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Strange dibaryon resonance in the K̄ N N-πY N system
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Three-body resonances in the K̄NN system have been studied within a framework of the K̄NN -πYN

coupled-channel Faddeev equation. By solving the three-body equation, the energy dependence of the resonant
K̄N amplitude is fully taken into account. The S-matrix pole has been investigated from the eigenvalue of the
kernel with the analytic continuation of the scattering amplitude on the unphysical Riemann sheet. The K̄N

interaction is constructed from the leading order term of the chiral Lagrangian using relativistic kinematics. The
�(1405) resonance is dynamically generated in this model, where the K̄N interaction parameters are fitted to the
data of scattering length. As a result we find a three-body resonance of the strange dibaryon system with binding
energy B ∼ 79 MeV and width � ∼ 74 MeV. The energy of the three-body resonance is found to be sensitive to
the model of the I = 0 K̄N interaction.
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I. INTRODUCTION

The analysis of the kaonic atoms [1] has revealed an
attractive K̄-nucleus interaction. Although the strength of
the attraction depends on the parametrization of the density
dependence of the optical potential [1] and the theoretical study
of the K̄ optical potential suggests a rather shallow potential
[2], there has been a great interest in the possibilities of
K̄-nucleus bound states in recent years. Akaishi and Yamazaki
[3,4] studied the kaon bound states in light nuclei and found
deeply bound kaonic states, for example, B ∼ 100 MeV for
3
K̄

H. In their study, the kaonic nuclear states were investigated
by using the K̄ optical potential, which is constructed by
folding the g matrix with a trial nuclear density. The potential
model of the K̄N -π� interaction is determined to reproduce
the �(1405) and the scattering length. The kaonic nuclear
states are further studied by using a method of antisymmetrized
molecular dynamics [5] using the K̄N g matrix.

Among the simplest K̄ nucleus state, the K−pp state,
which has strangeness S = −1, total angular momentum
and parity Jπ = 0−, and isospin I = 1/2 dibaryon state, is
expected to have the largest component of the I = 0 K̄N . An
experimental signal of the K−pp bound state is reported by the
FINUDA Collaboration from the analysis of the invariant mass
distribution of �-p in the K− absorption reaction on nuclei [6].
The reported central value of the binding energy B and the
width � are (B,�) = (115, 67) MeV, which is below the π�N

threshold energy. These data may be compared with the
predicted values (B,�) = (48, 61) MeV in Ref. [4]. However,
it has been pointed out that the data can be understood by the
two-nucleon absorption of K− in nuclei together with the final
state interaction of the outgoing baryons [7].

In the attractive interaction of kaon in nuclei, the resonance
�(1405) in the s-wave and I = 0 channel K̄N scattering state
plays an essential role. The energy of the �(1405) is below
the K̄N threshold and strongly couples with the π� state.
Although the kaonic nuclear states have been studied so far
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by using the K̄N g matrix or optical potential, it might be
very important to examine the full dynamical calculation of
K̄N -π� system by taking into account the energy dependence
of the resonance t matrix and the coupling with the K̄N -π�

channel explicitly. Such a theoretical study may be possible in
the simplest kaonic nuclei with baryon number B = 2 system.
In this work, we study the strange dibaryon system by taking
into account the three-body dynamics using the K̄NN -π�N -
π�N (K̄NN -πYN ) coupled-channel Faddeev equation with
relativistic and nonrelativistic kinematics.

Methods to investigate resonances in the three-body system
have been developed in the studies of the three-neutron [8,9],
πNN dibaryon [10,11] and �NN hypernuclei [10,12,13].
In this work, we employ a method started by Glöckle [8]
and Möller [9] and developed by Matsuyama and Yazaki [10]
and Afnan, Pearce, and Gibson [12,13] to find a pole of the
S matrix in the unphysical energy plane from the eigenvalue
of the kernel of the Faddeev equation. To analytically continue
the scattering amplitude into the unphysical sheet, the path
of the momentum integral must be carefully deformed in the
complex plane to avoid possible singularities.

The most important interaction for the study of the strange
dibaryon system is for the I = 0 K̄N states. The internal
structure of the �(1405) has been a long standing issue. The
chiral Lagrangian approach [14–16] can describe well the
low energy K̄N reaction with the meson-baryon dynamics. A
genuine q3 picture of the �(1405) coupled with meson-baryon
[17] may not yet be excluded. Though previous studies of
the K̄NN system used phenomenological models of the K̄N

potentials, we use s-wave meson-baryon coupled-channel
potentials guided by the lowest order chiral Lagrangian.
With this model, the strength of the potentials and the
relative strength of the potentials among various meson-baryon
channels are not parameters but are determined from the SU(3)
structure of the chiral Lagrangian. In this model, the �(1405)
is an “unstable bound state,” whose pole on the unphysical
sheet will become the bound state of K̄N when the coupling
between the K̄N and the πY is turned off. We examine a
relativistic model as well as a nonrelativistic model to account
for the relativistic energy of pion in the πYN state.
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We briefly explain our K̄NN -πYN coupled-channel equa-
tions and the procedure to search for the three-body resonance
in Sec. II. The model of the two-body interactions used in
this work is explained in Sec. III. We then report our results
on the K̄NN dibaryon resonance in Sec. IV. This work is
the extension of the early version of our analysis reported
in Ref. [18]. Recently Shevchenko et al. [19] performed a
similar study of the K̄NN system using the Faddeev equation
starting from the phenomenological K̄N interaction within a
nonrelativistic framework. The comparison of our results with
theirs will be discussed in Sec. IV.

