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Coherent quadrupole-octupole modes and split parity-doublet spectra in odd-A nuclei
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A collective model describing coherent quadrupole-octupole oscillations and rotations with a Coriolis coupling
between the even-even core and the unpaired nucleon is applied to odd nuclei. The particle-core coupling provides
a parity-doublet structure of the spectrum, whereas the quadrupole-octupole motion leads to a splitting of the
doublet energy levels. The formalism successfully reproduces the split parity-doublet spectra and the attendant
B(E1) and B(E2) transition probabilities in a wide range of odd-A nuclei. It provides estimations for the influence
of the Coriolis interaction on the collective motion and subsequently for the value of angular momentum projection
K on which the spectrum is built. The analysis of the energy splitting and B(E1) transition probabilities between
opposite parity counterparts suggests degenerate doublet structures at high angular momenta. The study provides
information about the evolution of quadrupole-octupole collectivity in odd-mass nuclei.
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I. INTRODUCTION

The simultaneous manifestation of quadrupole and octupole
degrees of freedom in atomic nuclei is associated with typical
spectroscopic characteristics of nuclear collective motion [1].
In general the spectrum contains positive- and negative-parity
levels, some of them related with enhanced electric E1 and E3
transitions [2]. In even-even nuclei the even and odd angular
momentum levels appear with positive and negative parities,
respectively, due to the shape reflection asymmetry [3–6]. In
the regions of pronounced quadrupole-octupole deformations,
e.g., in the region of light actinide nuclei, the alternating
parity levels form a single octupole band, whereas in nuclei
toward transition and nearly vibration regions both positive-
and negative-parity sequences remain essentially separated
from each other. In odd nuclei the structure of the spectrum is
determined by the coupling between the reflection asymmetric
even-even core and the motion of the unpaired particle. The
combination of the intrinsic parity of core with that of the
particle to a “total intrinsic parity” provides a split-parity
doublet structure of the spectrum. The mutual disposition of
the doublet counterparts up or down depends on the parity
of the ground state as well as on the possible change in
the intrinsic parity at some higher angular momenta. As
in some cases, especially in heavy odd nuclei, the angular
momentum of the ground state and/or its projection K are not
unambiguously determined, the complicated structure of the
spectrum represents a challenging subject for a study from
both experimental and theoretical points of view.

In the above aspect various theoretical models, developed
initially to explain the properties of quadrupole-octupole

deformations in even-even nuclei, have been extended to de-
scribe the respective properties in odd nuclei [2,7,8]. Recently
a collective model for the quadrupole-octupole vibration and
rotation motion of even-even nuclei has been proposed [9].
It was able to reproduce basic characteristics such as energy
levels, parity shift, and electric transition properties in nuclei
with collective bands built on coherent quadrupole-octupole
vibrations.

The purpose of the present work is to extend the coherent
quadrupole-octupole model approach [9] to the case of odd
nuclei and to apply it to collective spectra in the region of heavy
odd nuclei. For this reason we consider the Coriolis coupling of
the “soft” quadrupole-octupole oscillating core to the motion
of the unpaired nucleon. The model scheme is developed,
respectively, to take into account the total intrinsic parity of
the system and to incorporate consequently the split-parity
doublet structure of the spectrum.

As it is shown below such a formalism allows one not only
to reproduce the energy levels and electromagnetic transition
characteristics of parity doublet spectra but also to examine the
behavior of the parity splitting in dependence on the angular
momentum. Within this framework it is possible to study the
effects of the Coriolis coupling on the fine structure of the
spectrum. It is also possible to estimate the respective values
of the angular momentum projection K and subsequently the
related single-particle configurations dominating the intrinsic
nuclear structure.

From another point of view the proposed approach can
be used to study the changes in the structure of parity-
doublet spectra in different nuclear regions and subsequently
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the evolution of the quadrupole-octupole collectivity in odd
nuclei. As it will be illustrated below the concept of a
coherent quadrupole-octupole motion is supported by data
from quite a large number of odd-A nuclei. Moreover, the
regions where split-parity doublet spectra are formed appear
to be experimentally better developed than the corresponding
regions in even-even nuclei where alternating parity spectra are
observed. This circumstance determines the need to examine
the limits of manifestation of quadrupole-octupole collectivity
in odd-A nuclei. Analysis in this direction is of interest from
both collective and intrinsic (microscopic) points of view.

