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Microscopic restoration of proton-neutron mixed symmetry in weakly collective nuclei
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Starting from the microscopic low-momentum nucleon-nucleon interaction Vlow k , we present a systematic
shell-model study of magnetic moments and magnetic dipole transition strengths of the basic low-energy
one-quadrupole phonon excitations in nearly spherical nuclei. Studying in particular the even-even N = 52
isotones from 92Zr to 100Cd, we find the predicted evolution of the predominantly proton-neutron nonsymmetric
state reveals a restoration of collective proton-neutron mixed-symmetry structure near midshell. This provides
a quantitative explanation for the existence of pronounced collective mixed-symmetry structures in weakly
collective nuclei.
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Mesoscopic quantum systems such as Bose-Einstein con-
densates, superconductors, and quark-gluon systems are some
of the most intensely studied in contemporary physics [1,2].
Their dynamical properties are determined by the interplay
and mutual balance of collective and single-particle degrees
of freedom. In two fluid systems such as atomic nuclei, the
presence of an isospin degree of freedom serves only to en-
hance this complexity. Of particular interest for understanding
the physics of these systems is the microscopic origin of
those excitations possessing collective two-fluid character.
Collective quadrupole isovector excitations in the valence
shell, so-called mixed-symmetry states (MSSs) [3], are the
best-studied examples of this class of excitations. A special
type of MSS, the 1+ scissor mode, was predicted to exist [4]
and discovered [5] in atomic nuclei. It is not surprising, then,
that analogous scissor-mode states have subsequently been
found in other two-fluid quantum systems such as trapped
Bose-Einstein condensed gases [6,7], metallic clusters [8], and
elliptical quantum dots [9].

Even though MSSs are a common feature of two-fluid
quantum systems, atomic nuclei are still the primary laboratory
in which our understanding of them can be shaped. In the
interacting boson model of heavy nuclei (IBM-2) the definition
of MSSs is formalized by the bosonic F -spin symmetry [3]. It
arises predominantly from a collective coupling of proton and
neutron subsystems, and when the proton/neutron (pn) valence
spaces are large enough, strong coupling can arise between
them. Naturally, then, the best examples of pn-symmetric and
MSSs would be expected at midshells. However, pronounced
MSSs have recently also been observed in weakly collective
nuclei especially in the N = 52 isotones. Multiphonon struc-
tures of MSSs are observed in the nucleus 94Mo [10–12],
in neighboring nuclei [13–15], and recently the first MSSs
in an odd-mass nearly-spherical nucleus were identified in
93Nb [16]. The experimental properties of MSSs in this region
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have already been described within the framework of the
IBM-2 [17,18], the nuclear shell model (SM) [14,19], and the
quasiparticle-phonon model [20]. Although the mechanism
describing how symmetric and MS structures appear has been
discussed by Heyde and Sau [21] in a schematic way, the
question of how these states systematically evolve has not yet
been addressed in a quantitative microscopic approach.

In this article, we provide a microscopic foundation for
the formation and evolution of the fundamental MSS of
vibrational nuclei, the one-quadrupole phonon 2+

1,ms state,
from SM calculations using the low-momentum nucleon-
nucleon (NN ) interaction Vlow k [22]. Vlow k defines a new
class of NN interaction with a variable momentum cutoff
(or resolution scale) that reproduces low-energy two-nucleon
observables. Shell-model calculations using Vlow k with a fixed
cutoff, have already been used successfully in recent nuclear
structure studies, e.g., Ref. [23]. For N = 52 isotones from
the Z = 40 to the Z = 50 shell closures, we here investigate
the structure and electromagnetic properties of the two SM
2+ states with predominant one-phonon character (labeled 2+

I

and 2+
II ), where the 2+

II state is connected to the 2+
I state by

a strong M1 transition. The 2+
I and 2+

II SM states with large
seniority-2 components are interpreted as the experimentally
observed one-phonon symmetric 2+

1 and mixed symmetric
2+

1,ms states, respectively. The evolution of these states is
seen by examining two of the most important observables:
B(M1; 2+