II. COUPLED-CHANNEL FADDEEV EQUATION AND
RESONANCE POLE

We start from the Alt-Grassberger-Sandhas (AGS) equation
[20] for the three-body scattering problem. The operators Ui,j

of the three-body scattering satisfy the AGS equation

Ui,j = (1 − δi,j )G−1
0 +

∑
n�=i

tnG0Un,j . (1)

Here we label the pair of particles j, k by the spectator particle
i = 1, 2, 3. The two-body t matrix ti of particles j, k with the
spectator particle i is given by the solution of the Lippmann-
Schwinger equation

ti = vi + viG0ti . (2)

Here G0 = 1/(W − H0 + iε) is the free Green’s function of
the three particles, and W is the total energy of the three-body
system.

When the two-body interactions vi are given in separable
form with the vertex form factor |gi〉 and the coupling constant
γi as

vi = |gi〉γi〈gi |, (3)

the AGS equation (1) is written in the form

Xi,j ( �pi, �pj ,W ) = (1 − δi,j )Zi,j ( �pi, �pj ,W )

+
∑
n�=i

∫
d �pnZi,n( �pi, �pn,W )

× τn(W )Xn,j ( �pn, �pj ,W ). (4)

The amplitude Xi,j is defined by the matrix element of Ui,j

between state vectors G0| �pi, gi〉 as

Xi,j ( �pi, �pj ,W ) = 〈 �pi, gi |G0Ui,jG0| �pj , gj 〉. (5)

The state vector | �pi, gi〉 represents a plane wave state of the
spectator i and the state vector |gi〉 of the interacting pair.

The driving term Zi,j of Eq. (4) shown in Fig. 1(a) is given
by the particle exchange mechanism defined as

Zi,j ( �pi, �pj ,W ) = 〈 �pi, gi |G0| �pj , gj 〉 (6)

= g∗(�qi)g(�qj )

W − Ei( �pi) − Ej ( �pj ) − Ek( �pk)
. (7)

Here the momentum of the exchanged particle k( �= i, j ) is
given as �pk = − �pi − �pj , and g(�qi) is the vertex form factor of
the two-body interaction g(�qi) = 〈gi |�qi〉. The energy Ei( �pi) is

FIG. 1. Graphical representation of (a) one particle exchange
interaction Zi,j ( �pi, �pj ,W ) and (b) two-body t matrix τi(W ). The
relative momentum of the interacting particles is given by �qi for
spectator particle i.

given by Ei( �pi) = mi + �p2
i /2mi for the nonrelativistic model

and Ei( �pi) =
√

m2
i + �p2

i for the relativistic model. The relative

momentum is given by �qi = (mk �pj − mj �pk)/(mj + mk) for
the nonrelativistic model, while we define qi = |�qi | for the
relativistic model as

qi =

√√√√(
W 2

i + m2
j − m2

k

2Wi

)2

− m2
j , (8)

Wi =
√

(Ej ( �pj ) + Ek( �pk))2 − �p2
i . (9)

The two-body t matrix can be solved for the separable
interaction as

ti = |gi〉τi(W )〈gi |. (10)

Here the “isobar” propagator τi , illustrated in Fig. 1(b), is given
as

τi(W ) =
[

1/γi −
∫

d �qi

|gi(�qi)|2
W − Ei( �pi) − Ejk( �pi, �qi)

]−1

.

(11)

The two-body t matrix depends on the energy Ei( �pi) of
the spectator particle. Here Ejk is the energy of the in-
teracting pair given as Ejk( �pi, �qi) = mj + mk + �p2

i /(mj +
mk) + �q2

i /µi for the nonrelativistic model, while Ejk( �pi, �qi) =√
(Ej (�qi) + Ek(�qi))2 + �p2

i for the relativistic model. The
reduced mass is defined as µi = mjmk/(mj + mk).

Following the standard method of angular momentum
expansion [21], the AGS equation reduces to the following
coupled integral equation by keeping only s-wave states:

Xi,j (pi, pj ,W ) = Zi,j (pi, pj ,W ) +
∑

n

∫
dpnp

2
n

×Ki,n(pi, pn,W )Xn,j (pn, pj ,W ). (12)

Here we used a simplified notation for the kernel K = Zτ ,
which can be written as
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Ki,n(pi, pn,W ) = 2π

∫
d(p̂i · p̂n)

g∗(qi)g(qn)

W − Ei(pi) − Ej (pn) − Ek( �pi + �pn)
τn(W ). (13)

The formulas given above are valid for the spinless and
distinguishable particles without channel coupling among the
Fock-space vectors. In our K̄NN resonance problem, we have
included the following K̄NN and πYN states:

|a〉 = |N1, N2, K̄3〉, (14)

|b〉 = |N1, Y2, π3〉, (15)

|c〉 = |Y1, N2, π3〉, (16)

with Yi is �i or �i . After antisymmetrizing the amplitude for
identical particles of nucleons [11], we obtain the following
forms of the coupled AGS equations:




