
PHYSICAL REVIEW C 76, 034606 (2007)

Dynamic polarization of light halo nuclei in strong fields:
6He + 209Bi elastic scattering below and close to the Coulomb barrier
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The elastic scattering of light halo nuclei in the field of heavy targets has been studied for collision energies
below the Coulomb barrier. Based on the assumption that the neutron halo follows the projectile adiabatically
along its classical trajectory, a dynamic polarization potential is derived which describes both the (electrical)
polarization as well as the breakup of the projectile in the field of the target. Detailed computations have been
carried out for the elastic scattering of 6He + 209Bi at energies between 14.7 MeV and 19.1 MeV near to the
Coulomb barrier. It is demonstrated that the polarization of the halo nucleus leads to a clear decrease of the
(elastic) scattering cross section in excellent agreement with a recent measurement by Aguilera et al. [Phys. Rev.
Lett. 84, 5058 (2000)].
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I. INTRODUCTION

The existence of (neutron) halos in light and midrange
nuclei has been one of the most fascinating discoveries in
nuclear and astrophysics during the last two decades [1–8].
Today, such neutron halos are well confirmed for a number of
light nuclei, including 6He, 11Li, 14Be as well as for several
others. Usually, these halos are formed by two (or more)
loosely attached neutrons which surround a deeply bound
core with binding energies of less than 1 MeV, in contrast
to the 6–8 MeV of stable nuclei. Therefore, by studying the
properties of halo nuclei, one may obtain information not
only about the nuclear forces but also on neutron-neutron
correlations [2,3] or (so-called) astrophysical S-factors [9] for
describing various nuclear reactions. Aside from experimental
investigations on the β-delayed deuteron emission [10] and
the scattering and breakup of halo nuclei [11,12], several
theoretical models have been suggested in order to understand
the structure of halo nuclei including, for example, the
adiabatic treatment of the internal coordinates of the neutron
halo [4], a microscopic model [13], the two-frequency shell
model [14], continuum-discretized coupled channels (CDCC)
[15–21], or the tree-body continuum theory [22–26].

In order to explore the (shape and) structure of neutron
halos, perhaps the simplest process is the elastic scattering
of halo nuclei in the field of heavy targets at energies below
and near the Coulomb barrier. For a pure Coulomb field, for
example, the angle-differential scattering cross section of a
point-like projectile along a classical (Rutherford) trajectory
is well known to follow a 1/sin4(θ/2) dependence with θ

being the scattering angle of the projectile. For heavy (and
nearly magic) targets, moreover, one can often neglect the
effects of the Coulomb excitation as the first excited level has
a large excitation energy from the ground state. During the
last decade, therefore, the elastic scattering and breakup of
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halo nuclei has attracted a lot of recent interest [27–29] and
may provide new insights into the structure of halo nuclei.
The Coulomb breakup of 2n halo nuclei (6He, 11Li) exhibits
a large dipole transition strength just close to the breakup
threshold [30,31]. Owing to the elastic scattering experiments
for 6He and 11Li, in addition, an extended neutron density
distribution was established recently [11,12].

In this article, we present an adiabatic model for describing
the elastic scattering of light halo nuclei in the Coulomb field of
heavy targets. In this model, the neutron halo is assumed to be
polarized by the Coulomb field of the target while moving
along a classical (Rutherford) trajectory as summarized in
Sec. II A. In Sec. II B, we then present the Schrödinger
equation for this motion of the halo nucleus in the Coulomb
field of the heavy target. Since the internal motion of the (halo)
projectile is supposed to follow the field adiabatically, we are
able to divide this Schrödinger equation into two equations:
One for the center-of-mass motion along the Rutherford
trajectory and a second one to describe the internal motion
of the halo nucleus. Based on the adiabatic and the zero-range
approximations, we derive in particular an expression for the
relative wave function in terms of the Greens propagator. In
Sec. II E, moreover, an expression is obtained for the dynamic
polarization potential which applies for any arbitrary system
with a dineutron configuration. This polarization potential
is later utilized in Sec. III in order to calculate the elastic
angle-differential cross sections for the collision of low-energy
6He ions by 209Bi. A remarkable reduction of the elastic
scattering cross sections is found due to the asymmetry of the
halo nucleus, and in very good agreement with the experiment
[27,32]. Finally, a brief summary is given in Sec. IV.