II → 2+
I ) values and the magnetic moments of the

2+
I and 2+

II states. Our calculations indicate that the quantity
driving this evolution is the orbital proton contribution to
the M1 transitions. Moreover, the main cause underlying the
formation of MSSs in these weakly collective nuclei is the
approximate energy degeneracy in the proton and the neutron
one-phonon quadrupole excitations. This mechanism can be
considered as a microscopic restoration of proton-neutron
symmetry. Because of the universal nature of MS states,
these studies should serve as qualitative predictions of MS
formation and structural evolution in other nuclear regions,
and give parallel insight into analogous structures in general
mesoscopic quantum systems.
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Our microscopic shell-model calculations are based on the
low-momentum NN interaction Vlow k . Although various NN

potentials have been developed that reproduce the NN data up
to momenta of ∼2 fm−1 [24], they differ in their treatment of
the high-momentum modes, which are known to complicate
many-body calculations. Using the renormalization group, we
start from one of the high-precision interactions and integrate
out the high-momentum components above a cutoff � such
that the physics below this cutoff is preserved. It has been
shown that as � is lowered to 2.1 fm−1, the Vlow k interactions
flow to a result largely independent of the input interaction
[22,25]. Furthermore, Vlow k is energy independent and thus
suitable for SM calculations in any nuclear region [26]. For
the present work we use a Vlow k interaction derived from the
CD-Bonn [27] potential with a cutoff � = 2.1 fm−1. Using
the two-body matrix elements of Vlow k , we then derive a SM
effective interaction Veff based on the folded diagram methods
detailed in Ref. [28]. Through this process we include the
effects of core polarization to second order, which has been
shown to be a reasonable approximation to all order effects in
the absence of many-body interactions [29].

The present calculations were carried out with the
OXBASH code [30] using the effective interaction described
above. 88Sr was used as the inert core and the proton-
neutron model space taken to be: π : [2p1/2, 1g9/2] and ν :
[1g7/2, 2d5/2, 2d3/2, 3s1/2, 1h11/2], where the single particle
energies were taken from the experimental values in 89Sr and
89Y, as shown in Table I. We have verified the validity of this
procedure through extensive comparison with experimental
data in 92Zr, 94Mo, and 96Ru [31], as well as the prediction
of the properties of MSSs in the odd-mass nearly-spherical
nucleus 93Nb [16,31]. It is debatable whether or not the 88Sr
core is suitable for such calculations due to the close proximity
of both the 2p3/2 and the 1f5/2 proton orbits. We should
emphasize, however, that our goal is not a highly accurate
reproduction of experimental data, but to understand global
features of MSSs in terms of this model space.

The key experimental signature for MSSs is a strong M1
transition from the 2+

1 to the 2+
1,ms state, due to the isovector

character of the M1 operator. The strength and fragmentation
of this transition is an indicator of the purity of the MSSs.
Bare orbital gyromagnetic factors gl

π = 1µN, gl
ν = 0, with

empirical (but not fine-tuned to fit the data) spin factors
gs

π = 3.18µN , and gs
ν = −2.18µN were used (as in Ref. [19]).

These values result in a pure isovector spin M1 operator, which
simplifies the interpretation. The calculated B(M1) values

TABLE I. Single-particle energies for the orbits used in our shell-
model calculations.

Proton orbits:

p1/2 g9/2

Energy (MeV) −0.91 0.0

Neutron orbits:

g7/2 d5/2 d3/2 s1/2 h11/2

Energy (MeV) 1.47 0.0 2.01 1.03 3.00
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FIG. 1. (Color online) Evolution of the total, orbital, and spin
B(M1; 2+

II → 2+
I ) values for N = 52 isotones. The experimental

values are from Refs. [12,13,15,16].

shown in Fig. 1. They show a pronounced parabolic behavior,
maximized at mid-subshell. Also plotted in Fig. 1 are the spin
and orbital contributions, both exhibiting an approximately
parabolic shape.

The increase in M1 strength from 92Zr to 96Ru is in
good qualitative agreement with the data, though the SM
calculations underpredict the value in 92Zr and somewhat
overpredict it in 94Mo. In Fig. 1, for comparison purposes, we
have also included the average value of the M1 transitions
from the mixed-symmetry doublet states, 5

2

−
ms

3
2

−
ms, to the

like-J one-phonon states in 93Nb [16]; it is clearly in general
agreement with the overall trend. For 98Pd and 100Cd, however,
a decrease in M1 strength is predicted—indicating less purely
collective excitations.