The article is organized as follows. In Sec. II the
quadrupole-octupole Hamiltonian with the Coriolis interaction
is presented. The model mechanism for the appearance of
split-parity doublet spectra is explained in Sec. III. The model
expressions for reduced B(E1), B(E2), and B(E3) transitions
in these spectra are given in Sec. IV. Numerical results
and discussion on the application of the model in various
nuclear regions are given in Sec. V. Section VI contains some
concluding remarks.

II. QUADRUPOLE-OCTUPOLE HAMILTONIAN WITH
CORIOLIS INTERACTION

We consider that the even-even core of an odd nucleus
can oscillate with respect to the quadrupole (β2) and octupole
(β3) axial deformation variables mixed through a centrifugal
(rotation-vibration) interaction. The unpaired nucleon couples
to the collective motion through the Coriolis interaction. The
collective Hamiltonian of the odd nucleus can then be taken in
the form

Hqo = − h̄2

2B2

∂2

∂β2
2

− h̄2

2B3

∂2

∂β2
3

+ U (β2, β3, I ) + Hcoriol, (1)

where

U (β2, β3, I ) = 1

2
C2β2

2 + 1

2
C3β3

2 + Î 2 − Îz
2

2
(
d2β

2
2 + d3β

2
3

) (2)

is the potential of the quadrupole and octupole oscillations
coupled through the collective angular momentum Î and its
third projection Îz. B2 and B3 are the effective quadrupole
and octupole mass parameters and C2 and C3 are the stiffness
parameters for the respective oscillation modes. The last term
in Eq. (1) represents the Coriolis interaction, which is set

Hcoriol = − (Î+ĵ− + Î−ĵ+)

2
(
d2β

2
2 + d3β

2
3

) . (3)

Here, Î± = Îx ± iÎy and ĵ± = ĵx ± iĵy are the spherical com-
ponents of the total nuclear and the intrinsic (unpaired) particle
angular momenta, respectively. The quantity L(quad+oct) =
(d2β

2
2 + d3β

2
3 ) can be associated to the moment of inertia of an

axially symmetric quadrupole-octupole deformed shape [10].
After taking into account the action of the total angular mo-

mentum operators and the Coriolis term in the “particle+rotor”
space, Eq. (3) can be superposed to the third term in Eq. (2).
Then the terms U (β2, β3, I ) and Hcoriol in Eq. (1) are replaced

by the potential

U (β2, β3, I,K, πa) = 1

2
C2β

2
2 + 1

2
C3β

2
3 + X(I,K, πa)

d2β
2
2 + d3β

2
3

,

(4)

where

X(I,K, πa) = 1

2

[
d0 + I (I + 1) − K2

+πaδK, 1
2
(−1)I+1/2

(
I + 1

2

)]
. (5)

The decoupling parameter a is defined between the un-
paired particle states a = 〈χK |ĵ+|χ−K〉 (with K = 1/2). The
sign of its contribution in the potential energy depends on
the total intrinsic parity π = ± of the system (see below).
The parameter d0 is introduced additionally to characterize
the shape of the potential in the ground state.

The properties of the even core potential (2) have been
studied in detail in Ref. [9]. We remark that the total “core+
particle” potential (4) carries the same dependence on the
variables β2 and β3, and on the collective angular momentum I .
That is why in the following we recall only the main properties
of the system based on this potential and present the basic items
in the underlying eigenvalue/eigenstate problem.

In Ref. [9] it has been shown that if a condition for the
simultaneous presence of nonzero coordinates (β2min, β3min)
of the potential minimum is imposed, the stiffness and inertial
parameters of the system are correlated as

d2

C2
= d3

C3
. (6)

In this case the potential bottom represents an ellipse in
the space of β2 and β3 that surrounds the infinite zero-
deformation core. If prolate quadrupole deformations β2 > 0
are considered, the system is characterized by oscillations
between positive and negative β3 values along the ellipse
surrounding the potential core. Then it is convenient to use
polar variables

β2 = η√
d2/d

cos φ; β3 = η√
d3/d

sin φ (7)

with d = (d2 + d3)/2. Under the condition (6), the potential
energy depends only on the new deformation variable η and
on the angular momentum I , and not on the angular variable
φ. Then the transformed potential reads

UI,K,πa(η) = 1

2
Cη2 + X(I,K, πa)

dη2
(8)

where C is defined according to Eq. (6) as 1/C = d2/(dC2) =
d3/dC3. Further, by assuming that the quadrupole and octupole
modes are represented in the collective motion with the same
oscillation frequencies, one has the following relation between
the quadrupole and octupole mass and inertia parameters:

d2

dB2
= d3

dB3
= 1

B
. (9)

