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Chaoticity parameter λ in Hanbury-Brown–Twiss interferometry
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In Hanbury-Brown–Twiss interferometry measurements using identical bosons, the chaoticity parameter λ has
been introduced phenomenologically to represent the momentum correlation function at zero relative momentum.
It is useful to study an exactly solvable problem in which the λ parameter and its dependence on the coherence
properties of the boson system can be worked out in great detail. We are therefore motivated to study the state of a
gas of noninteracting identical bosons at various temperatures held together in a harmonic oscillator potential that
arises either externally or from bosons’ own mean fields. We determine the degree of Bose-Einstein condensation
and its momentum correlation function as a function of the attributes of the boson environment. The parameter λ

can then be evaluated from the momentum correlation function. We find that the λ(p, T ) parameter is a sensitive
function of both the average pair momentum p and the temperature T , and the occurrence of λ = 1 is not a
consistent measure of the absence of a coherent condensate fraction. In particular, for large values of p, the λ

parameter attains the value of unity even for significantly coherent systems with large condensate fractions. We
find that if a pion system maintains a static equilibrium within its mean field, and if it contains a root-mean-squared
radius, a pion number, and a temperature typical of those in high-energy heavy-ion collisions, then it will contain
a large fraction of the Bose-Einstein pion condensate.
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I. INTRODUCTION

In high-energy collision processes, Hanbury-Brown–Twiss
(HBT) intensity interferometry [1] has been used to study the
space–time geometry of the source of particles [2–38]. As is
well known, for identical bosons the interference phenomenon
arises from Bose-Einstein correlations and depends sensitively
on the degree of coherence of the boson system [39]. The HBT
correlation occurs for a chaotic source but not for a coherent
source.

In phenomenological measurements, one represents the
correlation in terms of the momentum correlation function
C( p + q/2, p − q/2) = C( p1, p2) = G(2)( p1, p2; p1, p2)/
G(1)( p1, p1)G(1)( p2, p2), where p1 and p2 are the momenta
of the pion pair and G(i) is the ith-order pion density matrix.
One introduces the parameter λ = [C(q = 0) − 1] that is
purported to represent the degree of chaoticity of the pion
medium and bears the name “the chaoticity parameter.”
Experimental measurements with pions persistently indicate
that the chaoticity parameter λ is substantially less than
the value of unity for a fully chaotic source. Some part of
this reduction of the chaoticity parameter λ from unity may
be attributed to the occurrence of the decays of long-live
resonances [40]. However, as emphasized not the least by
Glauber [41], part of the reduction of the chaoticity parameter
λ from unity may arise from the coherence of the pion gas.
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Even though the chaoticity parameter has been widely
used in all HBT measurements in high-energy collisions,
how the chaoticity parameter can be determined theoretically
has not been resolved. The difficulty is further compounded
for heavy-ion collisions because the dynamics of pions after
their production in high-energy heavy-ion collisions is very
complicated. The process of initial hadronization and the
subsequent interactions between pions are beyond the realm
of present-day knowledge.

It is therefore useful at this stage to study an exactly
solvable problem for which the λ parameter can be determined
explicitly and the transition from the coherent phase to the
chaotic phase can be worked out in detail. We are motivated
to investigate the state of a gas of noninteracting identical
bosons held together in a harmonic oscillator potential at
various temperatures. We shall study the occurrence of
Bose-Einstein condensation and the two-body momentum
correlation function as a function of the attributes of the boson
gas in such an environment. This will allow us to examine
explicitly the transition from the coherent phase to the chaotic
phase and to study how this phase transition may affect the
HBT measurements and the λ parameter for a set of known
attributes of the Bose-Einstein gas assembly.

In atomic physics, the harmonic oscillator potential intro-
duced here can arise from an external trap. In high-energy
heavy-ion collisions, the harmonic oscillator potential can
arise approximately from the mean-field potential experienced
by a pion, owing to the interactions generated by other pions
and medium particles. Although the strength of the pion mean
field is not known at present, the results obtained here will serve
as useful supplementary tools to study the circumstances in
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which a pion system may form a Bose-Einstein condensate in
heavy-ion collisions. They will stimulate future investigations
on the magnitude of the pion mean-field potential and pave the
way for future investigations on momentum correlations for
pions under more complicated dynamical evolutions.

Pions produced in high-energy heavy-ion collisions have a
temperature that is of the order of the pion rest mass. The
motion of the pions is relativistic and a proper treatment
will need to be relativistic in nature. We shall carry out both
a nonrelativistic and a relativistic treatment of the pions to
understand what features of the coherence are sensitively
affected by the relativistic motion.

Important advances in our understanding of the coherence
properties of identical bosons have been made recently in
another related field, the physics of atomic boson systems
at low temperatures [42–51]. Theoretical and experimental
work in atomic physics has focused on the correlation function
in the configuration space. In particular, the second-order
correlation function g(2)(r1, r2) has been obtained to give
the probability of detecting a boson at r1 in coincidence
with the detection of another identical boson at r2 [43].
From the shape of this correlation function g(2)(r1, r2) as
a function of the relative separation r1 − r2, the theoretical
spatial correlation length can be extracted. Experimentally,
the measurements of various arrival times and positions at the
detectors in HBT interferometry are then used to determine
the spatial correlation length, for comparison with theoretical
analyses [50]. We wish to adopt a treatment complementary to
that in atomic physics by examining the correlation function
in momentum space, the standard arena for Bose-Einstein
correlation analysis in high-energy nuclear collisions [2–38].
Our investigation of the correlation function in momentum
space is greatly facilitated by utilizing the results of the
correlation function in configuration space obtained in atomic
physics [42–44].

With regard to the low-temperature measurements with
atoms, the perspectives of studying the correlation in mo-
mentum space presented here offer useful complementary
points of view. In momentum space the trapped atoms are now
described as having an equilibrium momentum distribution,
appropriate for the system in a given external field at a
given temperature. The sudden removal the external field
allows the initial momentum distribution of the particle to
be frozen at the moment of the external field removal, as
appropriate under the application of the sudden approximation
in quantum mechanics. Subsequent free streaming of the
particles without the external field and mutual interactions
allows the reconstruction of the momentum distribution of the
source at the moment of its freezing out. In atomic physics, the
correlation function in the complementary momentum space
has many rich features as it is sensitive to many kinematic
variables and the geometry of the source particles.

This paper is organized as follows. In Sec. II, we review
the degree of Bose-Einstein condensation as a function of
temperature and particle number. In Sec. III, we study the one-
body and two-body momentum density matrices. We express
the momentum correlation function in terms of the one-body
momentum density matrix and the ground-state wave function
and also express the momentum correlation function in terms

of the Wigner function in Sec. IV. In Sec. V, we evaluate the
one-body density matrix and the Wigner function for bosons
in the harmonic oscillator potential. We study the spatial and
momentum distributions of these boson assemblies in Sec. VI.
In Sec. VII, we evaluate the momentum correlation function
C( p, q), for different values of the average pair momentum
p and temperature T , and extract the λ parameter and the
HBT radii. In Sec. VIII we study the condensate fraction for a
nonrelativistic pion gas with a given root-mean-squared radius
in static equilibrium at various temperatures. In Sec. IX, we
investigate the relativistic treatment of the boson in a harmonic
oscillator potential. In Sec. X, we evaluate the boson spatial
density and estimate its condensate fraction for the relativistic
boson gas. A discussion and our conclusions are presented in
Sec. XI.

II. CONDENSATE FRACTION AS A FUNCTION OF
TEMPERATURE

We shall first review the theoretical work on the coherence
and correlations of identical bosons in atomic physics [42–44]
so as to pave the way for our investigation of the correlation
function in momentum space. We consider first a nonrela-
tivistic gas of identical bosons in a harmonic potential at the
temperature T with the potential specified by

V (r) = 1

2
mω2r2 = 1

2
h̄ω

( r

a

)2
, (1)

where m is the rest mass of a boson and h̄ω measures the
strength of the external potential. We shall measure lengths in
units of the harmonic oscillator length parameter a = √

h̄/mω,
momenta in units of h̄/a, and energies in units of h̄ω.

