

Comparing tBπN with t̃Bγπ of Eq. (22), the background tBπN

now includes contributions not only from the background
rescattering but also from intermediate resonance excitation.
This is compensated by the fact that the resonance contribution

FIG. 4. (Color online) Same as Fig. 3, but
for P waves.
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FIG. 5. (Color online) Same as Fig. 3, but
for D waves.

tRπN now contains only the terms that start with the bare
resonance excitation. Expressed in terms of self-energy and
vertex functions, we obtain the result

tRπN (E) = h̄πR(E)h(0)
πR

E − M
(0)
R (E) − �R(E)

, (34)

which differs from Eq. (23), where dressed vertex appears in
both the initial and final states. On the other hand, we note that
the resonance propagators of the two approaches are identical.
Therefore, the physical masses and total widths determined in
the two methods will be the same.

The second method can be easily extended to the case of
N overlapping resonances by the following decomposition of
the full πN scattering matrix into background and resonance
contributions,

tπN (E) = tBπN (E) +
N∑

i=1

t
Ri

πN (E). (35)

The contribution from each resonance Ri can be expressed in
terms of the bare h

(0)
πRi

and dressed hπRi
(E) vertex operators

as well as the resonance self-energy derived from one-pion

�1π
Ri

(E) and two-pion �2π
Ri

(E) channels, that is,

t
Ri

πN (E) = h̄πRi
(E)h(0)

πRi

E − M
(0)
Ri

− �1π
Ri

(E) − �2π
Ri

(E)
, (36)

where M
(0)
Ri

is the bare mass of the ith resonance. The
contribution from the two-pion channel, �2π

Ri
, is defined

phenomenologically as in Eq. (18). The vertices for the
resonance excitation are obtained from the equations

hπRi
(E) = h

(0)
πRi

+ h
(0)
πRi

g0(E)tBi

πN (E), (37)

h̄πRi
(E) = h

(0)†
πRi

+ t
Bi

πN (E)g0(E)h(0)†
πRi

, (38)

where

t
Bi

πN (E) = vi(E) + vi(E)g0(E)tBi

πN (E), (39)

vi(E) = vB
πN +

N∑
j �=i

v
Rj

πN (E), (40)

with v
Rj

πN (E) arising from the excitation of the resonance Rj

as given in Eq. (17). The one-pion self-energies arising from
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FIG. 6. (Color online) Same as Fig. 3, but
for F waves.

t
Bi

πN (E) of Eq. (39) are given as

�1π
Ri

(E) = h
(0)
πRi

g0h̄πRi
(E)

= h
(0)
πRi

g0h
(0)†
πRi

+ h
(0)
πRi

g0t
Bi

πNg0h
(0)†
πRi

, (41)

and the one-pion branching ratio at the dressed resonance is

β1π
i = �1π

Ri
(MR)

�1π
Ri

(MR) + �2π
Ri

(MR)
. (42)

The pole positions in the complex energy plane and the
complex residues of the scattering amplitudes at these poles
are calculated using the speed plot technique for the pion-
nucleon partial waves. For details, see Refs. [32,33]. We add
in passing that in the case of broad and overlapping resonances
and close-by thresholds, the speed-plot technique can lead to
numerical uncertainties. In extreme cases, a pole may not be
found at all.

Finally, it is not difficult to see from Eqs. (37) and (38) that
the matrix elements of both hπRi

and t
Bi

πN (E) would have the

same phase φR(E), i.e.,

〈hπRi
(E)〉 = |〈hπRi

(E)〉| exp (iφRi
),

(43)
t
Bi

πN (E) = ∣∣〈tBi

πN (E)
〉∣∣ exp (iφRi

),

where the brackets 〈 〉 are used to denote a matrix element of the
operator sandwiched between the same set of initial and final
states. It then follows that also the numerator on the right-
hand side of Eq. (36) carries the phase φRi

(E). Information
about this phase is very important for the phenomenological
Breit-Wigner parametrization of the resonance contributions.