II. THEORY

To analyze the cross sections for the elastic scattering
of light, neutron-rich nuclei by heavy targets at sub-barrier
energies, i.e., below and near the Coulomb barrier, we may
assume a deuteron-like structure for the projectile. This means
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that the halo nucleus (‘deuteron’) with mass md consists of
a charged core (‘proton’) with mass mp and charge Zp, and
the neutral halo (‘neutron’) with mass mn: md = mn + mp.
For such a structure of the projectile, the effective two-body
potential between the neutral halo and charged core, Vnp(r), can
be approximated by the well-known Hulthen potential [33] and
expressed in terms of the binding energy ε0 = −h̄2α2/2µ and
the reduced mass µ = mnmp/md . The (binding) energy ε0 is
those needed in order to break the halo nucleus into its ‘proton’
and ‘neutron’ clusters. For the target, moreover, we assume a
heavy and (nearly) magic nucleus with mass MT � md and
charge ZT � 1, for which Coulomb excitations are considered
to be negligible.

A. Geometry and coordinates of the neutron halo nucleus in
the Coulomb field of the heavy target

To describe the scattering of the halo projectile, let us
introduce the coordinates

R = µ

mp

rn + µ

mn

rp, r = rn − rp, (1)

where the target nucleus is taken as the origin, and rn and rp are
the position vectors of the neutral halo and the charged core,
respectively, while R denotes the center-of-mass coordinate
and r the relative position (vector) between the core and the
halo. These coordinates are displayed in Fig. 1; they allow us
to describe both the polarization as well as a breakup of the
projectile.

B. Schrödinger equation for the motion of the halo nucleus in
the Coulomb field of the heavy target

In the Coulomb field of the target, the motion of the halo
nucleus is described by the time-independent Hamiltonian

H = T̂R + T̂r + Vnp(r) + ZpZT e2

R
− �V (r, R)

= H0 − �V (r, R).

This total Hamiltonian accounts for the kinetic energy
(operators) T̂R = −h̄2�R/2md for the center-of-mass and

FIG. 1. (Color online) Coordinates to describe the elastic scat-
tering of a halo nucleus in the Coulomb field of heavy targets. The
deuteron-like projectile with mass md is formed by a charged core p
(‘proton’) and a neutral halo n (‘neutron’). See text for further details.

T̂r = −h̄2�r/2µ for the relative motion of the charged core
and the neutral halo as well as the potential energy. Apart
from the Hulthen potential Vnp(r) of the deuteron-like halo
and the Coulomb repulsion ZpZT e2/R, here we have to
include, owing to the internal structure of the halo nucleus,
the additional potential

�V (r, R) = ZpZT e2[1/R − 1/|R − µ/mpr|] (2)

in order to describe the deviations from a (pure) Coulomb
scattering of projectile in the field of heavy target.

Of course, the (total) wave function of the projectile
‘core + halo’ must obey the Schrödinger equation [34]

(H0 − E) � (r, R) = �V (r, R)� (r, R) , (3)

where the total energy E = Ed + ε0 is the sum of the
(asymptotic) kinetic energy Ed and the binding energy ε0 of
the halo projectile.

C. Approximation to the Schrödinger equation for
describing the motion of the halo nucleus in

the Coulomb field of the heavy target

1. Adiabatic approximation

An (approximate) solution to this equation can be found in
the adiabatic approach, in which we assume that the internal
motion of the halo nucleus is fast compared to the motion of
the projectile through the Coulomb field of the target [35–38].
Mathematically, this adiabatic approximation can be expressed

� (r, R) ≈ χ (R) ϕ+(r, R), (4)

where χ (R) refers to the wave function of the center of mass
and ϕ+(r, R) to those of the relative motion of the projectile,
and in which R now occurs as a parameter.