Figure 2 shows the predicted evolution of the g factors
of the 2+

I and 2+
II states. As proton number increases

the 2+
I g factors increase almost linearly, whereas the 2+

II
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FIG. 2. (Color online) Predicted evolution of the g factors for
the 2+

I and 2+
II states across the series of N = 52 isotones. The

experimental values are from Refs. [32,33].
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g factors decrease linearly with approximately the same
absolute slope. As a result they cross at midshell. The
calculated g factors in 96Ru for the 2+

I and 2+
II states are close

(0.42 and 0.48, respectively) and not far from the Z/A = 0.458
value expected for a fully collective state with pn symmetry.
The negative g factor (-0.31) predicted for the 2+

I state in 92Zr
is in qualitative agreement with experiment [14,32], indicating
significant neutron character of this state. At Z = 40 the 2+

I

state of 92Zr is expected to be primarily neutron in character.
In drastic contrast, we predict a large positive g factor for the
2+

II state in 92Zr, which suggests a dominant proton character,
from the J = 2 coupling of protons in the π (g2

9/2) orbit. As
discussed in Ref. [14], the unbalanced proton-neutron content
of the 92Zr 2+

I and 2+
II states implies severe breaking of F -spin

symmetry, not a surprise for such a weakly collective system.
This phenomenon where we see varying contributions to the
one-phonon states by the active proton and neutron particles
due to subshell structure can be interpreted as configuration-
isospin polarization (CIP). Significant CIP corresponds to a
breaking of the F -spin symmetry in the IBM-2, which is
reflected in the small M1 transition strength (see Fig. 1), while
vanishing CIP indicates a restoration of F-spin symmetry and
pure FS/MS states. The changes in the M1 strengths and
the g factors for the 2+

I and 2+
II states from 92Zr to 100Cd

isotopes consistently show the evolution of CIP, and hence
pn symmetry character, of these states: the purity of the
MS character of the 2+

II state peaks in the midshell region,
where CIP vanishes, before waning at the approach of the Z =
50 shell closure, where CIP increases again.

The p/n orbit/spin contributions to the M1 matrix
elements,〈2+

i ‖gl,s
π,ν · (M1)l,sπ,ν‖2+

i 〉(i=I,II ) are shown in Fig. 3.
Considering first the 2+

I states, we see that in 92Zr, the
neutron-spin (gs

ν · M1s
ν) component dominates, resulting in

the negative g factor. In 94Mo, however, the M1l
π contribution

has risen, whereas the M1s
ν has declined, yielding a small and

slightly positive g factor. For the rest of the isotones, the M1l
π

component continues increasing, whereas the others become
more negligible. For the 2+

II states, the opposite situation is
seen due to the orthogonality of this one-phonon state to the
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FIG. 3. (Color online) Calculated proton/neutron orbital/spin
matrix elements contributing to the g factors.

TABLE II. Amplitudes of the dominant SM configurations
contributing to the J π = 2+ one-phonon wave functions.

Nucleus Wave function components 2+
I 2+

II

92Zr π (g2
9/2)0 ν(d2

5/2)2 0.462 −0.129

π (g2
9/2)2 ν(d2

5/2)0 0.078 0.725
94Mo π (p2

1/2g
2
9/2)0 ν(d2

5/2)2 0.682 −0.461

π (p2
1/2g

2
9/2)2 ν(d2

5/2)0 0.426 0.652
96Ru π (p2

1/2g
4
9/2)0 ν(d2

5/2)2 0.586 −0.584

π (p2
1/2g

4
9/2)2 ν(d2

5/2)0 0.512 0.548
98Pd π (p2

1/2g
6
9/2)0 ν(d2

5/2)2 0.510 −0.681

π (p2
1/2g

6
9/2)2 ν(d2

5/2)0 0.576 0.448
100Cd π (p2

1/2g
8
9/2)0 ν(d2

5/2)2 0.376 −0.787

π (p2
1/2g

8
9/2)2 ν(d2

5/2)0 0.638 0.305

2+
I state. The M1l

π term remains the driving force behind
the evolution of the g factor, starting at a large, positive
value in 92Zr. It remains dominant until near Z = 50 where
it has decreased to near zero, whereas the M1s

ν element
has become negative enough to influence the g factor. The
observed prominence of the orbital matrix element further
confirms the collective nature of these excitations.