The states in the harmonic oscillator potential are charac-
terized by energy levels εn = (n + 3

2 )h̄ω with the associated
degeneracy of gn = (n + 1)(n + 2)/2. Following Ref. [43], it
is convenient to use the recalibrated energy level ε̃n = nh̄ω

measured relative to 3h̄/2.
As the temperature of the gas is lowered below the

condensation temperature Tc, condensation of the nonrela-
tivistic massive boson gas occurs. As is well known, the
fluctuation of the number of particles in the condensate
state, the n = 0 state, depends sensitively on the assumed
statistical ensemble. A grand canonical ensemble will lead to a
condensate ground-state number fluctuation that is as large as
the number of particles in the condensate ground state, n = 0.
The grand canonical ensemble cannot be used to describe the
number of particles, N0, in the ground-state condensate. The
condensation can best be studied in a canonical ensemble for
the case with a fixed number of particles [42]. Comparison
of the results from the canonical and the grand canonical
ensemble in Ref. [42] indicates however that even though the
number of particles in the ground n = 0 state can only be
described by the canonical ensemble, the occupation number
distribution of the n > 0 harmonic oscillator states can be
appropriately described by the grand canonical ensemble with
only very small corrections. The difference in these two
ensembles for the n > 0 states becomes very small as the
number of particles increases.
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Therefore, for a fixed number of particles, N , at a given
temperature T/h̄ω, we shall follow Refs. [42] and [43] to
determine the condensate configuration by the following
requirements: (i) a fixed total number of particles, N , in a
canonical ensemble for the condensate n = 0 state and (ii) an
occupation number distribution in a grand canonical ensemble
for the n > 0 states. Accordingly, we have the following
three conditions to determine the condensate configuration of
the system with a fixed number of particles, N , at a temperature
T = 1/β:

N = N0 + NT , (2)

where N0 is the number of condensate particles in the n = 0
state,

N0 = z

1 − z
, (3)

NT is the number of “chaotic” particles in the n > 0 states,

NT =
∞∑

n>0

gnze
−βε̃n

1 − ze−βε̃n

, (4)

and z is the fugacity parameter. For the harmonic oscillator
potential, the summation for NT can be carried out analytically
and Eq. (4) can be simplified to

NT =
∞∑

k=1

zk e−kβh̄ω(3 − 3e−kβh̄ω + e−2kβh̄ω)

(1 − e−kβh̄ω)3
. (5)

Equations (2)–(4) can be reduced into a single condensate
configuration condition,

N = z

1 − z
+

∞∑
k=1

zk e−kβh̄ω(3 − 3e−kβh̄ω + e−2kβh̄ω)

(1 − e−kβh̄ω)3
. (6)

Because N and βh̄ω = h̄ω/T are fixed, this conden-
sate configuration condition can be solved numerically to
determine the unknown z (by Newton’s method, with fast
convergence). After the value of the solution z is obtained,
N0 and NT can be subsequently determined from Eqs. (3)
and (5) to give the condensate configuration specified by the
condensate fraction f0 and the “chaotic” fraction fT ,

f0 = N0

N
and fT = NT

N
. (7)

We show in Fig. 1 the fugacity solution z that satisfies
the condensate configuration condition Eq. (6) for different
temperatures T/h̄ω and boson numbers N . To get a better
view of the z values, we show an expanded view of Fig. 1(a)
in the z ∼ 1 region in Fig. 1(b). We observe that the fugacity
parameter z is close to unity in the strongly coherent region at
low temperatures. In fact, the fugacity parameter z at T = 0
assumes the value

z(T = 0) = N

N + 1
. (8)

For a given boson number N , as the temperature increases from
T = 0, the fugacity z decreases very slowly in the form of a
plateau until the condensate temperature Tc is reached, and
it decreases very rapidly thereafter. The greater the number
of bosons N , the greater is the plateau region, as shown in
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FIG. 1. (Color online) (a) The fugacity parameter z satisfying
the condensate configuration condition Eq. (6) for different boson
numbers N , as a function of the temperature T/h̄ω and (b) an
expanded view in the z ∼ 1 region.

Fig. 1(b). For example, for N = 2000 the value of z is close to
unity for 0 < T/h̄ω < 11 in the plateau, and it deviates from
unity substantially only for temperatures T/h̄ω � 11.

The condensate fractions f0(T ) calculated with the fugacity
parameter of Fig. 1 for different boson numbers N are
represented by solid curves in Fig. 2, as a function of T/h̄ω.
The abscissa labels for the corresponding chaotic fraction
fT (T ) = [1 − f0(T )] are indicated on the right. We observe
that the condensate fractions are unity at T = 0, corresponding
to a completely coherent boson system at T = 0. It decreases
slowly as the temperature increases, and the rate of decrease is
small at low temperatures. The greater the number of bosons
N , the larger is the range of temperatures in which the boson
system contains a substantial fraction of the condensate. For
example, for a system with 2000 identical bosons, substantial
fraction of the condensate occurs up to T/h̄ω ∼ 11. The
transition from the condensate phase to the chaotic phase
occurs over a large range of temperatures and is therefore
not a sharp first-order type transition. The complementary
chaotic fraction fT (T ) increases gradually as the temperature
increases, reaching the value of unity at T/h̄ω ∼ 11 for
N = 2000.
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FIG. 2. (Color online) Solid curves represent the condensate frac-
tions f0(T ), calculated with the condensate configuration condition
Eq. (6), as a function of T/h̄ω for different boson numbers N .
The abscissa labels for the corresponding chaotic fraction fT (T ) =
[1 − f0(T )] are indicated on the right. The dashed curves are the fits
to the solid curve results of f0(T ) with the function 1 − (T/Tc)3 of
Eq. (10), where the values of Tc/h̄ω for different N values are listed
in Table I.
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As the number of particles N decreases down to 250, a
substantial condensate fraction occurs only for T/h̄ω < 5. The
chaotic fraction fT (T ) increases as a function of temperature
and it reaches the value of unity for T/h̄ω ∼ 6. The transition
from the condensate phase to the chaotic phase occurs over a
temperature range from T/h̄ω ∼ 2 to T/h̄ω ∼ 5. The smaller
the number of particles, the lower the condensate temperature
Tc and the smaller is the range of temperatures over which the
condensate phase transition occurs.

In the transitional region below Tc with a substantial fraction
of the condensate, one can get an approximate value of the
condensate fraction by noting that, in this region, the value of
z is close to unity (Fig. 1). The number of chaotic particles,
NT , can be estimated from Eq. (5) by setting z to unity, and
we obtain

NT ∼
(

T

h̄ω

)3 ∞∑
k=1

e−kh̄ω/2T

[
1

k3
+ 2(h̄ω/T )

k2
+ 15(h̄ω/T )2

8k

]
.

(9)

Consequently, one can fit the condensate fraction f0(T )
reasonably well by a one-parameter function of the form

f0(T ) = 1 − (T/Tc)3 for T � Tc, (10)

f0(T ) = O(1/N) → 0 for T � Tc. (11)

The results from the one-parameter fit to f0(T ) are shown as
the dashed curves in Fig. 2, to be compared with the f0(T )
calculated with the condensate configuration condition Eq. (6)
shown as the solid curves. The values of Tc/h̄ω that give the
best fit to f0(T ) for different N values are listed in Table I.

The Tc values can also be determined approximately by
considering the case of h̄ω/T � 1 in Eq. (9), and we have

NT ∼
(

T

h̄ω

)3

ζ (3), (12)

where ζ (3) = ∑∞
k=1 k−3 = 1.202 is the zeta function with

the argument 3. Thus, the condensate fraction is given
approximately by

f0(T ) ∼ 1 − (T/Tc,approx)3 for T < Tc,approx, (13)

with

Tc,approx

h̄ω
∼

(
N

ζ (3)

)1/3

=
(

N

1.202

)1/3

. (14)

A comparison of these approximate result with Tc in Table I
indicates that Eqs. (13) and (14) are approximately valid, with

TABLE I. Condensation temperature Tc/h̄ω of Eq. (10) and
Tc,approx/h̄ω of Eq. (14) as a function of N.

Number of
bosons, N

Tc/h̄ω Tc,approx/h̄ω = (N/1.202)1/3 Tc,approx/Tc

2000 10.97 11.85 1.08
1000 8.56 9.41 1.10
500 6.63 7.47 1.13
250 5.12 5.92 1.16

the values of Tc,approx determined by Eq. (14) slightly greater
than Tc by about 10%.

III. ONE-BODY AND TWO-BODY DENSITY MATRICES IN
MOMENTUM SPACE

Previously, the one- and two-body density matrices have
been obtained for identical bosons in configuration space [43].
We would like to write down the corresponding one-body
and two-body density matrices in momentum space so as to
evaluate the momentum correlation function. The results in
momentum space can be readily obtained from the results in
configuration space by replacing r in Ref. [43] with p. We
thus have the one-body density matrix in momentum space

G(1)( p1, p2) =
∑

n

u∗
n( p1)un( p2)〈â†

nân〉. (15)

Similarly, we have the two-body density matrix in momentum
space given by

G(2)( p1, p2; p1, p2) =
∑
klmn

u∗
k( p1)u∗

l ( p2)um( p2)un( p1)

×〈â†
kâ

†
l âmân〉. (16)

We shall follow Ref. [43] in expressing the two-body density
matrix in terms of one-body density matrices. By separating
out the term with k = l = m = n from other terms and using
the definition of the one-body density matrix (15), the two-
body density matrix can be shown to be

G(2)( p1, p2; p1, p2)

= G(1)( p1, p1)G(1)( p2, p2) + |G(1)( p1, p2)|2

+
∞∑

n=0

|u∗
n( p1)|2|un( p2)|2{〈â†

nâ
†
nânân〉

− 2〈â†
nân〉〈â†

nân〉}. (17)

The last term in this equation involves a summation over the
n = 0 condensate state and the set of {n > 0} states. In line
with our earlier discussions on the statistical ensemble for the
states [42,43], we shall use the grand canonical ensemble for
the set of {n > 0} states and the canonical ensemble for the
condensate state of n = 0. For the set of {n > 0} states in
the grand canonical ensemble then, the occupation fluctuation
characteristics of the grand canonical ensemble make the
contributions of the set of {n > 0} states small in comparison
with the other terms on the right-hand side of Eq. (17), as we
shall see from the following discussion. We note that in this
equation