Substituting Eq. (4) into the Schrödinger equation (3), we
obtain the two (ordinary) differential equations(

T̂R + ZpZT e2

R

)
χ (R) = (E − ε0 − δV (R)) χ (R) , (5)

and

(T̂r − �V (r, R) + Vnp(r))ϕ+(r, R) = (ε0 + δV (R))ϕ+(r, R),

(6)

where the first equation describes the motion of the halo
nucleus along the Rutherford trajectory and the second,
Eq. (6), the relative motion of the neutron halo and the
charged core of the projectile. In these equations, in addition,
we modified the binding energy ε0 of the projectile at the
radius R by the (complex) potential δV (R) (|δV (R)/ε0| � 1)
to account for the polarization of the projectile in the field of
the target. Below, we shall refer to this potential as the dynamic
(Coulomb) polarization potential. In fact, the Coulomb field
of the target affects the halo nucleus in two different ways
in moving along the trajectory: Aside from a polarization of
the projectile with regard to its mass and charge distribution,
the Coulomb field may even lead to a breakup of the halo
nucleus into the charged core and the neutral halo. Both effects
are incorporated into the theoretical description by using the
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dynamic polarization potential, leading again however to a
parametric dependence on the center-of-mass coordinate R.

2. Zero-range approximation

We need to solve Eq. (6) in order to understand the internal
motion of the (halo) projectile while moving along its classical
trajectory. A solution to this equation can be found in the
zero-range approximation [39] in which a point-like two-body
interaction [36,40]

Vnp(r)ϕ+(r, R) ≈ −2πh̄2

µ

( α

2π

) 1
2
δ(r) (7)

is assumed between the charged core and the neutral halo,
and with 1/α being the mean distance between the core and
the neutrons for a free halo nucleus [41]. In the zero-range
approximation, then Eq. (6) simplifies to

(T̂r − �V (r, R) − ε0 − δV (R))ϕ+(r, R)

= −2πh̄2

µ

( α

2π

) 1
2
δ(r). (8)

As shown by Demkov and Drukarev [42], who studied the
breakup and polarizability of charged particles in an external
electric field, any solution of Eq. (8) must behave for small
values of r as ϕ+(r, R)−→

r→0

1
r

− α. We may utilize this result

to obtain an ‘initial’ value for Eq. (8) by evaluating the
logarithmic derivative of rϕ+(r, R),

lim
r→0

{(∂/∂r) ln[rϕ+(r, R)]} = −α. (9)

Having the condition (9), we can solve Eq. (8) uniquely for
any value R along the trajectory of the projectile.

D. Coulomb Green function and wave function of
the internal motion

Instead of the relative coordinate r, it is more convenient
below to use the coordinate rp of the charged core together with
the center-of-mass coordinate R. For this choice, we then have
r = (mp/µ)(R − rp) and δ(r) = (µ/mp)3δ(R − rp), while
the operator of the kinetic energy can be expressed as
T̂r = µ

mp
T̂rp

= − h̄2µ

2m2
p
�rp

in terms of the kinetic energy of the

charged core in the Coulomb field of the target. With these
substitutions, the relative wave Eq. (8) becomes

(
T̂rp

+ mp

µ

ZpZT e2

rp

− Ẽp

)
mp

µ

(
− mp

2πh̄2

) (
2π

α

) 1
2

ϕ+(rp, R)

= δ(rp − R), (10)

and where we use (again) the notation ϕ+ to represent the wave
function of the internal motion. From Eq. (10), we see that the
function

ϕ+(rp, R) ∼ GC(Ẽp, R, rp) (11)

is proportional to the Coulomb Green function GC(Ẽp, R, rp)
as known, for example, from the scattering theory [40] for a

projectile with energy

Ẽp = mp

µ

(
ZpZT e2

R
+ ε0 + δV (R)

)
= h̄2

2mp

k2(R), (12)

moving in the Coulomb potential ZpZT e2/rp, and where k(R)
on the right hand side of Eq. (12) is used in order to denote the
wave number of the charged core in the field of the target.