The calculated SM wave functions are generally compli-
cated, but as discussed in [19], MS structure is evident in the
dominant components. Table II gives the dominant amplitudes
for the normalized 2+

I and 2+
II wave functions. With the

exception of the 2+
I state in 92Zr, the significant contributions

come from the π (p2
1/2g

k
9/2)0ν(d2

5/2)2 and π (p2
1/2g

k
9/2)2ν(d2

5/2)0

configurations, where k = 2 for 94Mo, k = 8 for 100Cd, and the
protons are jointly coupled to either J = 0 or J = 2. For 92Zr
we have only listed the π (g2

9/2)ν(d2
5/2) configuration because

the two protons in π (p2
1/2) cannot couple to J = 2. These

components represent only a part of the full wave functions,
but the percentage is typically on the order of 60 to 70%.
From Table II we see that the dominant parts of the 2+

I and
2+

II wave functions generally exhibit a pn-symmetric structure.
Even with these drastically truncated wave functions, the 2+

I

and 2+
II are formed by the same dominant components and are

approximately orthogonal: we find 〈2+
I |2+

II 〉 < 0.1 in every
case. The evolution of the M1 strength and the g factors is
apparent—at the low end of the isotone chain, the CIP is strong
such that the 2+

I state is predominantly neutron in character
and the 2+

II state is largely proton. In 94Mo already both
components are more equally important. For the 2+

I state, there
is a linear increase in proton character and decrease in neutron
character across the shell with the opposite behavior seen in the
2+

II states. At midshell in 96Ru, where the CIP approximately
vanishes, both states have almost equal absolute amplitude of
proton and neutron excitations forming the fully symmetric
and mixed symmetry one-quadrupole phonon states.

These approximated wave functions and their M1 matrix
elements can be considered in the seniority scheme. The proton
and neutron contributions to the predominant seniority-two
(ν = 2) parts of the one-quadrupole phonon wave functions
in this sequence of isotones can be related to the fractional
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filling f = (Z − 40)/10 of the π (g9/2) orbital with protons.
The wave functions can be empirically approximated as

|2+
I 〉 ≈

√
f |2+

π 〉 +
√

1 − f |2+
ν 〉

(1)
|2+

II 〉 ≈
√

1 − f |2+
π 〉 −

√
f |2+

ν 〉,
where the |2+

π(ν)〉 represents a SM configuration in which
the protons (neutrons) are coupled to 2+ and the neutrons
(protons) are coupled to 0+. To the extent that this two-state
decomposition represents a large percentage of the total wave
functions, we can deduce

g(2+
I ) =

√
2π

45
[µν + f (µπ − µν)] (2)

g(2+
II ) =

√
2π

45
[µπ − f (µπ − µν)] (3)

B(M1; 2+
II → 2+

I ) = 1

5
f (1 − f )(µπ − µν)2 (4)

with µπ(ν) = 〈2+
π(ν)‖M1‖2+

π(ν)〉 being the diagonal M1 matrix
elements of the ν = 2 proton (neutron) 2+ configuration.
Note that µν < 0 is a constant for the N = 52 isotones and,
within the seniority scheme, the matrix element µπ > 0 is
independent of the filling of the proton orbital and, hence, a
constant as well. It immediately follows that the g factor of the
2+

I state increases linearly with the filling of the π (g9/2) orbital,
whereas the g factor of the 2+

II state linearly drops, instead,
with the same absolute slope. In contrast to this, the M1
transition strength is proportional to the factor f (1 − f ) and
exhibits a parabolic collective behavior over the π (g9/2) shell
with a maximum at midshell. The size of the B(M1; 2+

II →
2+

I ) value is proportional to the quadratic slope of the g factors.
This relation is quantitatively (µπ − µν ≈ 4.2 µN ) in good
agreement even with the full calculations.

Finally, the shell-model results are qualitatively at variance
with the F -spin limit of the IBM-2. With effective boson
g factors gρ ≡ √

2π/45 µρ the predictions of the F -spin limit
of the U(5) dynamical symmetry limit are

g(2+
1 ) =

√
2π

45

[
µν + Nπ

N
(µπ − µν)

]

g(2+
1,ms) =

√
2π

45

[
µπ − Nπ

N
(µπ − µν)

]