〈â†
nâ

†
nânân〉 − 2〈â†

nân〉〈â†
nân〉

= 〈(â†
nân − 〈â†

nân〉)2〉 − 〈â†
nân〉〈â†

nân〉. (18)

For an n > 0 state in the grand canonical ensemble, the mean-
square fluctuation of the occupation number 〈â†

nân〉 in the state
is given by [52]

〈(â†
nân − 〈â†

nân〉)2〉 = 〈â†
nân〉(〈â†

nân〉 + 1). (19)
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Therefore, for this n > 0 state in the grand canonical ensemble,
we have

〈â†
nâ

†
nânân〉 − 2〈â†

nân〉〈â†
nân〉 = 〈â†

nân〉, (20)

and the contribution of the set of {n > 0} states to the two-body
density matrix is∑

n>0

|u∗
n( p1)|2|un( p2)|2〈â†

nân〉. (21)

When we integrate over p1 and p2, the set of {n > 0} states
gives a contribution of∫

d p1d p2

∑
n>0

|u∗
n( p1)|2|un( p2)|2〈â†

nân〉 = NT , (22)

whereas the other terms, such as the first term of Eq. (17),
G(1)( p1, p1)G(1)( p2, p2), give a contribution of N2.
The contribution from the set of {n > 0} states is NT /N2

of the contribution from G(1)( p1, p1)G(1)( p2, p2). Therefore,
in the limit of a large number of bosons, N , the ratio NT /N2 is
small, and the contributions from the set of {n > 0} states in the
summation in Eq. (17) can be neglected. We are left with only
the n = 0 condensate state contribution for this summation.

To describe the n = 0 condensate state, we shall follow
Refs. [42,43] and use the canonical ensemble, which gives the
canonical fluctuation [42]

〈(â†
nân − 〈â†

nân〉)2〉 = 〈â†
0â

†
0â0â0〉 − 〈â†

0â0〉〈â†
0â0〉 = O(N0).

(23)

Thus, we have

〈â†
nâ

†
nânân〉 − 2〈â†

nân〉〈â†
nân〉 = −〈â†

0â0〉〈â†
0â0〉 + O(N0).

(24)

In the limit of a large number of particles, we can neglect the
last term O(N0) in this equation, which is small compared to
the first term of order N2

0 . The two-body momentum density
matrix of Eq. (17) is therefore

G(2)( p1, p2; p1, p2)

= G(1)( p1, p1)G(1)( p2, p2) + |G(1)( p1, p2)|2
−N2

0 |u0( p1)|2|u0( p2)|2, (25)

which gives the conditional probability for the occurrence of
a pion of momentum p1 in coincidence with another identical
pion of momentum p2. This two-body density matrix in
momentum space has the same form as that obtained earlier in
configuration space in Ref. [43].

IV. THE MOMENTUM CORRELATION FUNCTION

In HBT measurements, we normalize the probability
relative to the probability of detecting particle p1 and p2,
and we define the momentum correlation function C( p1, p2)
as

C( p1, p2) = G(2)( p1, p2; p1, p2)

G(1)( p1, p1)G(1)( p2, p2)
. (26)

It is convenient to introduce the average and the relative
momenta of the pair,

p = ( p1 + p2)/2, q = p1 − p2, (27)

with the inverse transformation

p1 = p + q
2
, p2 = p − q

2
. (28)

The momentum correlation function can be expressed alter-
natively in terms of the kinematic variables p and q. From
Eq. (25), we have the general expression for the correlation
function

C( p, q) = C( p1, p2)

= 1 + |G(1)( p1, p2)|2 − N2
0 |u0( p1)|2|u0( p2)|2

G(1)( p1, p1)G(1)( p2, p2)
. (29)

In the nearly completely coherent case with almost all particles
in the ground condensate state, N0 → N , the two terms in the
numerator cancel each other and we have C(p, q) = 1, as it
should be. For the other extreme of a completely chaotic source
with N0 � N , the second term in the numerator proportional
to N2

0 gives negligible contribution and can be neglected. The
correlation function becomes the usual one for a completely
chaotic source,

Cchaotic( p, q) = 1 + |G(1)( p1, p2)|2
G(1)( p1, p1)G(1)( p2, p2)

. (30)

The general result of Eq. (29) allows one to study the
correlation function for all cases with varying degrees of
coherence.

If we introduce R( p, q) = R( p1, p1) = C( p, q) − 1, then

R( p, q) = R( p1, p2)

= |G(1)( p1, p2)|2 − N2
0 |u0( p1)|2|u0( p2)|2

G(1)( p1, p1)G(1)( p2, p2)
. (31)

It is of interest to express the momentum correlation
function C(p, q) in terms of the Wigner function f (r, p)
defined in terms of the the one-body density matrix G(1)(r1, r2)
as

f (r, p) =
∫

ds ei p·sG(1)
(

r + s
2
, r − s

2

)
. (32)

This one-body density matrix in configurations space is related
to the one-body density matrix in momentum space by a
Fourier transform,

G(1)( p1, p2) =
∫

d r1 d r2e
i p1·r1−i p2·r2G(1)(r1, r2). (33)

Therefore, by changing coordinates from r1 and r2 to r =
(r1 + r2)/2 and s = r1 − r2, we can relate the one-body
density G(1)( p1, p2) with the Wigner function f (r, p),

G(1)( p1, p2) =
∫

d reiq·rf (r, p), (34)

and, in particular, for the diagonal density matrix element we
have

G(1)( p1, p1) =
∫

d rf (r, p1). (35)

034905-5



CHEUK-YIN WONG AND WEI-NING ZHANG PHYSICAL REVIEW C 76, 034905 (2007)

C( p, q) = 1 + | ∫ d reiq·rf (r, p)|2 − N2
0 |u0( p + q/2)|2|u0( p − q/2)|2∫

d rf (r, p + q/2)
∫

d rf (r, p − q/2)
. (36)

This is the general expression for the momentum correlation
function expressed in terms of the Wigner function f (r, p)
when the coherence of the system is properly taken into
account.

The R function for the general case is related to the Wigner
function f (r, p) by

R( p, q)

= | ∫ d reiq·rf (r, p)|2 − N2
0 |u0( p + q/2)|2|u0( p − q/2)|2∫

d rf (r, p + q/2)
∫

d rf (r, p − q/2)
.

(37)

When the condensate fraction f0 is large with N0 → N , the
second term in the numerator of this equations is important
and must be properly taken into account. In fact, in the
completely coherent case, Eqs. (36) and (37) give C(p, q) = 1
and R(p, q) = 0. Only in the special case of a completely
chaotic state is the contribution from the second term in
the numerator negligible, and we have the usual relationship
between the Wigner function and the momentum correlation
function for a chaotic system,

Cchaotic( p, q) ∼ 1 + | ∫ d reiq·rf (r, p)|2∫
d rf (r, p + q/2)

∫
d rf (r, p − q/2)

.

(38)

V. THE ONE-BODY DENSITY MATRIX FOR A
HARMONIC OSCILLATOR POTENTIAL

For a given total particle number N of particle mass m in
an external harmonic oscillator potential, we have obtained
in Sec. II the fugacity z as a function of T/h̄ω (Fig. 1). This
solution of z allows us to evaluate the density matrices and the
correlation functions at various temperatures. For the harmonic
oscillator potential, the one-body density matrix has been
obtained previously in configuration space as given by [43]

G(1)(r1, r2) =
∞∑

n=0

u∗
n(r1)un(r2)

ze−βε̃n

1 − ze−βε̃n

=
∞∑

k=1

zkG̃0(r1, r2; kβh̄ω), (39)

where

G̃0(r1, r2; τ ) =
(

1

πa2(1 − e−2τ )

)3/2

× exp

(
− 1

a2

(
r2

1 + r2
2

)
(cosh τ − 1) + (r1 − r2)2

2 sinh τ

)
.

(40)

Because of the exchange symmetry of r/a and pa/h̄ for a
harmonic oscillator potential, the one-body density matrix in
momentum space can be readily obtained from these results
of Ref. [43] by replacing r/a with pa/h̄, and we get

G(1)( p1, p2) =
∞∑

n=0

u∗
n( p1)un( p2)

ze−βε̃n

1 − ze−βε̃n

=
∞∑

k=1

zkG̃0( p1, p2; kβh̄ω), (41)

where

G̃0( p1, p2; τ ) =
(

a2

πh̄2(1 − e−2τ )

)3/2

× exp

(
−a2

h̄2

(
p2

1 + p2
2

)
(cosh τ − 1) + ( p1 − p2)2

2 sinh τ

)
.

(42)

We can write G̃0( p1, p2; τ ) in terms of the ground-state wave
function u∗

0( p1)u0( p2) as

G̃0( p1, p2; τ ) = u∗
0( p1)u0( p2)g̃0( p1, p2; τ ), (43)

where the ground-state wave function is

u0( p) =
(

a2

πh̄2

)3/4

exp

{
−a2

h̄2

p2

2

}
, (44)

and the dimensionless function g̃0( p1, p2; τ ) is given by

g̃0( p1, p2; τ ) = 1

(1 − e−2τ )3/2

exp

(
−a2

h̄2

(
p2

1 + p2
2

)
(cosh τ − 1 − sinh τ ) + ( p1 − p2)2

2 sinh τ

)
.