We emphasize that in the formulation of Eqs. (35)–(41),
the nucleon resonances are treated in a completely symmetrical
way. In addition, the self-energy and dressing of any resonance
receive contributions from all other resonances.

IV. RESULTS AND DISCUSSION

A. π N scattering amplitudes

With the extended meson-exchange model described in
Sec. III, we have fitted the πN phase shifts and inelasticity
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TABLE I. Bare (M (0)
R ) and physical (MR) resonance masses as well as total widths

�R , all in units of MeV, single pion branching ratios β1π
R , and background phases φR of

Eq. (43) for isospin-1/2 resonances. Upper lines: our results, lower lines: results of the
PDG [35].

N∗ M
(0)
R MR �R β1π

R (%) φR (deg)

P11(1440) 1612 1418 436 44 32
∗∗∗∗ 1445 ± 25 325 ± 125 65 ± 10
D13(1520) 1590 1520 94 62 1.2
∗∗∗∗ 1520 ± 5 115 ± 15 60 ± 5
S11(1535) 1559 1520 130 43 20
∗∗∗∗ 1535 ± 10 150 ± 25 45 ± 10
S11(1650) 1727 1678 200 73 24
∗∗∗∗ 1655 ± 10 165 ± 20 77 ± 17
D15(1675) 1710 1670 154 18 49
∗∗∗∗ 1675 ± 5 147 ± 17 40 ± 5
F15(1680) 1748 1687 156 67 7.9
∗∗∗∗ 1685 ± 5 130 ± 10 67 ± 2
D13(1700) 1753 1747 156 5 −1
∗∗∗ 1700 ± 50 100 ± 50 10 ± 5
P11(1710) 1798 1803 508 32 40
∗∗∗ 1710 ± 30 180 ± 100 15 ± 5
P13(1720) 1725 1711 278 13 0
∗∗∗∗ 1725 ± 25 225 ± 75 15 ± 5
P13(1900) 1922 1861 1000 18 −3.5
∗∗ 1879 ± 17 498 ± 78 26 ± 6
F15(2000) 1928 1926 58 4 18
∗∗ 1903 ± 87 490 ± 310 8 ± 5
D13(2080) 1972 1946 494 15 5
∗∗ 1804 ± 55 450 ± 185 ∼4
S11(new) 1803 1878 508 41 −5
S11(2090) 2090 2124 388 37 −18
∗ 2180 ± 80 350 ± 100 18 ± 8
P11(2100) 2196 2247 1020 42 32
∗ 2125 ± 75 260 ± 100 12 ± 2
D13 (new) 2162 2152 292 14 7
P13 (new) 2220 2204 406 15 −4
D15(2200) 2300 2286 532 16 8
∗∗ 2180 ± 80 400 ± 100 10 ± 3

parameters in all channels up to the F waves and for energies
less than 2 GeV. The results for the real and imaginary parts
of the partial wave amplitudes tπN are shown in Figs. 3–6.
The solid lines are the best fit within our model, while the
dashed lines correspond to the nonresonant background t̃BπN of
Eq. (22). The open circles represent the partial wave analysis
results of Ref. [34]. These figures show an excellent description
of both the real and imaginary parts of the pion-nucleon
scattering amplitudes in all cases except for the D35 and
F17 channels. For the D35 channel, our problem lies mostly
within the real part, as seen in Fig. 5. For the F17 channel in
Fig. 6, the inclusion of further resonances does not improve
the nonresonant background shown by the data, neither for the
real nor for the imaginary part of the scattering amplitude.

B. Resonance parameters

Let us now look at the resonance parameters whose
determination was one of the main issues of our inves-
tigation. Before going into detail by comparing our data
with the Particle Data Group (PDG) values, we point out
that our data analysis requires four very broad resonances,
S11(1878),D13(2152), P13(2204), and P31(2100), states that
are not in the current listing of the PDG [35]. Furthermore,
we cannot remove the discrepancy between the background
contributions and the data in the F17 channel by adding the
F17(1990) resonance listed by the PDG, which is in line with
the results of the SAID analysis [34].