B(M1; 2+
1,ms → 2+

1 ) = 1

5

Nπ

N

(
1 − Nπ

N

)
(µπ − µν)2,

which is formally identical to Eqs. (2)–(4) with the replacement
f → Nπ/N and 2+

I = 2+
1 , 2+

II = 2+
1,ms. However, due to the

convention of counting bosons as half of the number of
valence particles or holes outside the nearest closed shell,
the boson number fraction Nπ/N does not correspond to
the fractional filling f of the proton shell but is instead for
Nν = 1 approximately equal to the fractional half-filling. The
F -spin limit of the IBM-2 together with the conventional
counting of bosons would lead to local extrema for the
g factors of the one-phonon 2+ states at midshell [maximum

for g(2+
1 ) and minimum for g(2+

1,ms)] and to a reduction of the
B(M1; 2+

1,ms → 2+
1 ) value from 94Mo to 96Ru in contradiction

to the data. We note that a similar result is obtained when
considering the F -spin limit in O(6) symmetry, which has
been argued to be the more appropriate IBM-2 dynamical
symmetry in some of these nuclei [34].

The discrepancy in predicted evolution between the F -spin
limit of the IBM-2 and the SM calculation using Vlow k

originates from the breaking of F -spin symmetry by CIP
due to the subshell structure and the specific restoration of
F -spin near midshell in the shell model. The F -spin limit is
most fragile when the valence spaces are small and hence
the degree of collectivity is low. Differences in excitation
modes for protons and neutrons then easily lead to CIP of
the low-energy wave functions and thus to a breaking of
F -spin symmetry. There are two possibilities for restoring the
F -spin limit. This can happen either when the valence spaces
are large and the pn-coupling is strong or when the proton
and neutron excitation modes are degenerate. In the second
case even comparatively low collectivity in small valence
spaces can lead to fully pn-symmetric or mixed-symmetric
configurations. The SM signatures indicating CIP of the 2+

I

and 2+
II states (the M1 : 2+

II → 2+
I transition strength, the g

factors, and the amplitude of the proton/neutron character of
the wave functions) also indicate the degree to which F -spin is
broken or restored. The smooth change in the proton-neutron
character of the 2+

I and 2+
II states, evident from Table II, can

be attributed to the variation of energies of the one-phonon
proton and neutron configurations with filling of the π (g9/2)
orbital. This can be seen in the data for the semiclosed shell
nuclei in the vicinity of the N = 52 isotones. The 2+

1 energy
of the even N = 50 isotones is indicative of the energy of
the 2+

π excitation. It drops slightly from 1509 keV in 92Mo to
1394 keV in 98Cd. However, the energies of 2+

1 states in the
92Zr and 102Sn are indicative of the energy of the 2+

ν excitation.
The data increase from 934 keV in 92Zr to 1472 keV in
102Sn. The difference in energy of these basic 2+

π(ν) excitations
translates into the IBM-2 framework in a difference of proton
and neutron d-boson energies that cause a breaking of F -spin
symmetry. Due to the low collectivity near shell closure, this
breaking cannot be restored by strong pn coupling. As a result,
F -spin breaking is most pronounced in 92Zr [15] and must
be expected for 100Cd, too. The energy crossing of the 2+

π

and 2+
ν configurations near midshell, where the collectivity

also peaks (see Table II), causes a specific restoration of
F -spin symmetry, yielding there the largest B(M1) values
and almost equal g factors. This process is microscopic in
origin and differs from the usual F -spin symmetry generation
due to the collective pn coupling in the framework of the
IBM-2.

In summary we have used the low-momentum NN in-
teraction Vlow k to provide a microscopic description of the
evolution of MSSs and magnetic dipole collectivity—studying
the N = 52 isotones as a particular example. The predicted
observables reveal a new specific restoration of proton-neutron
symmetry that originates from the energy degeneracy of basic
proton and neutron excitations. This process offers for the
first time an explanation for the existence of pronounced 2+

1,ms
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structures in weakly collective nuclei and might be observable
in other two-fluid quantum systems.
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[7] O. M. Maragó, S. A. Hopkins, J. Arlt, E. Hodby,
G. Hechenblaikner, and C. J. Foot, Phys. Rev. Lett. 84, 2056
(2000).

[8] V. O. Nesterenko, W. Kleinig, F. F. de Souza Cruz, and N. Lo
Iudice, Phys. Rev. Lett. 83, 57 (1999).

[9] L. Serra, A. Puente, and E. Lipparini, Phys. Rev. B 60, R13 966
(1999).

[10] N. Pietralla, C. Fransen, D. Belic, P. von Brentano, C. Friessner,
U. Kneissl, A. Linnemann, A. Nord, H. H. Pitz, T. Otsuka,
I. Schneider, V. Werner, and I. Wiedenhöver, Phys. Rev. Lett.
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