XYK,YK

XYπ ,YK

Xd,YK

XN∗,YK


 =




ZYK,YK

0
Zd,YK

0


 +




−ZYK,YK
τYK,YK

−ZYK,YK
τYK,Yπ

2ZYK,dτd,d 0

0 0 0 −ZYπ ,N∗τN∗,N∗

Zd,YK
τYK,YK

Zd,YK
τYK,Yπ

0 0

−ZN∗,Yπ
τYπ ,YK

−ZN∗,Yπ
τYπ ,Yπ

0 0







XYK,YK

XYπ ,YK

Xd,YK

XN∗,YK


 . (17)

Here, we have suppressed the spin-isospin quantum numbers,
the spectator momentum pj , and the total energy of the
three-body system W in Z,X, and τ for simplicity. The
concise notation of YK, Yπ , d, and N∗ represents the “isobars”
and their decay channels. The decay channels of isobars
YK, Yπ , d, and N∗ are K̄N (I = 0, 1), π�(I = 0, 1) and
π�(I = 1), NN(I = 1) and πN (I = 1/2, 3/2), respectively.
Here, I is the isobar isospin. Those indices uniquely specify
the three-body states of X and Z except for N∗ showing �N∗
and �N∗. Therefore we have a nine-channel coupled equation
of Eq. (17) for the spin singlet, s-wave three-body system.
The explicit form of Eq. (7) when we include spin-isospin is
summarized in the Appendix.

The dominant Fock space component is expected to be
|K̄NN〉, and therefore the most important amplitudes are
XYK,YK

and Xd,YK
. They couple to each other through the kaon

exchange ZYK,YK
and nucleon exchange ZYK,d mechanisms.

Notice, however, that the πYN component is also implicitly
included in τYK,YK

when we solve the two-body K̄N -πY

coupled-channel equations. The πYN components, XYπ,YK

and XN∗,YK
, couple with the K̄NN components through the

pion exchange mechanism ZN∗,Yπ
and the πN and πY isobars

τN∗,N∗ , τYπ ,Y . The pion exchange mechanism may play an
important role in the width of the resonance. In this work,
we have not included the weak YN interaction. It was found
in Ref. [19] that the YN interaction plays a rather minor role
in this strange dibaryon system.

To find the resonance energy of the three-body system
using the AGS equation of Eq. (17), we follow the method
used in Refs. [8–10,12,13]. The AGS equation of Eq. (13) is
a Fredholm-type integral equation with the kernel K = Zτ .
Using the eigenvalue ηa(W ) and the eigenfunction |φa(W )〉 of
the kernel for given energy W ,

Zτ |φa(W )〉 = ηa(W )|φa(W )〉, (18)

the scattering amplitude X can be written as

X =
∑

a

|φa(W )〉〈φa(W )|Z
1 − ηa(W )

. (19)

At the energy W = Wp where ηa(Wp) = 1, the amplitude has
a pole, and therefore Wp gives the bound state or resonance
energy.

Since a resonance pole appears on the unphysical energy
Riemann sheet, we need analytic continuation of the scat-
tering amplitude. We use here the nonrelativistic model to
explain a method of analytic continuation, which is based on
Refs. [9,10]. At first we examine the singularities of the kernel
of Eq. (13). Above the threshold energy of the three-body
breakup W > mi + mj + mk,Z(pi, pn,W ) has logarithmic
singularities. The branch points appear at pn = ±pZ1,2 , where

pZ1 = −µj

mk

pi +
√

2µjWth − µj

ηj

p2
i , (20)

pZ2 = +µj

mk

pi +
√

2µjWth − µj

ηj

p2
i , (21)

with

µj = mimk

mi + mk

,

ηj = mj (mi + mk)

mi + mj + mk

,

Wth = W − mi − mj − mk.

For given pi > 0, the cuts run from pZ1 to pZ2 above the
positive real axis of the complex pn plane and from −pZ1 to
−pZ2 below the negative real axis as shown in Fig. 2, while
the integration of momentum pn in Eq. (13) is along the real
positive axis.
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FIG. 2. Singularities of the one particle exchange interaction
Z(pi, pn, W ) in the complex pn plane at W = E + iε and the
real pi .

Let us consider the case when W has a negative imaginary
part. For given pi > 0, the cut from pZ1 to pZ2 moves into the
fourth quadrant across the integration contour of pn. Assuming
the integrand of Eq. (12) is an analytic function around real
positive pn, one can perform an analytic continuation of the
amplitudes by deforming the integration contour along the
logarithmic singularity as shown in Fig. 3, and then we obtain
amplitudes on the unphysical Riemann sheet.

In principle it might be possible to solve the AGS equation
keeping the momentum variables real and taking into account
the discontinuity across the cut. The moving logarithmic sin-
gularities depending on pi make it difficult to solve the integral
equation. To overcome this problem, we deform the integration
contour of pi, pn, into the fourth quadrant of the complex
momentum plane so that we take into account the contribution
of the cuts. As an example of our K̄NN -πYN problem, we
choose the integration contour of pn as shown in the solid
line in Fig. 4. Here we take the energy W = 10 − i35 +
mπ + m� + mN MeV, which is below the mass of K̄NN and
above the πYN . The shaded region in Fig. 4 shows the cuts
of Z for the pion exchange mechanism. The cuts become
“forbidden regions” because the position of the cuts depends
on pi , which runs the same integration contour as pn. In our

FIG. 3. Integration contour C and the singularity of Z at W =
E − i�/2 and real value of pi .