An explicit expression for the Coulomb Green function of
a charged particle has been worked out originally by Hostler
[43], but can be written also in the form [44]

GC ∼ 1

r

(
∂

∂ρ+
− ∂

∂ρ−

)
{H+

0 (ρ+)F0(ρ−)}, (13)

where ρ± are two radial coordinates given by

ρ± = k(R)R

2

(
1 ± rp

R
+ 1

R
|R − rp|

)

= k(R)R

2

(
1 ± µ

mp

r

R
+ 1

R
|R − µ

mp

r|
)

. (14)

In this representation of the Coulomb Green function, we have
H+

0 = G0 + iF0 and with F0 and G0 being the (well-known)
regular and irregular Coulomb functions at the origin. The
form (11) for the wave function of the internal motion of
the halo nucleus in the Coulomb field of the target is one of
the main results of this work, together with the expressions
(13) and (14). From the viewpoint of scattering theory, this
function ϕ+(r, R) describes the (quasi)stationary state of the
halo nucleus while moving along the Rutherford trajectory. It
is quasistationary because the projectile may break into its
charged core and neutral halo, with a width determined by the
imaginary part of the dynamic polarization potential δV (R).

E. Dynamic Coulomb polarization potential

In order to analyze the probability (cross section) for a
breakup of the projectile, we can apply expression (13) for
evaluating the polarization potential δV (R). Substituting this
expression into the logarithmic derivative (9), and taking the
limit r → 0, we find that the potential δV (R) must obey the
implicit equation

µ

mp

k(R)

{
H+′

0 (ρ)F ′
0(ρ) −

(
2η

ρ
− 1

)
H+

0 (ρ)F0(ρ)

}
= −α,

(15)

where η = (m2
p/µ)ZT Zpe2/k(R) denotes the Sommerfeld

parameter and ρ = lim
r→0

ρ± = k(R)R. This equation is another

important result of this work; indeed, its solution enables us
to describe both the polarization of the projectile as well as
the breakup into different parts. Note that Eq. (15) is free of
any parameter other than needed to describe the scattering
process and, hence, supports a direct solution of the elastic
scattering of halo nuclei in the Coulomb field of heavy targets.
Unfortunately, Eq. (15) cannot be solved analytically but has to
be considered numerically of R. However, we can obtain the
analytical expression for the dynamic polarization potential
δV (R) by applying, in addition, a quasiclassical approach to
the internal motion of the projectile.
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1. Quasiclassical analytical expression for
the dynamic polarization potential δV (R)

In order to obtain the analytical expression for the dy-
namic polarization potential δV (R), we must use the second
order Wentzel-Kramers-Brillouin (WKB) approximation for
Coulomb functions in Eq. (15). The WKB approximation for
the regular Coulomb function can be written as [45]

F0(ρ) � 1
2BeA. (16)

Its derivative is defined as

F ′
0(ρ) �

(
B−2 + 1

8η
t−2B4

)
F0(ρ). (17)

Here,

B =
(

t

1 − t

)1/4

, (18)

A = 2η

(
[t(1 − t)]1/2 + arcsin t1/2 − π

2

)
, (19)

t = ρ

2η
. (20)

The irregular Coulomb function is given by [45]

G0(ρ) � 1
2Be−A (21)

within the WKB approximation. The derivative of this irregular
Coulomb function can be expressed as

G′
0(ρ) �

(
−B−2 + 1

8η
t−2B4

)
G0(ρ). (22)

Substituting expressions (16)–(20) into the implicit equa-
tion (15), reflecting k(R), ρ, η in the variables of the
δV (R), ε0, R and expanding in the small parameter δV (R)/ε0,
we obtain the quasiclassical analytical expression for the
dynamic polarization potential δV (R)