(45)

Then we have

G(1)( p1, p2) = u∗
0( p1)u0( p2)A( p1, p2), (46)

where

A( p1, p2) =
∞∑

k=1

zkg̃0( p1, p1; kβh̄ω). (47)

In numerical calculations, especially at low temperatures
where z is close to unity, the number of terms in the summation
over k in A( p1, p2) will need to be greater than the number of
particles, N . To avoid such a lengthy summation, it is simplest
to separate out the condensate component to write Eq. (47) as

A( p1, p2) = z

1 − z
+

∞∑
k=1

zk[g̃0( p1, p1; kβh̄ω) − 1]. (48)
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For low temperatures, the coefficient [g̃0( p1, p1; kβh̄ω) − 1]
of zk is small and a small number of terms in k will suffice.
For high temperatures above the condensate temperature, z

is substantially less than unity, and zk decreases rapidly as k

increases; a small number of terms in k will also suffice.
From Eq. (29) the momentum correlation function is

C( p, q) = C( p1, p2) = 1 + |A( p1, p2)|2 − |z/(1 − z)|2
A( p1, p1)A( p2, p2)

(49)

and

R( p, q) = R( p1, p2) = |A( p1, p2)|2 − |z/(1 − z)|2
A( p1, p1)A( p2, p2)

.

(50)

The one-body Wigner function for the boson system can
be obtained from the one-body density matrix G(1)(r1, r2) and
we find

f (r, p) =
∞∑

k=1

zk

(
4 tanh(kβh̄ω/2)

(1 − e−2kβh̄ω)

)3/2

× exp

[
−

(
r2

a2
+ p2a2

h̄2

)
tanh

(
kβh̄ω

2

)]
. (51)

There is an explicit symmetry between x/a and pa in the
Wigner function for the harmonic oscillator potential.

VI. SPATIAL AND MOMENTUM DISTRIBUTIONS

Before we evaluate the momentum correlation function
C(p, q), it is useful to study the single-particle spatial and
momentum distributions ρr (r) and ρp( p). Because of the
symmetry between r/a and pa/h̄ in a harmonic oscillator
potential, the following two functions have the same shape:
(i) ρr (r) in units of a−3 expressed as a function of r/a and
(ii) ρp( p) in units of (a/h̄)3 expressed as a function of pa/h̄.
The two distributions can be displayed on the same graph.
From the one-body density matrix (46), we obtain

ρp( p) = G(1)( p, p) =
(

a2

πh̄2

)3/2

exp

(
−a2 p2

h̄2

)
A( p, p),

(52)

where

A( p, p) =
∞∑

k=1

zkg̃0( p, p; kβh̄ω), (53)

g̃0( p, p; τ ) = 1

(1 − e−2τ )3/2

× exp

(
−a2

h̄2

p2(cosh τ − 1 − sinh τ )

sinh τ

)
. (54)

We plot in Fig. 3 the spatial and momentum distributions of
the system with N = 2000 as a function of their dimensionless
variables r/a and pa/h̄, respectively. One observes that up to
T/h̄ω ∼ 9 the system has a small spatial or momentum size

0 1 2 3 4 5 6
r/a ,   pa/h

_
0.1

1

10

100

ρ r (
r)

  (
in

 a
-3

) 
,  

   
ρ p(p

) 
(in

 (
a/

 h_  )
3 )

T/h
_ω=1

          3
          5
          7
          9
         11
         13
         15

N = 2000

FIG. 3. (Color online) The spatial density distribution ρr (r) in
units of a−3, expressed as a function of r/a, and the momentum
density distribution ρp( p) in units of (a/h̄)3, expressed as a function
of pa/h̄, for a boson system with N = 2000 at different temperatures.

and there is a substantial condensate fraction in the system.
In Fig. 4 we plot the root-mean-squared radius in units of
a, rrms/a =

√
〈(r/a)2〉, and the root-mean-squared momentum

in units of h̄/a, prmsa/h̄ =
√

〈(pa/h̄)2〉, as a function of T/h̄ω.
For N = 2000, the quantity rrms/a is slightly greater than 1 up
to T/h̄ω ∼ 6, and it increases relatively rapidly to about 5.5
at the condensate temperature, Tc/h̄ω ∼ 11. It increases at a
relatively slower rate at temperatures above Tc.

The size of the momentum distribution also undergoes
similar changes as a function of temperature. The root-mean-
squared momentum has the dimension of about one unit of h̄/a

at T/h̄ω ∼ 0 and this linear size increases about sixfold when
the temperature reaches the chaotic region of Tc/h̄ω ∼ 11 for
N = 2000.

We observe therefore that, for a boson system in a harmonic
oscillator, the Bose-Einstein condensation gives rise to a
distribution localized in the region of small momentum and
small spatial coordinates. From the viewpoints of the spatial
and momentum densities, the Bose-Einstein condensate in

0 2 4 6 8 10 12 14 16
T /  h

_ ω
0

1

2

3

4

5

6

7

√<
(r

/a
)2 >

,  
  √

<(
pa

/h_ )2 >
  

N=250
N=500
N=1000
N=2000

FIG. 4. (Color online) The root-mean-squared radius in unit of a

and the root-mean-squared momentum in units of h̄/a, as a function
of T/h̄ω for different numbers of bosons in the system.
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FIG. 5. (Color online) The correlation function at different values
of the pair momentum pa/h̄ and temperatures. Panels (a), (b), and
(c) are for p = 1, 2, and 3h̄/a, respectively.

a harmonic oscillator is therefore a “condensation” in both
momentum space and configuration space.

VII. EVALUATION OF THE MOMENTUM CORRELATION
FUNCTION C( p, q)

With the solution z obtained for a given T/h̄ω as shown
in Fig. 1 and discussed in Sec. II, one can use Eq. (48) to
evaluate A( p1, p2). The knowledge of A( p1, p2) then allows
the determination of the momentum correlation function from
C(p, q) using Eq. (49).

We show results of C(p, q) for the case of N = 2000
in Fig. 5. We observe that the correlation function is a
complicated function of the average pair momentum p and
the temperature T . For p = h̄/a in Fig. 5(a), the correlation
function C(p, q) at q = 0 is close to unity for temperatures
below and up to T/h̄ω = 9, but it increases to 2 rather abruptly
at T/h̄ω = 12. For p = 2h̄/a in Fig. 5(b), the correlation
function C(p, q) at q = 0 is substantially above unity and
increases gradually as temperature increases. For p = 3h̄/a in
Fig. 5(c), the correlation function C(p, q) at q = 0 is about 2
for all temperatures examined.

If one follows the standard phenomenological analysis
and introduces the chaoticity parameter λ to represent the
correlation function at zero relative momentum, then this
parameter λ is a function of the average pair momentum p

and the temperature T :

λ(p, T ) = [C(p, q = 0; T ) − 1], (55)

where we display explicitly the dependence of the correlation
function on the temperature T . We plot the values of λ(p, T )
as a function of p in Fig. 6(a) for different temperatures for
the case of N = 2000. At T/h̄ω = 12, which is above the
condensate temperature Tc, the λ parameter is 1 for all p values.
At T/h̄ω = 9, which is below the condensate temperature Tc,
the λ parameter drops precipitously to ∼0.1 at pa/h̄ = 1. At
this T/h̄ω = 9, as p increases the λ parameter rises gradually
and reaches the constant value of 1 at pa/h̄ = 2.4. At T/h̄ω =

1 2 3 4 5
pa/h

_
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/ a
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0.2

0.4

0.6

0.8

1
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T/ h
_ω = 12

T/ h
_ω =  9

T/ h
_ω =  6

T/ h
_ω =  3

N=2000

(a)

(b)

FIG. 6. (Color Online) (a) The parameter λ as a function of pa/h̄

for different temperatures for N = 2000. (b) The ratio RHBT/a as a
function of pa/h̄ for different temperatures for N = 2000.

6 and 3, for which the systems are significantly coherent with
large condensate fractions, the λ parameter starts close to zero
at pa/h̄ = 1, but as p increases the λ parameter increases
gradually to unity at pa/h̄ = 2.9 and 3.1 for T/h̄ω = 6 and
3, respectively. The location where the λ parameter attains
unity changes with temperature. The lower the temperature,
the greater is the value of p at which the λ parameter attains
unity.

We conclude from our results that the parameter λ(p, T ) is
a sensitive function of both p and T and λ(p, T ) = 1 is not a
consistent measure of the absence of the condensate fraction,
as it attains the value of unity in some kinematic regions for
significantly coherent systems with large condensate fractions
at temperatures much below Tc. Only for the region of small
p will the parameter λ(p, T ) be correlated with, but not equal
to, the chaotic fraction fT (T ) of the system.