FIG. 4. Logarithmic singularities of the π exchange mechanism
Z(pi, pn, Z) at Wth = 10 − i35 MeV in the complex pn plane. C is
the integration contour of pn and pi .

numerical calculation, we studied all the forbidden regions
for π,N, and K exchange mechanism and determined the
integration contour. With the integration contour C in Fig. 4,
we choose the physical sheet of K̄NN .

The singularities of the isobar propagator τ (W ) arises from
the three-body Green’s function in the integrand of τ . The poles

are at qn = ±
√

2µjWth − µj

ηj
p2

i . Since qs = (pZ1 + pZ2 )/2,

we can analytically continue it into the same unphysical sheet
as the case in Z as long as we keep the same deformed contour
as the one used in Z. Another singularity we have to worry
about is that due to the two-body resonance. Since our K̄N -π�

system has the two-body resonance �(1405), the cut starts
from the two-body resonance energy in the complex energy
plane. To examine this, we write the approximate energy
dependence of the τ as

τi(W ) ∼ 1

W − p2
N

2ηN
− E�∗ − mN

. (22)

Here pN and mN are the momentum and mass of the spectator
nucleon. The reduced mass of the spectator nucleon with the
isobar pair K̄N or π� is denoted as ηN, and E�∗ is the pole

energy of �(1405). At W = p2
N

2ηN
+ E�∗ + mN with pN on the

contour C in Fig. 5(b), the two-body t matrix has a singularity,
which is plotted as a solid line in Fig. 5(a). We illustrate the
typical trajectories of the three-body resonance pole W = Wp

as curves A and B in Fig. 5. If the pole trajectories A and

FIG. 5. Singularities due to the three-body resonance and the
�(1405) in (a) the complex energy plane and (b) the momentum
plane.
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B intercept the two-body N�(1405) cut, then the analytic
continuation to the N�(1405) unphysical energy sheet must
be examined. The same situation from the pN plane is shown
in Fig. 5(b). The momentum p∗ corresponding to the energy
Wp of the three-body resonance is determined by

p∗ = ±√
2ηN (Wp − E�∗ − mN ). (23)

If p∗ intercepts contour C, we have to take care of the analytic
continuation of the N�(1405) energy sheet. As will be seen
in Sec. IV, the trajectories of the three-body resonance in our
calculation follow line A of Fig. 5(a) and do not intercept the
singularity of the two-body resonance.

III. MODEL OF THE TWO-BODY INTERACTIONS

We take into account the K̄N interactions in Jπ =
1/2−, I = 0 and I = 1 states; the πN interactions in Jπ =
1/2−, I = 1/2 and 3/2 states; and the NN interaction in
I = 0, 1S0 state. Our s-wave meson-baryon interaction is
guided by the leading order effective chiral Lagrangian for the
octet baryon ψB and the pseudoscalar meson φ fields given as

Lint = i

8F 2
π

tr(ψ̄Bγ µ[[φ, ∂µφ], ψB]). (24)

The meson-baryon potential derived from the chiral
Lagrangian can be written as

〈 �p′, β|VBM | �p, α〉 = −Cβ,α

1

(2π )38F 2
π

× mβ + mα√
4Eβ( �p′)Eα( �p)

gβ( �p′)gα( �p). (25)

Here �p and �p′ are the momentum of the meson in the initial
state α and the final state β. The strength of the potential at
zero momentum is not an arbitrary constant but is determined
by the pion decay constant Fπ . The relative strength between
the meson-baryon states is controlled by the constants Cβ,α

which are basically determined by the SU(3) flavor structure
of the chiral Lagrangian. The parameter of our model is the
cutoff � of the phenomenologically introduced vertex function
gα( �p) = �4

α/( �p2 + �2
α)2.

The most important interaction for the study of the K̄NN

system is the I = 0 K̄N interaction. We describe the K̄N

interaction by the coupled-channel model of the K̄N and
π� states. The constants Cβ,α for this channel are given as
CK̄N-K̄N = 6, CK̄N-π� = −√

6, and Cπ�-π� = 8. The cutoff
� is determined by fitting the scattering length aI=0

K̄N
=

−1.70 + i0.68 fm of Ref. [22]. The values of � are around
1 GeV and are given as model (a) in Tables I and II for
the nonrelativistic and the relativistic models. In general, the
form factors of the relativistic models are hard compared
with those of the nonrelativistic models because of the weak
relativistic kinetic energy. We found a resonance pole at
W = 1420 − i30 MeV for the nonrelativistic and relativistic
models. The relativistic kinematics might be important in
describing the πY channel because of the small pion mass.
We choose this model (a) as a standard parameter of the K̄N

interaction.

TABLE I. Cutoff parameters, scattering lengths, and resonance
poles of the relativistic models of the I = 0, K̄N -π� interaction.