The above assumption corresponds to a coherent quadrupole-
octupole motion of the system. As a result the model
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Hamiltonian obtains a simple form in the polar variables

Hqo = − h̄2

2B

(
∂2

∂η2
+ 1

η

∂

∂η
+ 1

η2

∂2

∂φ2

)
+ UI,K,πa(η). (10)

The quadrupole-octupole oscillation wave function can
be taken in a separable form �(η, φ) = ψ(η)ϕ(φ). Then
the Schrödinger equation for the Hamiltonian (10) with the
potential (8) leads to the following separate equations for the
variables η and φ

∂2

∂η2
ψ(η) + 1

η

∂

∂η
ψ(η)

+ 2B

h̄2

[
E − h̄2

2B

k2

η2
− UI,K,πa(η)

]
ψ(η) = 0; (11)

∂2

∂φ2
ϕ(φ) + k2ϕ(φ) = 0, (12)

where k is the separation quantum number. Equation (11) with
the potential (8) is similar to the equation for the Davidson
potential [11], which is analytically solvable [12,13]. Thus
Eq. (11) is solved analytically providing the following explicit
expression for the energy spectrum

En,k(I,K, πa) = h̄ω[2n + 1 +
√

k2 + bX(I,K, πa)], (13)

where ω = √
C/B, n = 0, 1, 2, . . . and b = 2B/(h̄2d). The

respective eigenfunctions ψ(η) are obtained in terms of the
Laguerre polynomials

ψI
n (η) =

√
2�(n + 1)

�(n + 2s + 1)
e−cη2/2(cη2)sL2s

n (cη2), (14)

where c = √
BC/h̄ and s = (1/2)

√
k2 + bX(I,K, πa).

Equation (12) in the variable φ is solved under the
boundary condition ϕ(−π/2) = ϕ(π/2) = 0, which provides
two different solutions with positive and negative parities,
πϕ = (+) and πϕ = (−), respectively

ϕ+(φ) =
√

2/π cos(kφ), k = 1, 3, 5, . . . ; (15)

ϕ−(φ) =
√

2/π sin(kφ), k = 2, 4, 6, . . . . (16)

If the lowest energy of the motion in the variable φ is
considered, one has k = k+ = 1 for ϕ+ and k = k− = 2 for
ϕ−. The total wave function of the core+particle system has
the form


π
nIMK (η, φ) = ψI

n (η)ϕ±(φ)

√
2I + 1

16π2

[
DI

KM (θ )χK

± (−1)I+KDI
−KM (θ )χ−K

]
. (17)

The total intrinsic parity π is determined as

π = πϕ · πχ, (18)

where πϕ is the parity of the even-core oscillation func-
tion ϕ±(φ) and πχ is the parity of the unpaired particle
function χK .

TABLE I. Lowest values of the separation
quantum number k, Eqs. (15) and (16), deter-
mined through Eq. (18) and the respective ways
for the splitting of the parity doublet.

πχ Iπ πϕ k Shift

(+) I+ (+) 1 Down
I− (−) 2 Up

(−) I+ (−) 2 Up
I− (+) 1 Down

III. MODEL MECHANISM FOR THE SPLIT-PARITY
DOUBLET SPECTRA

The coupling of the core and the unpaired nucleon in
the core+particle system having the total wave function (17)
provides a parity doublet structure of the spectrum

I (π=±) = I±
0 , (I0 + 1)±, (I0 + 2)±, (I0 + 3)±, . . . , (19)

where I0 is the angular momentum (half integer) of the ground
state. The parity of the core oscillation wave function ϕ±(φ) is
determined by Eq. (18) as πϕ = π · πχ . As a result the parity
doublets are split with respect to the quantum number k in
Eq. (13). The possible ways of splitting are shown in Table I.

It is seen that the direction in which the positive- and
negative-parity counterparts of the doublet are shifted to each
other depends on the parity of the unpaired-nucleon state. For
the lowest energy part of the spectrum we may consider that
the parity of the unpaired nucleon coincides with that of the
ground state. Thus when the ground-state parity is positive,
the negative counterparts of the doublet are shifted up with
respect to the positive ones, whereas for a negative-parity
ground state the opposite situation is realized. At some higher
angular momentum the intrinsic nucleon parity can be changed
due to an alignment process in the core [14]. Then the parity
πχ of the unpaired nucleon changes in sign. The parity πϕ of
the core oscillation function also changes due to the relation
(18). As a result the sign of the parity splitting of the states
with I± is changed according to the scheme given in Table I.
This effect can be easily identified in the structure of the
experimental spectra. In the present model the change in the
intrinsic nucleon parity at given angular momentum is taken
into account phenomenologically by switching the selection
rule for the quantum number k between the first (πχ = +)
and the second (πχ = −) rows in Table I. This change can be
taken into account microscopically through a consideration of
the intrinsic single-particle structure within a deformed shell
model [14].