The physical mass MR , total width �R , single-pion branch-
ing ratio β1π

R , and background phase φR defined for each
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TABLE II. Same as Table I, but for isospin-3/2 resonances.

N∗ M
(0)
R MR �R β1π

R (%) φR (deg)

P33(1232) 1425 1233 132 100 12
∗∗∗∗ 1232 ± 1 118 ± 2 100
P33(1600) 1575 1562 216 6 −9
∗∗∗ 1600 ± 100 350 ± 100 17 ± 7
S31(1620) 1654 1616 160 32 −41
∗∗∗∗ 1630 ± 30 142 ± 18 25 ± 5
D33(1700) 1690 1650 260 15 −5
∗∗∗∗ 1710 ± 40 300 ± 100 15 ± 5
P31(1750) 1765 1746 554 4 −24
∗ 1744 ± 36 300 ± 120 8 ± 3
S31(1900) 1796 1770 430 8 −44
∗∗ 1900 ± 50 190 ± 50 2 ± 1
F35(1905) 1891 1854 534 11 −12
∗∗∗∗ 1890 ± 25 335 ± 65 12 ± 3
P31(1910) 1953 1937 226 14 −21
∗∗∗∗ 1895 ± 25 230 ± 40 22 ± 7
P33(1920) 1856 1827 834 12 3
∗∗∗ 1935 ± 35 220 ± 70 12 ± 7
D35(1930) 2100 2068 426 15 −20
∗∗∗ 1960 ± 60 360 ± 140 10 ± 5
D33(1940) 2100 2092 310 6 −10
∗ 2057 ± 110 460 ± 320 18 ± 12
F37(1950) 1974 1916 338 47 13
∗∗∗∗ 1932 ± 17 285 ± 50 40 ± 5
F35(2000) 2277 2260 356 11 −26
∗∗ 2200 ± 125 400 ± 125 16 ± 5
P31 (new) 2160 2100 492 35 −25
S31(2150) 2118 1942 416 70 −44
∗ 2150 ± 100 200 ± 100 8 ± 2

overlapping nucleon resonance R were determined from
Eqs. (28), (29), (42), and (43). The results are presented in
Tables I and II for the isospin- 1

2 and isospin- 3
2 resonances, re-

spectively. Using the speed-plot technique, we also calculated
the resonance pole positions in the complex energy plane and
the complex residues at these poles. The results are listed in
Tables III and IV for the isospin- 1

2 and isospin- 3
2 resonances,

respectively. In Tables I–IV, we also compare our results with
the listings of the PDG.

1. S waves

As reported in Ref. [18], we need four S11 resonances
to fit the πN scattering amplitude in this channel, instead
of the three resonances listed by the PDG. The additional
resonance S11(1878) was found to play an important role in
pion photoproduction as well [18], but it was not seen in
either the πN → ηN reaction or recent measurements of η
photoproduction from the proton [36]. There also arise some
differences in the resonance parameters between our present
results and those given by Ref. [18] because of the different
definitions for the resonance masses and widths explained
in the previous text. It turns out that the choice of these
definitions has little effect on the extracted masses of all four

S11 resonances. However, the extracted widths for the first
and third resonances depend very much on the definitions,
which leads to increased widths over those obtained in earlier
work, i.e., from 90 to 130 MeV and from 265 to 508 MeV,
respectively. Our results obtained for the pole position via the
speed-plot technique generally agree with the PDG values for
the real parts of the pole positions. However, we obtain much
smaller values for the imaginary parts of the pole positions and
for the residues at the pole.

For the isospin-3/2 channel, our extracted masses and
widths differ from the PDG values by more than 100 MeV,
all except the first resonance, S31(1620). The values obtained
for the pole positions agree with the PDG values for the lower
resonances. However, the imaginary part of the pole position
for the S31(1900) and its residue at the pole comes out very
small.