Model K̄N

(MeV)
π�

(MeV)
Scattering
length (fm)

Resonance
energy (MeV)

(a) 1095 1450 −1.70 + i0.68 1419.8 − i29.4
(b) 1105 1550 −1.60 + i0.68 1422.2 − i33.7
(c) 1085 1350 −1.80 + i0.68 1418.5 − i25.0
(d) 1120 1340 −1.70 + i0.59 1414.6 − i29.4
(e) 1070 1540 −1.70 + i0.78 1424.3 − i28.3
(f) 1160 1100 −1.72 + i0.44 1405.8 − i25.2

The K̄N scattering lengths are not very well constrained
from the data. The ranges of the K̄N scattering lengths
are studied within the chiral unitary model in Ref. [23]. In
this work, we simply examined models with the scattering
length aI=0

K̄N
= (−1.70 ± 0.10) + i(0.68 ± 0.10) fm in order

to examine the sensitivity of the energy of the three-body
resonance on the input model of the two-body interaction.
The cutoff �’s for those models are given as models (b)–(e)
of Tables I and II. The values of the resonance energy are
about 1415 ∼ 1425 MeV, and the width 50 ∼ 70 MeV, which
are close to the values of the chiral model in Ref. [16].
One can notice that there is a correlation between the real
(imaginary) part of the pole energy of the �(1405) and the
imaginary (real) part of the scattering length. Those resonance
energies are slightly larger than the pole energy reported in
Ref. [24]. Therefore as a last model, model (f) reproduces
the deeper resonance energy 1406 − i25 MeV of Ref. [24].
The scattering length of this model is −1.72 + i0.44 fm,
which is, however, somewhat different from the value −1.54 +
i0.74 fm in Ref. [24].

The I = 1 K̄N interaction is described by the
K̄N -π�-π� coupled-channel model. The coupling constants
Cβ,α are CK̄N-K̄N = 2, CK̄N-π� = −2, CK̄N-π� = −√

6,

Cπ�-π� = 4, and Cπ�-π� = Cπ�-π� = 0. The cutoff �’s are
determined to fit the imaginary part of the scattering length
of Ref. [22], which are given as model (A) in Tables III
and IV for the nonrelativistic and relativistic models. The real
part of the scattering length of those models is larger than
aI=1

K̄N
= 0.37 + i0.60 fm of Ref. [22]. The K−p scattering

length predicted from model (aA), which is model (a) for
I = 0 and model (A) for I = 1 interactions, is between the
central values of the two kaonic hydrogen data [25–27].
To study the sensitivity of the models of the I = 1 K̄N

TABLE II. Same as Table I, but for the nonrelativistic models.

Model K̄N

(MeV)
π�

(MeV)
Scattering
length (fm)

Resonance
energy (MeV)

(a) 946 988 −1.70 + i0.68 1420.1 − i30.1
(b) 954 1035 −1.60 + i0.68 1422.4 − i34.7
(c) 940 944 −1.80 + i0.68 1418.7 − i26.0
(d) 968 933 −1.70 + i0.58 1414.3 − i30.5
(e) 927 1031 −1.70 + i0.78 1424.7 − i29.0
(f) 1000 800 −1.72 + i0.43 1404.8 − i25.5
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FIG. 6. Total cross section of (a) K−p → K−p, (b) K−p → π+�−, (c) K−p → π−�+, (d) K−p → π 0�0, and (e) K−p → π 0�

reactions in the relativistic model. Data are from Refs. [29–33].

interaction to the resonance energy of the K−pp system,
we constructed model (B) given in Tables III and IV. A
similar model of K̄N interaction is developed to study K−d

scattering [28]. The range of the vertex form factor found in
in Ref. [28], which is a monopole form factor with 880 MeV
cutoff mass, is comparable to ours.

The total cross sections of K−p reactions predicted from
our models (aA), (aB), and (fA) are shown in Fig. 6 together
with the data [29–33]. The models (aA) and (aB) describe well
the K−p → K−p [Fig. 6(a)], K−p → π+�− [Fig. 6(b)],
and K−p → π−�+ [Fig. 6(c)] reactions, where both I = 0
and I = 1 interactions contribute to the cross section. The
models of I = 0 and I = 1 can be tested from K−p → π0�0

[Fig. 6(d)] and K−p → π0� [Fig. 6(e)] reactions, where
models (a) and (A)/(B) describe the cross sections well. The
model (fA) tends to give smaller cross sections. It is noticed,
however, as we will see, that the resonance energy of the K−pp

system is more sensitive to the I = 0 K̄N interaction and less
sensitive to I = 1 interactions, while both I = 0 and I = 1
interactions are equally important in describing the K−p cross
sections and kaonic hydrogen data.

TABLE III. Cutoff parameters, scattering lengths of the rela-
tivistic models of the I = 1, K̄N -πY interaction.

Model K̄N (MeV) π� (MeV) π� (MeV) Scattering
length (fm)

(A) 1100 850 1250 0.68 + i0.60
(B) 950 800 1250 0.65 + i0.46

The form of the s-wave πN interactions is taken as
Eq. (25). The constant Cα,β is 4 for I = 1/2 and −2 for I =
3/2 states. The parameters of the potentials are determined by
fitting the scattering length and the low energy phase shifts. For
the I = 1/2 state, the strength of the potential is modified as
λCβ,α by introducing a phenomenological factor λ to describe
the data of the scattering length (0.1788 ± 0.0050)m−1

π [34]
and the phase shifts [35]. The fitted parameters λ and � are
shown in Table V together with the scattering length calculated
using the models. The models describe well the S11 phase shifts
up to 1.2 GeV as shown in Fig. 7.