Re δV (R) = − (ZpZT e2)2

16R4α2

(
µ

mp

)2 1

ε0
, (23)

Im δV (R) = −ZpZT e2

4R2α

µ

mp

(
1 + ZpZT e2

8R2α

µ

mp

1

ε0

)
e2A. (24)

Here, the coefficient A which represents Eq. (19) is the
tunneling coefficient of charged particle through a Coulomb
potential barrier within a quasiclassical approach. The quasi-
classical analytical expressions for the real (23) and imaginary
(24) parts of the dynamic polarization potential δV (R) are
obtained from the first principles for the first time. As we
can see from Eq. (23), the real part of the potential δV (R)
is inversely proportional to the center-of-mass coordinate R.
This result agrees with other similar articles [15,36,37], where
the adiabatic approximation has been used, as well as with the
continuum-discretized coupled channels method of Ref. [17].
The imaginary part of the δV (R) potential is proportional to
the probability of the tunneling of charged particle through a
Coulomb potential barrier. The imaginary part of the δV (R)
[Eq. (24)] is larger than in Refs. [15,17]. The main reason
for this is that in our case the halo nucleus decays from the
ground state which is treated as a quasistationary state and
which is often called the ‘direct’ decay. In Refs. [15,17], in

contrast, first a dipole resonance must be excited before the
nucleus may decay. Although there is a finite probably for this
‘excitation-and-decay’ mechanism, the probably was found
smaller than for the direct decay [33].

2. Illustration of the dynamic polarization potential for 6He
scattering on 209Bi

The polarization potential of Eqs. (23) and (24) as well as
Eq. (15) has been calculated for the case of 6He scattering on
209Bi. In Figs. 2 and 3 we present the real and imaginary
parts of the dynamic polarization potential δV (R)/ε0 for
the elastic scattering of 6He on 209Bi nuclei as function of
the center-of-mass coordinate, taken relative to the biding
energy for 6He. The binding energy between an α- and
dineutron particles was observed experimentally and was equal
to −0.975 MeV [30]. The calculations were obtained for the
projectile energy Ed = 17.8 MeV, i.e., below of the Coulomb
barrier.

The results are presented for the exact value δV (R) (solid
line) from Eq. (15) as well as for the quasiclassical analytical
expressions for the dynamic polarization potential δV (R)
(dashed lines) from Eqs. (23) and (24). We note that the exact
and analytical results basically coincide for R > Rt where Rt

is the classical Coulomb turning point. This classical point is
Rt = 15 fm for the 6He ions in the Coulomb field of the 209Bi.
Therefore, our computations show that small by the absolute
value real and imaginary parts of the polarization potential
have a long range.

FIG. 2. (Color online) Real parts of the dynamic polarization
potential δV (R) as functions of the projectile-target separation R.
Calculations have been performed for the scattering of 6He ions
in the Coulomb field of a 209Bi for the collision energy E6He =
17.8 MeV. Results are presented for the exact value δV (R) (—)
from Eq. (15) as well as by applying the quasiclassical analytical
expression for the dynamic polarization potential δV (R) (- -) from
Eq. (23). The potentials are taken relative to the binding energy
of 6He.
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FIG. 3. (Color online) Imaginary parts of the dynamic polariza-
tion potential δV (R) as functions of the projectile-target separation
R. Calculations have been performed for the scattering of 6He ions
in the Coulomb field of a 209Bi for the collision energy E6He =
17.8 MeV. Results are presented for the exact value δV (R) (—)
from Eq. (15) as well as by applying the quasiclassical analytical
expression for the dynamic polarization potential δV (R) (- -) from
Eq. (24). The potentials are taken relative to the binding energy
of 6He.

III. CALCULATION OF
THE ELASTIC CROSS SECTION FOR 6He

By calculating the dynamic polarization potential δV (R)
from Eq. (15), we can apply the theory developed so far to
describe the elastic scattering of 6He + 209Bi at energies below
the Coulomb barrier (∼20 MeV). Using δV (R) as an optical
potential without any parameter variation, the differential cross
section for the elastic scattering of a 6He has been calculated,
assuming the 6He halo nucleus to be formed by an α- and
dineutron particles.