2. P waves

For P waves with isospin-1/2, our results are in good
agreement with the PDG values regarding both pole positions
and residues. However, the extracted widths are much larger
than the corresponding PDG values. We also need an extra
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TABLE III. Pole positions Wp − 1
2 i�p and absolute values of the

residues | r | at the pole, all in MeV, as well as the phases θ of the
residues for isospin-1/2 resonances, as obtained from speed plots.
Notation same as in Table I.

N∗ Wp �p | r | θ (deg)

P11(1440) 1366 179 47 −87
∗∗∗∗ 1365 ± 15 190 ± 30 46 ± 10 −100 ± 35
D13(1520) 1516 123 40 −6
∗∗∗∗ 1510 ± 5 114 ± 10 35 ± 3 −10 ± 4
S11(1535) 1449 67 11 −46
∗∗∗∗ 1510 ± 20 170 ± 80 96 ± 63 15 ± 45
S11(1650) 1642 97 21 −73
∗∗∗∗ 1655 ± 15 165 ± 15 55 ± 15 −75 ± 25
D15(1675) 1657 132 24 −22
∗∗∗∗ 1660 ± 5 137 ± 12 29 ± 6 −30 ± 10
F15(1680) 1663 115 38 −28
∗∗∗∗ 1672 ± 8 122 ± 12 38 ± 6 −23 ± 7
D13(1700) not seen not seen not seen not seen
∗∗∗ 1680 ± 50 100 ± 50 6 ± 3 0 ± 50
P11(1710) 1721 185 5 −163
∗∗∗ 1720 ± 50 230 ± 150 10 ± 4 −175 ± 35
P13(1720) 1683 239 15 −64
∗∗∗∗ 1675 ± 15 195 ± 80 13 ± 7 −139 ± 51
P13(1900) 1846 180 7 −75
∗∗ not listed not listed not listed not listed
F15(2000) 1931 62 1.3 −272
∗∗ not listed not listed not listed not listed
D13(2080) 1834 210 13 −134
∗∗ 1950 ± 170 200 ± 80 27 ± 22 ∼0
S11(2090) 2065 223 16 −138
∗ 2150 ± 70 350 ± 100 40 ± 20 0 ± 90
P11(2100) 1869 238 7 −216
∗ 2120 ± 240 240 ± 80 14 ± 7 35 ± 35
D15(2200) 2188 238 21 −27
∗∗ 2100 ± 60 360 ± 80 20 ± 10 −90 ± 50

resonance P13(2204) in order to fit the scattering amplitude in
this channel.

For the isospin-3/2 resonances P31(1750) and P33(1920),
we extract widths of about 500 and 800 MeV, respectively,
both very much above the PDG values. On the other hand,
the residue and the imaginary part of the pole position for
P31(1750) comes out much below the PDG listings.

3. D waves

For D waves with isospin-1/2 and isospin-3/2, our reso-
nance parameters generally agree with the PDG values, except
that we do not find a pole corresponding to D13(1700).

4. F waves

Even though we cannot describe the F17 channel, our results
for the F -wave resonance parameters are in good agreement
with the PDG listings.

TABLE IV. Same as Table III, but for isospin-3/2 resonances.

N∗ Wp �p | r | θ (deg)