For the I = 3/2 πN scattering, the πN potential is con-
structed so as to reproduce the scattering length (−0.0927 ±
0.0093)m−1

π [34] and the S31 partial wave phase shifts data.
Here we introduced a modified dipole form factor as

g( �p) = �4

( �p2 + �2)2
× (1 + a �p2). (26)

The parameters of the model are � and a for the form factor
and the strength parameter λ. The obtained parameters are
summarized in Table VI. The relativistic model can describe
well the phase shifts up to 1.2 GeV as shown in Fig. 7; however,

TABLE IV. Same as Table III, but for the nonrelativistic models.

Model K̄N (MeV) π� (MeV) π� (MeV) Scattering
length (fm)

(A) 920 960 640 0.72 + i0.59
(B) 800 940 660 0.68 + i0.45
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FIG. 7. Phase shift of the πN

scattering for (a) S11 and (b) S31

partial waves. Data are from Ref.
[35].

the nonrelativistic model starts to deviate from the data at
around 1.1 GeV.

We used a Yamaguchi-type separable interaction for the
nucleon-nucleon potential. To take into account the long range
attractive interaction and the short range repulsion of the
two-nucleon interaction, we used a two-term separable po-
tential,

〈 �p′|VBB | �p〉 = CRgR( �p′)gR( �p) − CAgA( �p′)gA( �p). (27)

Here CR (CA) is the coupling strength of the repulsive (attrac-
tive) potential. gR( �p) [gA( �p)] is the form factor, whose form is
given as gR( �p) = �2

R/( �p2 + �2
R) [gA( �p) = �2

A/( �p2 + �2
A)],

where � is a cutoff of the nucleon-nucleon potential. The
adjustable parameters in our nucleon-nucleon potential are
determined by fits to the data of the 1S0 phase shifts [36].
The best-fit parameters are summarized in Table VII. The low
energy phase shifts of the 1S0 state is shown in Fig. 8.

IV. RESULTS AND DISCUSSION

The dibaryon resonance with Jπ = 0−, S = −1, I = 1/2
is studied using a formalism of the Faddeev equation as
explained in Sec. II. We assume all the angular momen-
tum to be in an s-wave state and the spin singlet state
SBB = 0 for the two-baryon states. We have included the
dominant K̄NN, π�N, and π�N Fock-space components,
whose isospin wave functions are [K̄ ⊗ [NN ]I=1]I=1/2, [π ⊗
[�N ]I=1/2,3/2]I=1/2, and [π ⊗ [�N ]I=1/2]I=1/2. An approxi-
mation within this model is that the weak YN interaction is
not included.

Let us start to examine the three-body resonance energy
by taking into account only the K̄N interactions v

I=0,1
K̄N-K̄N

,

neglecting the πYN Fock space. In this case, the bound state
pole is expected to lie on the physical Riemann sheet below
mK + 2mN if the K̄N attraction is strong enough. Therefore

TABLE V. Parameters and scattering lengths for the relativistic
and nonrelativistic models of the I = 1/2, πN interaction.

Model λ �7 (MeV) Scattering length

Relativistic 0.90 800 0.175m−1
π

Nonrelativistic 0.85 800 0.177m−1
π

it is not necessary to use the analytic continuation of the
amplitude with the deformed contour discussed in Sec. II, so
we simply use the integral over the momentum pi in the real
axis. The results are shown in Fig. 9 marked by a and a′ for
the relativistic and nonrelativistic models, respectively. Here
we use the standard parameters (aA) of the K̄N interaction
with nonrelativistic and relativistic kinematics. The binding
energies are about 18 MeV. The K̄N interaction included in τ

and Z is strong enough to bind the K̄NN system, where the
I = 0 K̄N interaction plays a dominant role. We then take into
account the NN interaction. Then the binding energy increases
farther to 25.1 MeV (22.8 MeV) shown as b (b′) for relativistic
(nonrelativistic) model. Notice that if we neglect the repulsive
component of the NN interaction, we obtain a much more
deeply bound state.

In the next step, we gradually include the πYN interactions,
while the pion-exchange Z diagram is not yet included. To
do this, we multiply by factor x the coupling constants Cα,β

of the K̄N -πY and πY -πY interactions as xCα,β . When the
parameter is zero, x = 0, the πY is disconnected from K̄N ;
and when it takes the value 1, x = 1, we recover the full
model. By varying the parameter x from 0 to 1, we can follow
the trajectory of the resonance pole from the bound state pole.
Now the K̄NN bound state decays into the πYN channel, and
the bound state pole moves into the unphysical sheet. Since
the K̄NN bound state was found above the π�N threshold,
the resonance pole may be on the πYN unphysical and K̄NN

physical Riemann sheet, which we discussed in Sec. II. The
results of the pole trajectories are shown by the solid and
dashed curves in Fig. 9 corresponding to the relativistic and
the nonrelativistic models. Increasing the coupling to the πYN

channel causes the width as well as the binding energy of the
resonance to increase. For larger binding energy Re(Wpole −
WKNN ) < −60 MeV, the width starts to decrease because of

TABLE VI. Parameters and scattering lengths for the relativistic
and nonrelativistic model of the I = 3/2, πN interaction.

Model λ � (MeV) a (fm)2 Scattering
length

Relativistic 2.7 618 0.50 −0.095m−1
π

Nonrelativistic 3.0 628 0.30 −0.101m−1
π
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TABLE VII. Our parameters of the relativistic and nonrelativistic
models for NN scattering.