One can evaluate the root-mean-squared momentum in the
correlation function defined as

q2
rms(p, T ) = 〈q2〉 =

∫
dq q2[C(p, q; T ) − 1]∫
dq[C(p, q; T ) − 1]

(56)

and introduce the HBT radius RHBT(p, T ) defined by

RHBT(p, T ) =
√

3

2

h̄

qrms(p, T )
. (57)

The HBT radius RHBT(p, T ) is in fact the radius parameter
in the standard Gaussian parametrization of the momentum
correlation function,

C(p, q; T ) = 1 + λ(p, T ) exp[−q2R2
HBT(p, T )/h̄2]. (58)

We plot RHBT(p, T ) as a function of pa/h̄ for different
temperatures T for the case of N = 2000 in Fig. 6(b). For
fixed values of the temperature T/h̄ω = 3, 6, and 9 and
varying p, one observes that RHBT(p, T ) is about 1.3a and
RHBT(p, T ) decreases slightly before it increases gradually as
p increases. For T/h̄ω = 12, which is above the condensate
temperature, RHBT(p, T ) is about 2.4a at pa/h̄ = 1, and
RHBT(p, T ) decreases slightly before it increases gradually
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FIG. 7. (Color online) (a) The ratio RHBT/a as a function of pa/h̄

for different temperatures for N = 250. (b) The parameter λ as a
function of pa/h̄ for different temperatures for N = 250.

as p increases. For a fixed value of p at pa/h̄ = 1, the HBT
radius increases with increasing temperatures very slowly at
low temperatures, and it increases rather abruptly when the
condensation temperature is approached. For this small value
of pa/h̄, the variation of RHBT(p, T ) as a function of T

reflects closely the variation of the root-mean-squared radius
as a function of T/h̄ω, as shown in Fig. 4. For large values
of p,RHBT(p, T ) increases with increasing temperatures in a
more uniform manner.

In Figs. 7(a) and 7(b), we show, respectively, λ(p, T )
and RHBT(p, T ) as a function of pa/h̄ and T for the case
with N = 250. The λ parameter and the HBT radius RHBT

behave in a manner similar to those for the case of N = 2000.
One observes in Fig. 7(a) that at temperatures below Tc,
the λ parameter is small at small p and it increases as p

increases, reaching the saturating value of unity at pa/h̄ =
3.5 for T/h̄ω = 2 and at pa/h̄ = 2.7 for T/h̄ω = 4. Above
the condensation temperature at T/h̄ω = 6, the λ parameter
assumes the value of unity for all p values.

As shown in Fig. 7(b), for a fixed value of the temperature
T , the HBT radius RHBT decreases slightly and then increases
gradually with p. For a fixed p with a small p, the increase
in RHBT is slow at low temperatures and the increase becomes
more rapid as the temperature approaches the condensate
temperature of Tc/h̄ω = 5.12.

VIII. BOSE-EINSTEIN CONDENSATION OF PIONS IN A
MEAN FIELD (NON-RELATIVISTIC)

There is not much information on the magnitude of the
mean-field potential experienced by the pions. From the
Glauber theory [53], the mean-field potential experienced by
a pion in a pion medium is related to the pion density ρr (r) by

V (r) = −2πf (0)

m
ρr (r), (59)

where f (0) is the forward π -π scattering amplitude. We hope
to evaluate the pion mean-field potential in the future. In the

meantime, the results in the previous sections allow us to
answer the following theoretical question: If a system of N

pions is held together by its mean field, taken to be a harmonic
oscillator, and if it comes to a state of static equilibrium with
a given root-mean-squared radius rrms at a temperature T ,
what is the condensate fraction of such a system? The answer
to this theoretical question will provide useful information
on the importance of the Bose-Einstein condensation for a
pion system in static equilibrium, to pave the way for future
investigations for the system in dynamical expansion.

We would like to examine pion systems with a typical
rrms, T , and pion number that one encounters in high-energy
heavy-ion collisions. For a pion gas distribution with an HBT
radius of about RHBT = 6 fm as appropriate for Au-Au central
collisions [9], the root-mean-squared radius rrms for a Gaussian
density distribution is

√
3RHBT, which is about 10 fm. We

shall therefore examine a pion system with rrms = 10 fm, a
temperature range from 80 to 160 MeV, and pions numbering
N = 250 (for a central SPS Au-Au collision at

√
sNN =

19.4 GeV) and N = 2000 (for a central RHIC Au-Au
collisions at

√
sNN = 200 GeV).

For a pion with a temperature of 80 to 160 MeV, which is of
the order of the pion rest mass of 140 MeV, the motion of the
pions is relativistic and the proper treatment will need to be
relativistic in nature. We shall carry out a relativistic treatment
of the pion states in the next section and shall content ourselves
here in the type of solution one gets in a nonrelativistic
treatment. Carrying out both relativistic and nonrelativistic
treatments will allow one to understand what features of the
coherence are sensitively affected by the relativistic motion.

We first determine the strength of the mean-field potential
h̄ω that can hold a system of N pions in static equilibrium
at the temperature T for a given root-mean-squared radius of
rrms. For the pion system in static equilibrium, the quantity
rrms/a is a function FN (x) of the variable x = T/h̄ω as shown
in Fig. 4, where the subscript N labels the boson number. If
the value of rrms is fixed as given, the quantities h̄ω and T are
then related by the set of parametric equations

h̄ω = [h̄FN (x)]2

r2
rmsm

, (60)

T = x
[h̄FN (x)]2

r2
rmsm

. (61)

By varying x = T/h̄ω for a fixed rrms and using the function
FN (x) of Fig. 4 in these equations, the energy h̄ω can be
determined as a function of T for the cases of N = 2000 and
N = 250. The results are shown in Fig. 8(a). One finds that
for the pion system with a given root-mean-squared radius of
10 fm, the value of h̄ω ranges from about 12 to 20 MeV for N =
2000 and from about 20 to 30 MeV for N = 250. The ratio of
T/h̄ω is about 7 for N = 2000, and it is about 4.5 for N = 250,
as shown in Fig. 8(b). From these ratios of T/h̄ω, one can use
Fig. 2 to find out the condensate fraction. The condensate
fractions f0(T ) for a pion gas at various temperatures with
N = 2000 and N = 250 are shown in Fig. 8(c). One finds
that f0(T ) is about 0.67–0.8 for N = 2000 and is about 0.9
for N = 250. The knowledge of h̄ω in Fig. 8(a) allows one to
determine the values of a as a function of the temperature, as
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FIG. 8. (Color online) (a) The potential strength h̄ω, (b) the ratio
T/h̄ω, (c) the condensate fraction f0, and (d) the oscillator length
parameter a for nonrelativistic boson systems with N = 2000 and
N = 250 in static equilibrium with rrms = 10 fm ploted as a function
of temperature.

shown in Fig. 8(d). The oscillator length a is about 4 fm for
N = 2000 and about 3.5 fm for N = 250.

What is the depth of the mean-field potential that holds
the pions together in static equilibrium for a given rrms? The
depth of the potential is approximately h̄ω(rrms/a)2/2 [see
Eq. (1)]. For rmrs = 10 fm and T ∼ 120 MeV, the results in
Figs. 8(a) and 8(c) show that the depth of the potential needs
to be about 18(MeV) × 2.52/2 ∼ 56 MeV for N = 2000, and
it is about 25(MeV) × 32/2 ∼ 112 MeV for N = 250. These
are not very deep potentials. It will be of interest to determine
theoretically the mean-field potential for an assembly of pions
at different temperatures.

We reach the following conclusion from this study: If
a nonrelativistic pion system maintains a static equilibrium
within its mean field, and if it contains a root-mean-squared
radius, a pion number, and a temperature typical of those
in high-energy heavy-ion collisions, then it will contain a
large fraction of the Bose-Einstein pion condensate. The
pion condensation will affect the parameter λ in momentum
correlation measurements.

The evolution of pions in high-energy heavy-ion collisions
involves dynamical motion and the pions may not be in a
state of static equilibrium. The static solutions examined here
serve as supplementary tools relative to which the effects
of the dynamical motion and nonequilibrium effects may be
investigated.

IX. RELATIVISTIC TREATMENT OF A BOSON GAS IN
A HARMONIC OSCILLATOR

For pions in the environment of a high-energy heavy-ion
collision, the pion temperature is of the order of the pion rest
mass and a relativistic treatment of the pion motion is needed.
We therefore examine a boson in an external field characterized
by a timelike vector interaction A0(r), a spacelike interaction

A(r), and a scalar interaction S(r). The Klein-Gordon equation
for the motion of the boson is

{[p0 − A0(r)]2 − [p − A(r)]2 − [m + S(r)]2}u(r) = 0. (62)

Different types of interaction potentials will lead to different
single-particle spectra and different Bose-Einstein conden-
sations that will need to be explored in more detail in the
future. We shall examine here at this stage only the simplest
kind of exactly solvable potential that is closely connected to
the harmonic oscillator potential in the nonrelativistic limit.
Accordingly, we study scalar interactions S(r) and introduce
the interaction interaction V (r) related to S(r) by

V (r) = S(r) + [S(r)]2

2m
. (63)

The V (r) and the S(r) potentials approach each other in the
nonrelativistic limit of m → ∞. In terms of V (r), we have

[m + S(r)]2 = m2 + 2mV (r), (64)

and the eigenvalue equation for relativistic motion with only a
scalar interaction becomes[

p2

2m
+ V (r)

]
u(r) = p2

0 − m2

2m
u(r) ≡ εu(r), (65)

where the eigenvalue ε is related to the particle energy p0 by

p0 ≡ E =
√

m2 + 2mε. (66)

To make the problem simple and to connect with earlier exactly
solvable nonrelativistic solutions, we choose to consider V (r)
to be the same harmonic oscillator potential of Eq. (1),

V (r) = 1
2mω2r2. (67)

The eigenenergy of the relativistic boson is exactly soluble and
is

En =
√

m2 + 2mεn, (68)

where

εn = (
n + 3

2

)
h̄ω. (69)

We likewise introduce the recalibrated Ẽn measured relative
to the energy of the n = 0 state:

Ẽn =
√

m2 + 2m
(
n + 3

2h̄ω
) −

√
m2 + 2m × 3

2h̄ω. (70)

Instead of the nonrelativistic condition of Eq. (6), the relativis-
tic condensate configuration condition becomes

N = N0 + NT = z

1 − z
+

∞∑
n>0

gnze
−βẼn

1 − ze−βẼn

, (71)

where gn = (n + 1)(n + 2)/2.
To solve for the fugacity parameter z in the relativistic case,

it is necessary to specify h̄ω/m, the ratio of harmonic oscillator
energy scale h̄ω to the rest mass m of the boson. A small h̄ω/m

ratio approaching zero corresponds to the nonrelativistic limit
and a large ratio relative to zero leads to the relativistic case.