P33(1232) 1218 89 42 −35
∗∗∗∗ 1210 ± 1 100 ± 2 53 ± 2 −47 ± 1
P33(1600) 1509 236 35 −197
∗∗∗ 1600 ± 100 300 ± 100 17 ± 4 −150 ± 30
S31(1620) 1598 136 22 −99
∗∗∗∗ 1600 ± 10 118 ± 3 16 ± 3 −110 ± 20
D33(1700) 1609 133 9.5 −52
∗∗∗∗ 1650 ± 30 200 ± 40 13 ± 3 −20 ± 25
P31(1750) 1729 70 1 −123
∗ 1748 524 48 158
S31(1900) 1775 36 1 −166
∗∗ 1870 ± 40 180 ± 50 10 ± 3 −20 ± 40
F35(1905) 1771 190 11 −47
∗∗∗∗ 1830 ± 5 280 ± 20 25 ± 8 −50 ± 20
P31(1910) 1896 130 6 −118
∗∗∗∗ 1880 ± 30 200 ± 40 20 ± 4 −90 ± 30
P33(1920) 2149 400 38 −59
∗∗∗ 1900 ± 50 300 ± 100 24 ± 4 −150 ± 30
D35(1930) 1992 270 18 −75
∗∗∗ 1900 ± 50 265 ± 95 18 ± 6 −20 ± 40
D33(1940) 2070 267 7 −31
∗ 1900 ± 100 200 ± 60 24 ± 4 135 ± 45
F37(1950) 1860 201 43 −45
∗∗∗∗ 1880 ± 10 240 ± 20 50 ± 7 −33 ± 8
F35(2000) 2218 219 11 −36
∗∗ 2150 ± 100 350 ± 100 16 ± 5 150 ± 90
S31(2150) 2012 148 6 −155
∗ 2140 ± 80 200 ± 80 7 ± 2 −60 ± 90

V. SUMMARY AND CONCLUSION

In earlier work, we constructed a meson-exchange model
for the πN interaction which describes the πN elastic
scattering data up to a pion laboratory energy of 400 MeV
[10,14]. Our approach was based on a three-dimensional
reduction scheme of the Bethe-Salpeter equation for a model
Lagrangian involving π,N,�, σ , and ρ fields. This model
was later extended to energies up to 2 GeV in the S11

channel by explicitly including the ηN channel and several
higher resonances [18]. The influence of the 2π channels
was accounted for by adding a phenomenological term in the
resonance propagator. Good agreement was obtained with the
data from the πN → ηN reaction and pion photoproduction.

In the present work, the hadron-exchange coupled-channels
model has been further extended to energies of 2 GeV
and partial wave channels including the F waves. We have
assumed that all the resonances observed in πN scattering
are fundamentally three-quark states dressed by the coupling
to the meson-nucleon continuum. Using such a scheme,
we achieved a very good description of the πN elastic
scattering amplitudes in all the partial waves and over the
energy range up to 2 GeV, except for the F17 channel.
However, the fit to the data requires four additional resonances
with very large widths, S11(1878),D13(2152), P13(2204), and
P31(2100), which are not listed by the PDG [35]. The first of
these resonances, S11(1878), was also found in our previous

035206-10



NUCLEON RESONANCES IN πN SCATTERING UP TO . . . PHYSICAL REVIEW C 76, 035206 (2007)

work [18], where a self-consistent analysis of pion scattering
and pion photoproduction within a coupled-channels dynami-
cal model was carried out for the S11 channel. The other three
resonances, all with large widths, might be the artifacts of
the oversimplification of our background contributions where,
for example, the u-channel resonance excitations have been
consistently neglected.

We have developed a scheme to extract the parameters of
overlapping resonances in a completely symmetrical way with
respect to the resonances. This scheme allows us to include
the dressing of each particular resonance due to all the other
resonances in the same channel. We have chosen to define
the resonance energy such that the effect of vertex dressing
is not included in the self-energy of a resonance, contrary to
many previous investigations. Furthermore, the pole positions
and the residues of the scattering amplitudes at the pole have
been determined by means of the speed-plot technique. The
comparison of the extracted resonance parameters with the
PDG values indicates a qualitative agreement in general, but
considerable discrepancies occur in some cases, particularly

for the widths and residues of some higher resonances. Further
investigations will be necessary to understand these differences
in detail.

The πN model developed in this work will be used to study
the meson cloud effects on the electromagnetic transition form
factors of the higher resonances. It will also allow us to extract
the helicity amplitudes of all resonances in a more consistent
and reliable way.
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