Model �R (MeV) �A (MeV) CR

(MeV fm3)
CA

(MeV fm3)

Relativistic 1144 333 5.33 5.61
Nonrelativistic 1215 352 5.05 5.84

the decreasing phase space for the decay into the π�N state.
The pole position is at −82 − i29 MeV (−91 − 28i) for the
relativistic (nonrelativistic) model shown as c(c′). It is noticed
that the numerical method used to follow the pole trajectories
helps us determine whether we encounter singularities or not.
As an example, the pole of the three-body resonance is shown
by the solid line in Fig. 10 for 0 < x < 1. The pole of the
�(1405) is also shown by the dashed curve. The trajectory of
the K̄NN resonance is similar to case A in Fig. 5, and the
integration contour does not intercept the singularity arising
from the two-body resonance �(1405).

Finally, we include the π exchange mechanism in Z and
πN two-body scattering terms in τ , which adds another
mechanism for the decay of the K̄NN into πYN and
is important for the width of the three-body resonance.
The final results of the K̄NN -πYN resonance poles are
denoted by d and d ′ in Fig. 9. This mechanism increases
the width of the three-body resonance by about 14 MeV,
while the effect on the real part is small. The cancellation
between the attractive I = 1/2 πN interaction and the
repulsive I = 3/2 πN interaction may lead to small
effects on the real part of the resonance energy. The
effects of the π�N channel are small and increase the
binding energy and half-width at most by 1 MeV. The pole
position of the three-body resonance is W = M − i�/2 =
2mN + mK − 79.3 − i37.1 MeV (2mN + mK − 92.2 −
i35.4 MeV) for the relativistic (nonrelativistic) model, shown
as d and d ′.

The model dependence of our results on the three-body
resonance is summarized in Tables VIII and IX. The K̄NN -
πYN resonance pole is located on the K̄NN physical and
πYN unphysical sheet with the binding energy B ∼ 60–
95 MeV and the width � ∼ 45–80 MeV, using relativistic
models. All of our models predict resonance energies above

TABLE VIII. Pole energy (Wpole − mK − 2mN ) of the three-
body resonance using relativistic models. The listed pole energies
in MeV can be related to binding energy B and the width � as
Wpole − mK − 2mN = −B − i�/2.

Model (A) Model (B)

(a) −79.3 − i37.1 −79.3 − i37.3
(b) −93.3 − i27.4 −93.3 − i27.6
(c) −57.2 − i38.6 −56.9 − i38.6
(d) −72.4 − i31.7 −72.2 − i31.9
(e) −87.1 − i40.8 −87.1 − i41.0
(f) −63.3 − i22.2 −63.2 − i22.3

TABLE IX. Same as Table VIII, but for the nonrelativistic models.

Model (A) Model (B)

(a) −92.2 − i35.4 −92.3 − i35.6
(b) −101.6 − i20.7 −101.6 − i20.7
(c) −72.7 − i53.9 −72.5 − i54.9
(d) −83.0 − i33.3 −83.0 − i33.6
(e) −98.1 − i33.2 −98.2 − i33.3
(f) −66.5 − i24.4 −66.3 − i24.4

the π�N threshold. The relatively large model dependence
of our results is due to the uncertainty in the models of
the I = 0, K̄N -π� interaction. Comparing the results of
model (A) with model (B), we can see the three-body pole
position is almost independent of the parameters of the I = 1,

K̄N -πY interaction. By varying the real (imaginary) part of
the fitted scattering length by ±0.1 fm, the binding energy
of the three-body resonance is affected by ∼ ±14(8) MeV.
Following another way to construct the model, the parameters
of model (f) are fitted to the pole energy of �(1405). This
model predicts the scattering length −1.72 + i0.44 fm. The
energy of the three-body resonance is found to be B = 63 MeV
with a rather small width, � = 44 MeV, compared with models
(a)–(e), which can already be seen in the small imaginary part
of the scattering length in model (f).

Let us briefly compare our results with those of the other
theoretical studies of the K−pp resonance, which use a
nonrelativistic approach. Our resonance has a deeper binding
energy and a similar width compared with those in Ref. [4].
However, it is not straightforward to compare our results
with the pole energy of Ref. [4] because of the differences
in the methods used to obtain the three-body resonance
energy and the model for the K̄N interaction. Their K̄N

potential is stronger and has a shorter range than ours. Recently
Shevchenko, Gal, and Mares [19] studied K−pp system using
the nonrelativistic coupled-channel Faddeev equation. Though
the details of their method is not described in Ref. [19], it
seems their approach is quite similar to our present study.
They employed a phenomenological K̄N potential model and
reported B ∼ 55–70 MeV and � ∼ 95–110 MeV. Their result
is consistent with our results of the nonrelativistic model.
Specially our result using model (c) gives a quite similar
resonance energy and width.

FIG. 8. Phase shifts of NN scattering for the 1S0 state. The phase
shifts calculated from the model of Ref. [36] are shown in triangles.
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FIG. 9. Pole trajectories of the K̄NN -πYN scattering amplitude
for the J π = 0− and I = 1/2 state. Filled circles (filled triangles)
show the results of the relativistic (nonrelativistic) model (aA) for
different steps in the analysis, as explained in the text. Here WKNN =
mK + 2mN .