We are interested in the case where the mass m of the
boson is of the order of the gas temperature T . We shall see
in Fig. 13(a) later that a boson system with N = 2000 pions,
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FIG. 9. (Color online) (a) The fugacity parameter z satisfying
the relativistic condensate configuration condition Eq. (71) for
different boson numbers N and h̄ω/m = 20/140, as a function of
the temperature T/h̄ω and (b) an expanded view in the z ∼ 1 region.

T ∼ m, and a root-mean-squared radius of 10 fm corresponds
to a harmonic oscillator energy h̄ω ≈ 40 MeV, which is a
substantial fraction of the rest mass m. We shall therefore
investigate relativistic boson systems with h̄ω/m = 40/140 in
our numerical studies.

With this specification of h̄ω/m with N and βh̄ω = h̄ω/T

held fixed, the relativistic condensate configuration condition
[Eq. (71)] can be solved numerically to determine the unknown
z. We show in Fig. 9 the fugacity z that satisfies the relativistic
condensate configuration condition for different temperatures
T/h̄ω and different boson numbers N . To get a better view of
the z values, we show an expanded view of Fig. 9(a) in the
z ∼ 1 region in Fig. 9(b).

We observe that the fugacity parameter z is close to unity
in the strongly coherent region at low temperatures. Upon
a comparison of Fig. 9 with Fig. 1, one notices that the
shapes of z as a function of T/h̄ω for the relativistic and the
nonrelativistic cases are very similar, except that the scale of
the temperatures are much reduced for the relativistic case. For
N = 2000, the condensate temperature occurs at T/h̄ω ∼ 3.5
in the relativistic case, in contrast to the nonrelativistic case
at T/h̄ω ∼ 11. For N = 250, the condensate temperature
occurs at T/h̄ω ∼ 1.9 in the relativistic case, in contrast to
the nonrelativistic case of T/h̄ω ∼ 5.1. To see why these large
changes occur, we note that the recalibrated energy expanded
in powers of 1/m is

Ẽn = ε̃n − ε2
n

2m
+ O

(
ε3
n

m2

)
. (72)

For the relativistic harmonic oscillator potential we have
chosen, the spectrum of Ẽn is nearly the same as those in
the nonrelativistic case of ε̃n for small values of n. However,
the spectrum for large values of n is greatly compressed
by the presence of the second term with a negative sign in
Eq. (72). As a result, a large number of chaotic particles can
be accommodated even at a lower temperature, leading to a
large shift of the condensate temperature in units of h̄ω in
Fig. 9 when relativistic effects are included.
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FIG. 10. (Color online) Different curves represent condensate
fractions f0(T ) as a function of T/h̄ω for different boson numbers
N , calculated with the relativistic condensate configuration condition
Eq. (71) for h̄ω/m = 40/140. The abscissa labels for the correspond-
ing chaotic fraction fT (T ) = [1 − f0(T )] are indicated on the right.

After the value of the solution z is obtained, N0 = z/(1 − z)
and NT can be subsequently determined to give the condensate
configuration specified by the condensate fraction f0 and the
chaotic fraction fT .

The condensate fractions f0(T ) as a function of T/h̄ω

calculated with the fugacity parameters of Fig. 9 for different
boson numbers N and h̄ω/m = 40/140 are shown as different
curves in Fig. 10. The abscissa labels for the corresponding
chaotic fraction fT (T ) = [1 − f0(T )] are indicated on the
right. We observe that the behavior of the condensate fraction
in the relativistic case is similar to that of the nonrelativistic
case, with the exception of the shift of the temperature T/h̄ω to
lower values. Again, the transition from the condensate phase
to the chaotic phase occurs over a large range of temperatures
and is therefore not a sharp first-order-type transition. The
complementary chaotic fraction fT (T ) increases gradually as
the temperature increases, reaching the value of unity at large
T/h̄ω.

X. SPATIAL AND MOMENTUM DISTRIBUTIONS IN
THE RELATIVISTIC CASE

Knowledge of the fugacity parameter for different tem-
peratures allows one to determine the occupation numbers
at different single-particle states. These occupation numbers
and the absolute square of the single-particle wave functions
give the spatial and momentum densities of the system at
different temperatures. As we remarked previously, ρp( p) and
ρr (r) have the same shape when properly scaled. It suffices to
consider the spatial density ρr (r) given by

ρr (r) = G(1)(r, r) =
∞∑

n=0

ze−βẼn

1 − ze−βẼn

u∗
n(r)un(r), (73)

where n represents the set of quantum numbers {nr lm} of a
harmonic oscillator state, un(r) is the harmonic oscillator wave
function normalized to

∫
dr|un(r)|2 = 1,

un(r) = Nnr lx
le−x2/2L

l+ 1
2

nr
(x2)Ylm(θ, φ), (74)

n = 2nr + l, x = r/a, L
l+ 1

2
nr

(x2) is the associated Laguerre
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FIG. 11. (Color online) The spatial density distribution ρr (r) in
units of a−3, expressed as a function of r/a, and the momentum
density distribution ρp( p) in units of (a/h̄)3, expressed as a function
of pa/h̄, for the relativistic case of h̄ω/m = 40/140 with N = 2000
at different temperatures.

polynomial, and

(
Nnr l

)2 = 2n!

a3�
(
nr + l + 3

2

) . (75)

We plot in Fig. 11 the spatial and momentum distributions
of the system with N = 2000 for the relativistic case of
h̄ω/m = 40/140 as a function of their dimensionless variables
r/a and pa/h̄, respectively. One observes that up to T/h̄ω ∼ 3
the system has a small spatial or momentum size and there is
a substantial condensate fraction in the system. In Fig. 12
we plot the root-mean-squared radius in unit of a, rrms/a =√

〈(r/a)2〉, and the root-mean-squared momentum in unit
of h̄/a, prmsa/h̄ =

√
〈(pa/h̄)2〉, as a function of T/h̄ω. For

N = 2000, the quantity rrms/a is slightly greater than 1 up
to T/h̄ω ∼ 2, and it increases relatively rapidly to about 6.5
at the condensate temperature, Tc/h̄ω ∼ 3.5. It increases at a
relatively slower rate at temperatures above Tc.

We can carry out an analysis to inquire the following: If a
system of N = 2000 relativistic pions is held together by its
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FIG. 12. (Color online) The root-mean-squared radius in units of
a and the root-mean-squared momentum in units of h̄/a, as a function
of T/h̄ω for different numbers of bosons in the system.
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FIG. 13. (a) The potential strength h̄ω, (b) the ratio T/h̄ω,
(c) the condensate fraction f0, and (d) the oscillator length parameter
a for relativistic boson systems with N = 2000 and N = 250
in static equilibrium with rrms = 10 fm plotted as a function of
temperature.

mean field, taken to be a harmonic oscillator, and if it comes
to a state of static equilibrium with a given root-mean-squared
radius rrms at a temperature T , what is the condensate fraction
of such a system? We shall therefore examine a pion system
with rrms = 10 fm, a temperature range from 80 to 160 MeV,
and N = 2000 pions (for a central RHIC Au-Au collisions at√

sNN = 200 GeV). We have chosen h̄ω/m = 40/140 to be
approximately self-consistent with the value of h̄ω extracted
form such an analysis [see Fig. 13(a)]. If the value of rrms

is fixed as given, the quantities h̄ω and T are then related
by the set of parametric equations (60) and (61). Using the
function rrms/a = FN (x) of Fig. 12 in these equations and
varying x = T/h̄ω for a fixed rrms, one can determine the
energy h̄ω as a function of T for the case of N = 2000. The
results are shown in Fig. 13(a). One finds that for the pion
system with a given root-mean-squared radius of 10 fm, the
value of h̄ω ranges from about 30 to 53 MeV for N = 2000,
with an average of about 42 MeV. The ratio of T/h̄ω is about
2.7 to 3 for N = 2000, as shown in Fig. 8(b). From these
ratios of T/h̄ω, one can use Fig. 2 to determine the condensate
fraction. The condensate fractions f0(T ) for a pion gas at
various temperatures with N = 2000 are shown in Fig. 8(c).
One finds that f0(T ) is between 0.5 and 0.7 for N = 2000.
The knowledge of h̄ω in Fig. 8(a) allows one to determine
the values of a as a function of the temperature, as shown in
Fig. 8(d). The oscillator length a is between 3 and 2.2 fm for
N = 2000.