Figure 4 displays the cross section (dσel/dθ )/(dσRuth/dθ )
for the elastic scattering of 6He on 209Bi target nuclei as a
function of the scattering angle, taken relative to the cross
section for a pure Rutherford scattering of a projectile with
mass md and charge Zp. Theoretical predictions, derived
in the center-of-mass frame, are compared with a recent
measurement by Aguilera et al. [27,32] for the four pro-
jectile energies Ed = 14.7 MeV, 16.2 MeV, 17.8 MeV, and
19.1 MeV, i.e., near and just below of the Coulomb barrier. In
the experiments by Aguilera and coworkers, the 6He beam was
produced by the TwinSol radioactive nuclear beam facility at
the University of Notre Dame [46]. Apart from the Rutherford
cross section (straight lines), Fig. 4 also shows the relative cross
sections, if only the polarization (dotted lines) or the breakup
of the projectile (dashed lines) has been taken into account
in the computations. These approximations correspond to the
case where only the real or the imaginary part of the dynamic
polarization potential δV (R) is considered in Eq. (15). As
seen from Fig. 4, the full (elastic) scattering cross sections
are in very good agreement with experiment, except for the

FIG. 4. (Color online) Elastic angle-differential cross sections for
the collision of low-energy 6He ions by 209Bi nuclei as function of the
scattering angle θ in the center-of-mass frame. The cross sections are
taken relative to the cross sections of a pure Rutherford scattering of
a projectile with mass md and charge Zp and are shown for the four
collision energies as observed experimentally [27,32].

energy Ed = 19.1 MeV for which the cross sections are slightly
underestimated, especially for small scattering angles.

The elastic cross sections decrease systematically by about
50% at the scattering angle θc.m. = 160◦ if the collision energy
is enlarged from 14.7 MeV to 19.1 MeV. This decrease is due
to the Coulomb field of the target since, at 19.1 MeV, the 6He
projectile comes closer to the 209Bi target nuclei. While the
deviations from the Rutherford scattering for small angles can
be explained by the (so-called) ‘electric’ polarization of the
projectile [36], the decrease at larger angles (back scattering)
arise from the Coulomb breakup of the 6He halo nuclei which
increases because of the strong Coulomb forces.

IV. CONCLUSION

In summary, the elastic scattering of light halo nuclei in
the (Coulomb) field of heavy targets has been investigated
for energies below and near the Coulomb barrier. It is shown
that the asymmetry of the halo nuclei, which is assumed to
be formed by a charged core and a dineutron, leads to a
considerable decrease of the (elastic) scattering cross section.
To understand this effect quantitatively, emphasis was placed
on the polarization (of the mass and charge distribution) of the
projectiles which, for strong enough fields, are associated with
a breakup of the halo nuclei. Assuming an adiabatic motion
of the projectile along a classical Rutherford trajectory, we

034606-5



BOROWSKA, TERENETSKY, VERBITSKY, AND FRITZSCHE PHYSICAL REVIEW C 76, 034606 (2007)

were able to derive an equation for the (dynamic) polarization
potential which describes the internal dynamics of the halo
nucleus, including its (electrical) polarization and breakup, and
which leads to a clear reduction of the cross section at large
scattering angles. Detailed computations have been carried out
for the elastic scattering of 6He + 209Bi at energies between
14.7 MeV and 19.1 MeV, i.e., near the Coulomb barrier

∼20 MeV. The (theoretical) cross sections obtained from
our adiabatic model agree very well with the measurements
by Aguilera and coworkers (cf. Fig. 4) and, hence, make a
dineutron configuration very likely for the ground state of the
6He halo nucleus. No additional parameters were needed in
order to explain the deviations from Rutherford’s scattering
cross sections.
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