In summary, we have studied the existence and properties of
a strange dibaryon resonance using the K̄NN -πYN coupled-
channel Faddeev equation. By solving the three-body equation,
the energy dependence of the resonant K̄N amplitude is fully
taken into account. The resonance pole has been investigated
from the eigenvalue of the kernel with the analytic continuation
of the scattering amplitude on the unphysical Riemann sheet.
The model of the K̄N -πY interaction is constructed from
the leading order term of the chiral Lagrangian and takes
into account the relativistic kinematics. The K̄N interaction
parameters are fitted to the scattering length given by Martin
[22]. We found a resonance pole at B ∼ 79 MeV and � ∼
74 MeV in the relativistic model (aA). However, as the K̄N

interaction is not very well constrained by the data, we studied
a possible range of the resonance energies by considering
different parameter sets of the K̄N -πY interaction. The
binding energy and the full width can be in the range of
B ∼ 60–95 MeV and � ∼ 45–80 MeV when computed in
the relativistic model. To connect the resonance found in this
work to the experimental signal, further theoretical studies on
the production mechanism and further decay of the resonance
especially to the �-p channel are necessary.

FIG. 10. Pole trajectories of the three-body resonance and
�(1405) using the nonrelativistic model (aA).
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APPENDIX

The spin-isospin recoupling coefficient of the particle
exchange interaction Z is briefly explained. The coefficient
given in Eq. (1.181) of Ref. [21] can be simplified for
s-wave states. The three-body state with total spin and isospin
(Stot, Itot), which couples with the baryon “isobar” with spin
and isospin (S, I ) and the spectator baryon Bi(Si ,Ii ), is given as

|[[M3(S3,I3) ⊗ Bj (Sj ,Ij )](S,I ) ⊗ Bi(Si ,Ii )](Stot,Itot)〉. (A1)

Here baryon i, j represents particle 1 or 2, and the meson is
always assigned as the third particle. The wave function of the
three-body state, which couples with the dibaryon isobar and
the spectator meson M3, is given as

|[[B1(S1,I1) ⊗ B2(S2,I2)](S,I ) ⊗ M3(S3,I3)](Stot,Itot)〉. (A2)

Then Eq. (7) is extended to include spin-isospin degrees of
freedom. The particle exchange interaction for the spectators
l, m, the isobars f ′, f with spin-isospin (S ′, I ′) and (S, I ), and
the exchanged particle n can be expressed as

Zl,f ′(S ′,I ′),m,f (S,I )(pl, pm,W )

= Rl,f ′(S ′,I ′),m,f (S,I )

∫
d(p̂l · p̂m)

× 2πgf ′(S ′,I ′)(ql)gf (S,I )(qm)

W − El(pl) − Em(pm) − En( �pl + �pm)
, (A3)

where f represents isobar YK, Yπ , d, and N∗.
Rl,f ′(S ′,I ′),m,f (S,I ) is given by the overlap of the initial

and final spin-isospin wave functions. For the meson (M3)
exchange mechanism, Ri,f ′(S ′,I ′),j,f (S,I ) is given as

Ri,f ′(S ′,I ′),j,f (S,I ) = 〈[[M3(S3,I3) ⊗ Bj (Sj ,Ij )](S ′,I ′)

⊗ Bi(Si ,Ii )](Stot,Itot)|[[M3(S3,I3)

⊗ Bi(Si ,Ii )](S,I ) ⊗ Bj (Sj ,Ij )](Stot,Itot)〉
= (−1)S+S ′−S3−StotW (Si, S3, Stot, Sj ; S, S ′)

×
√

(2S + 1)(2S ′ + 1)(−1)I+I ′−I3−Itot

×W (Ii, I3, Itot, Ij ; I, I ′)

×
√

(2I + 1)(2I ′ + 1). (A4)

For the baryon (Bj ) exchange mechanism, Ri,f ′(S ′,I ′),3,f (S,I ) is
given as
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Ri,f ′(S ′,I ′),3,f (S,I )

= 〈[[M3(S3,I3) ⊗ Bj (Sj ,Ij )](S ′,I ′) ⊗ Bi(Si ,Ii )](Stot,Itot)|
× [[B1(S1,I1) ⊗ B2(S2,I2)](S,I ) ⊗ M3(S3,I3)](Stot,Itot)〉

= (−1)S3+S−Stot+I3+I−Itot

×W (S3, Sj , Stot, Si ; S
′, S)

√
(2S ′ + 1)(2S + 1)

×W (I3, Ij , Itot, Ii ; I
′, I )

√
(2I ′ + 1)(2I + 1)

× (
δi,2δj,1 + δi,1δj,2(−1)Si+Sj −S+Ii+Ij −I

)
. (A5)

When we antisymmetrize the AGS equation, the last factor
in the bracket in Eq. (A5) projects the antisymmetric two-
nucleon states. This can be explicitly seen by comparing
the exchange of nucleon 2 Z2,YK (S ′,I ′),3,d(S,I ) and nucleon 1
Z1,YK (S ′,I ′),3,d(S,I ) interactions. Using Eq. (A5), those interac-
tions are related as

R1,YK (S ′,I ′),3,d(S,I ) = (−1)S+IR2,YK (S ′,I ′),3,d(S,I ), (A6)

which leads to Eq. (17) as

XYK,YK
= (1 − (−1)S+I )ZYK,dτd,dXd,YK

+ · · · . (A7)
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