The relativistic analysis indicates that the relativistic effects
change the single-particle spectrum and shift the locations
of the condensate fraction in units of h̄ω. The condition of
maintaining a system size with a root-mean-squared radius
of 10 fm recalibrates and raises the oscillator energy h̄ω for
the relativistic case, as compared to the nonrelativistic case.
As a consequence, the condensate fraction for N = 2000 is
modified from f0 ∼ 0.67–0.8 in the nonrelativistic to f0 ∼
0.5–0.7 in the relativistic case. There is a small reduction of
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the condensate fraction, but the condensate fraction remains
quite large in the relativistic case.

We again reach the following conclusion from this study: If
a relativistic pion system maintains a static equilibrium within
its mean field, and if it contains a root-mean-squared radius,
a pion number, and a temperature typical of those in high-
energy heavy-ion collisions at RHIC, then it will contain a
large fraction of the Bose-Einstein pion condensate.

XI. DISCUSSION AND CONCLUSIONS

As the chaoticity parameter λ has been widely used
in all HBT measurements, we are therefore motivated to
investigate an exactly solvable problem to study the mo-
mentum correlation function for a noninteracting boson gas
assembly held together in a harmonic oscillator potential at
various temperatures. In the process, we find that the phase
transition from the Boson-Einstein condensate to the chaotic
phase occurs gradually over a large range of temperatures,
with the condensate fraction f0(T ) varying approximately
as 1 − (T/Tc)3, where the condensate temperature Tc is
approximately given by (N/1.202)1/3h̄ω. The spatial and the
momentum radii of the system are small in a condensate
at low temperatures, of the order of a few oscillator units,
increasing in size as the temperature reaches the chaoticity
limit.

From the momentum correlation function, we can deter-
mine the λ(p, T ) parameter and the HBT radius RHBT. We
find that the λ(p, T ) parameter is a sensitive function of both
the pair momentum p and the temperature T . For a temperature
above the condensate temperature, the λ(p, T ) parameter is 1
for all momentum p. However, for temperatures below and
even substantially below the condensate temperature, λ(p, T )
is small and close to zero for small pair momentum p, but it
increases and saturates at λ(p, T ) = 1 at large pair momentum
p. The location where λ(p, T ) attains unity changes with the
temperature. The lower the temperature, the greater is the value
of p at which the λ(p, T ) attains the value of unity. Because
the λ(p, T ) parameter attains the value of unity for systems
at temperatures much below the condensate temperature, the
occurrence of λ = 1 is not consistently correlated with the
absence of a condensate fraction. Only in the region of small
p will the parameter λ(p, T ) be correlated with, but not equal
to, the chaotic fraction fT (T ) of the system.

We find that the HBT radius RHBT increases gradually with
increasing pair momentum p and temperature T . However,
for small value of p, the HBT radius increases only slowly
with increasing temperature at low temperatures and it then
increases rapidly and abruptly as the temperature approaches
the condensate temperature. The temperature dependence
of the HBT radius at small p values correlates well with the
temperature dependence of the root-mean-squared radius of
the system.

It is of interest to inquire about the degree of coherence of
pion systems produced in high-energy heavy-ion collisions.
We have examined both cases of pions as a nonrelativistic
and a relativistic gas in a harmonic oscillator potential. If a
pion system maintains a static equilibrium in its mean field,

and if it contains pion numbers from N = 250 to N = 2000,
a temperature in the range from 80 to 160 MeV, and a root-
mean-squared radius of 10 fm (typical of those one encounters
in high-energy heavy-ion collisions), then it will contain a large
fraction of the Bose-Einstein pion condensate. The details of
the nonrelativistic and relativistic calculations are presented in
Secs. VIII and X, but we can provide simple arguments here
to indicate that these are reasonable results based on plausible
physical principles. Bose-Einstein condensation occurs when
the temperature is below the condensate temperature, which
is a few units of h̄ω. We need to estimate the energy scale
h̄ω for the pion system. The energy scale can be estimated
by knowing the length unit a. One expects that the pion
system with a root-mean-squared radius of 10 fm would be
contained within a few units of this length a, leading to a
rough estimate of the length unit a to be about a few femto
meters. By dimensional analysis, the energy scale associated
with this length unit a for a pion is h̄ω = h̄2/ma2, which gives
a value of many tens of MeV for h̄ω. With a temperature of
T = 120 or 140 MeV, we obtain the ratio T/h̄ω of a few units,
which would correspond to a T/h̄ω ratio with a substantial
condensate fraction. We can therefore understand that the
occurrence of the pion condensation in static equilibrium arises
because the pions are massive particles, and a large number of
pions are produced and concentrated in a small spatial volume
characterized by a root-mean-squared radius of only 10 fm.
The pion gas in static equilibrium is therefore in the realm of
low-temperature boson systems with possible occurrence of
Bose-Einstein condensation.

The evolution of pions in high-energy heavy-ion collisions
contain dynamical motion and may not be in a state of static
equilibrium. How the dynamical motion of the pions will
modify the coherence of the system will be an interesting
subject for future investigations.

While we await future theoretical investigations, it is of
interest in the meantime to discuss possible modifications of
the static results obtained here in the presence of a collective
expansion. One expects that the collective expansion will
not alter the energy ordering of the states of the system.
Because the Bose-Einstein condensation depends on the
relative ordering of the energy of the states, the coherence may
not be greatly affected. However, the average pair momentum
in the direction of the expansion will be greatly boosted. The
λ(p, T ) parameter for the expanding coherent source as a
function of the pair momentum would likely retain a shape
similar to that of the static case, but with the p boosted by
the collective expansion. In this connection, it is interesting to
note that the experimental λ values plotted as a function of the
pair transverse momentum has a shape [54,55] quite similar
to the shape of the λ(p, T ) parameter plotted as a function
of the average pair momentum pa/h̄ in Fig. 6(a). Although
alternative explanations in terms of a decrease in the resonance
decay contributions at higher pT have been presented, it will
be of interest to explore whether the behavior of λ as a function
of the pair transverse momentum may be due to the occurrence
of an expanding Bose-Einstein condensate.

The theoretical HBT radius for a static source increases
slightly as the pair momentum increases, whereas the exper-
imental measurements give an HBT radius decreasing as pT
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increases. The theoretical HBT radius may be more sensitively
affected by the expansion dynamics because the collective
expansion boosts not only the average pair momentum but also
the relative momentum between the correlated pair, with the
boost being greater at larger magnitude of the pion momentum.
Because a larger relative momentum leads to a smaller HBT
radius, the HBT radius therefore decreases as a function of
the pair momentum. Clearly, whether future analyses bear out
this possibility will be of great interest. How the collective
pion motion will affect quantitatively the HBT radius for a
boson system with varying degrees of coherence is therefore
an interesting subject for future investigations.

It has been proposed that the question of whether an
observation of λ < 1 is due to coherence or due to contami-
nation from particles from far outside the source volume can
be tested by analyzing three-particle correlations [56]. Such
analyses of data at both SPS and RHIC have been consistent
with the chaotic conjecture [57]. However, as we note, the
λ(p, T ) parameter can assume the value of unity in certain
kinematic regions even for significantly coherent systems with
a temperature much below the condensate temperature, and
so the attainment of λ = 1 cannot be a unique signature of
the chaoticity of a system. However, how the coherence of
the boson system may affect three-body correlations has not
been worked out explicitly and merits further investigations to
clarify the situation.

It needs to be emphasized that to make the problem
tractable as an exactly solvable model, we have specialized
to a static treatment of the boson system in equilibrium in both
a nonrelativistic and a relativistic harmonic oscillator potential,
for which analytical eigenenergies and eigenfunctions can be
readily available. This is a simple model of a noninteracting
boson gas in an external potential without two-body inter-
actions. Even with such an idealization, a wealth of new
information on the coherence and two-particle momentum
correlation functions as well as the chaoticity parameter has
been obtained as a function of the attributes of the boson
environment.

The harmonic oscillator potential introduced here can arise
from an external trap, as in atomic physics. In high-energy
heavy-ion collisions, the harmonic oscillator potential can
arise approximately from the mean-field potential experienced
by a pion, owing to the interactions generated by other
pions and medium particles. Although approximating the pion
mean-field potential as a harmonic oscillator potential can
yield gross features and a wealth of information, a more
accurate determination of the pion momentum and correlation
functions will require a better description of the pion mean-
field potential. As the mean-field potential depends on the pion
density as in the Glauber theory [53], and the equilibrium pion
density depends in turn on the mean-field potential, it will be
necessary in the future to study the pion mean-field potential
and the density self-consistently in a pion condensate. Besides
these mean-field interactions between pions, the remaining
residue interactions will give rise to additional complications
that may be studied in the future.

We have described the correlations in a static equilib-
rium environment and we need to discuss how the time
dependence can be handled. An accurate dynamical treatment

will examine the time evolution of the system for a set
of given initial conditions, as in a time-dependent Hartree
approximation following the technique of the time-dependent
Hartree-Fock approximation developed in nuclear physics.
[58,59]

While we await future work on the time dependence of
the correlation function, the static results obtained here can
be used for experimental comparison if the time dependence
of the external field is such that the external potential is
suddenly removed, as in a typical condensed matter ex-
periment with trapped atomic particles in a condensate. In
these low-temperature measurements with atoms, the trapped
atoms before being released are now described as having
an equilibrium momentum distribution in momentum space,
appropriate for the system in a given external field at a given
temperature. The sudden removal of the external field allows
the initial momentum distribution of the particle to be frozen
at the moment of the external field removal, as appropriate
under the application of the sudden approximation in quantum
mechanics. Subsequent free streaming of the particles without
the external field and mutual interactions (except for the
additional correction of the gravitational field or other extra
forces applied to the particles) allows the reconstruction of
the momentum distribution of the source at the moment of
its freezing out. In measuring the arrival times and arrival
positions of the particles of a correlated pair in Ref. [50],
the quantities that are in effect measured are the momenta
of correlated pairs, from which the average momenta and the
relative momenta of the pair can be collected and examined.
The perspectives of studying the correlation in momentum
space presented here offer useful complementary viewpoints
to the theoretical and experimental works in atomic physics
that have been focused so far on the correlation function in
configuration space.

The results obtained here can be approximately applied
to heavy-on collisions if the explosive expansion is so rapid
that it can be approximately described as a sudden removal
of the external field. In that case, the static initial momentum
distribution and correlations of the particles would be frozen
at the moment of the external field removal and show up
as particles reaching the detectors by free streaming. In
this respect, it is of great interest to examine in the future
a dynamical model of the expansion of the pion gas and
study how the explosive expansion will affect the momentum
correlation function.

ACKNOWLEDGMENTS

The authors would like to thank Prof. R. Glauber for
stimulating discussions and for pointing out the importance
of the pion coherence in high-energy heavy-ion collisions.
The authors wish to thank Drs. Teck-Ghee Lee and Jian-Shi
Wu for helpful discussions. This research was supported in
part by the National Science Foundation of China under
Contract No. 10575024 and in part by the Division of Nuclear
Physics, Department of Energy, under Contract No. DE-AC05-
00OR22725 managed by UT-Battelle, LLC.

034905-14



CHAOTICITY PARAMETER λ IN HANBURY- . . . PHYSICAL REVIEW C 76, 034905 (2007)

[1] R. Hanbury-Brown and R. Q. Twiss, Philos. Mag. 45, 633
(1954); Nature 177, 27 (1956); 178, 1046, (1956); 178, 1447
(1956).

[2] For a general review of the Hanbury-Brown–Twiss intensity
interferometry, see Chapter 17 of C. Y. Wong, Introduc-
tion to High-Energy Heavy-Ion Collisions (World Scientific,
Singapore, 1994).

[3] M. Gyulassy, S. K. Kauffmann, and L. W. Wilson, Phys. Rev. C
20, 2267 (1979).

[4] D. Boal, C.-K. Gelbke, and B. K. Jennings, Rev. Mod. Phys. 62,
553 (1990).

[5] W. Bauer, C. K. Gelke, and S. Pratt, Annu. Rev. Nucl. Part. Sci.
42, 77 (1992).

[6] W. A. Zajc, in Particle Production in Highly Excited Matter,
edited by H. H. Gutbrod and J. Rafelski (Plenum Press,
New York, 1993), p. 435.

[7] U. Heinz and B. Jacak, Annu. Rev. Nucl. Part. Sci. 49, 529
(1992).

[8] U. A. Wiedemann and U. Heinz, Phys. Rep. 319, 145 (1999).
[9] M. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, Annu. Rev. Nucl.

Part. Sci. 55, 357 (2005).
[10] G. Goldhaber, S. Goldhaber, W. Lee, and A. Pais, Phys. Rev.

120, 300 (1960).
[11] G. I. Kopylov and M. J. Podgoretsky, Yad. Fiz. 18, 656 (1973)

[Sov. J. Nucl. Phys. 18, 336 (1974)].
[12] G. N. Fowler and R. M. Weiner, Phys. Lett. B70, 201 (1977).
[13] S. E. Koonin, Phys. Lett. B70, 43 (1977); F. B. Yano and S. E.

Koonin, Phys. Lett. B78, 556 (1978).
[14] S. Y. Fung, W. Gorn, G. P. Kiernan, J. J. Lu, Y. T. Oh, and R. T.

Poe, Phys. Rev. Lett. 41, 1592 (1978).
[15] M. Biyajima, Phys. Lett. B92, 193 (1980); Prog. Theor. Phys.

66, 1378 (1981); 68, 1273 (1982).
[16] S. Pratt, Phys. Rev. Lett. 53, 1219 (1984); Phys. Rev. D 33, 72

(1986); 33, 1314 (1986).
[17] Y. Hama and S. S. Padula, Phys. Rev. D 37, 3237 (1988).
[18] M. Gyulassy and S. S. Padula, Phys. Lett. B217, 181 (1988).
[19] Yu. M. Sinyukov, Nucl. Phys. A498, 151c (1989).
[20] D. A. Brown and P. Danielewicz, Phys. Lett. B398, 252 (1977);

Phys. Rev. C 57, 2474 (1998); 64, 014902 (2001).
[21] U. A. Wiedemann, B. Tomás̆ik, and U. Heinz, Nucl. Phys. A638,

475c (1998).
[22] T. D. Shoppa, S. E. Koonin, and R. Seki, Phys. Rev. C 61, 054902

(2000).
[23] F. Grassi, Y. Hama, S. S. Padula, and O. Socolowski, Jr., Phys.

Rev. C 62, 044904 (2000).
[24] W. N. Zhang, G. X. Tang, X. J. Chen, L. Huo, Y. M. Liu, and

S. Zhang, Phys. Rev. C 62, 044903 (2000).
[25] M. A. Braun, F. del Moral, and C. Pajares, Eur. Phys. J. C 21,

557 (2001); Phys. Lett. B551, 291 (2003).
[26] H. Nakamura and R. Seki, Phys. Rev. C 66, 027901 (2002).
[27] U. Heinz and P. Kolb, Nucl. Phys. A702, 269 (2002).
[28] D. Zschiesche, H. Stocker, W. Greiner, and S. Schramm, Phys.

Rev. C 65, 064902 (2002).
[29] C. Y. Wong, J. Phys. G 29, 2151 (2003); 30, S1053 (2004).
[30] W. N. Zhang, M. J. Efaaf, C. Y. Wong, and M. Khalilisr, Chin.

Phys. Lett. 21, 1918 (2004).
[31] W. N. Zhang, M. J. Efaaf, and C. Y. Wong, Phys. Rev. C 70,

024903 (2004).
[32] C. Y. Wong and W. N. Zhang, Phys. Rev. C 70, 064904

(2004).
[33] J. Kapusta and Y. Li, J. Phys. G 30, S1069 (2004).

[34] W.-N. Zhang, S.-X. Li, C. Y. Wong, and M. J. Efaaf, Phys. Rev.
C 71, 064908 (2005); C. Y. Wong, AIP Conf. Proc. 828, 617
(2006).

[35] O. V. Utyuzh, G. Wilk, and Z. Wdodarczyk, Phys. Rev. D 75,
074030 (2007).

[36] W. N. Zhang, Y. Y. Ren, and C. Y. Wong, Phys. Rev. C 74,
024908 (2006).

[37] W. N. Zhang and C. Y. Wong, invited talk presented at the
XI International Workshop on Correlation and Fluctuation in
Multiparticle Production, Nov. 21–24, 2006, Hangzhou, China,
arXiv:hep-ph/0702120.

[38] C. Y. Wong and W. N. Zhang, invited talk presented at the
XI International Workshop on Correlation and Fluctuation in
Multiparticle Production, Nov. 21–24, 2006, Hangzhou, China
hep-ph/0702121.

[39] R. J. Glauber, Phys. Rev. Lett. 10, 84 (1963); Phys. Rev. 130,
2529 (1963); 130, 2766 (1963).

[40] H. Heiselberg, Phys. Lett. B379, 27 (1996).
[41] R. Glauber, Nucl. Phys. A774, 3 (2006).
[42] H. D. Politzer, Phys. Rev. A 54, 5048 (1996).
[43] M. Naraschewski and R. J. Glauber, Phys. Rev. A 59, 4595

(1999).
[44] J. Viana Gomes, A. Perrin, M. Schellekens, D. Boiron, C. I.

Westbrook, and M. Belsley, Phys. Rev. A 74, 053607 (2006).
[45] M. Yasuda and F. Shimizu, Phys. Rev. Lett. 77, 3090 (1996).
[46] D. Hellweg, L. Cacciapuoti, M. Kottke, T. Schulte, K. Sengstock,

W. Ertmer, and J. J. Arlt, Phys. Rev. Lett. 91, 010406 (2003).
[47] M. Greiner, C. A. Regal, J. T. Stewart, and D. S. Jin, Phys. Rev.

Lett. 94, 110401 (2005).
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