Looking at Eq. (13) one can easily deduce that the relative
displacement of the positive- and negative-parity counter-
parts in the spectrum decreases with the increasing angular
momentum. At very high angular momenta the contribution
of the quantum number k in the square root in Eq. (13)
becomes negligible compared to the angular momentum term
bX(I,K, πa). As a result the split-parity spectrum gradually
transforms to a degenerate parity doublet. In this way the
model energy expression suggests that in the high spin region
the total core+particle system is less affected by the parity of
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the single-particle wave function. However, in regions where
alignment processes take place, the sensitivity of the nucleus
to the single-particle degrees of freedom becomes larger again,
as discussed in the above paragraph.

IV. ELECTRIC TRANSITION PROBABILITIES IN THE
SPLIT-PARITY DOUBLET SPECTRUM

The model formalism for E1, E2, and E3 transition
probabilities in the system with coherent quadrupole-octupole
motion is generally developed for even-even nuclei in Ref. [9].
Below we give the formulas modified for calculations of
reduced transition probabilities in the split-parity doublets of
odd-A nuclei by pointing out some particular characteristics
related to the presence of a single particle.

The reduced probability for an electric transition with
multipolarity λ = 1, 2, 3 between two states of the parity
doublet characterized by the wave function (17) is

B
(
Eλ; Iπi

i → I
πf

f

) = 1

2Ii + 1

∑
MiMf µ

∣∣〈
πf

nf If Mf Kf
(η, φ)

∣∣
×Mµ(Eλ)

∣∣
πi

niIiMiKi
(η, φ)

〉∣∣2
, (20)

where the transition operator Mµ(Eλ) is defined in terms of
the variables η and φ as shown in Ref. [9]. Considering only the
yrast parity-doublet spectrum with ni = nf = 0 and assuming
that all states in the doublet are based on the same value of the
angular momentum projection K = Ki = Kf , one has

B
(
Eλ, I

πi

i → I
πf

f

)
= bλ〈IiKλ0|If K〉2S2(Eλ, Ii → If )

(
Iπi

ϕπ
f
ϕ

Eλ

)2
, (21)

where bλ (λ = 1, 2, 3) are scaling constants related to effective
charges, and

S(E1, Ii → If ) =
∫ ∞

0
dηψ

If

0 (η)η3ψ
Ii

0 (η)

= 1

c2

�(si + sf + 2)√
�(2si + 1) �(2sf + 1)

(22)

S(Eλ, Ii → If ) =
∫ ∞

0
dηψ

If

0 (η)η2ψ
Ii

0 (η)

= 1

c3/2

�(si + sf + 3
2 )√

�(2si + 1) �(2sf + 1)
,

λ = 2, 3, (23)

with

si = (1/2)
√

k2
i + bX

(
I

πi

i

)
,

sf = (1/2)
√

k2
f + bX

(
I

πf

f

)
,

c =
√

BC/h̄ = const.

The integrals over the angular variable φ are

I++
E2 = 2

π

∫ π/2

−π/2
cos3 φdφ = 8

3π
(24)

I−−
E2 = 2

π

∫ π/2

−π/2
cos φ sin2(2φ)dφ = 32

15π
(25)

I+−
E1 = 2

π

∫ π/2

−π/2
cos2 φ sin φ sin(2φ)dφ = 16

15π
(26)

I+−
E3 = 2

π

∫ π/2

−π/2
cos φ sin φ sin(2φ)dφ = 1

2
. (27)

We should remark that the above integrals (24)–(27), although
being identical in form to integrals (42)–(45) of Ref. [9], enter
in a different way the B(Eλ) expressions and more specifically
the B(E2) reduced probabilities in odd-A nuclei. Although the
integrals Iπi ,πf in Ref. [9] are determined by the total parities,

the present integrals Iπi
ϕπ

f
ϕ are determined by the parities of

the quadrupole-octupole oscillation functions, which may not
coincide with the total parities because of relation (18). As a
result one has different contributions of the integrals (24)–(27)
to the model B(E2) values in dependence on the parity of the
single particle function πχ as follows, for πχ = (+)

B(E2; I+
i → I+

f ) ∼ I++
E2 = 8/(3π ) (28)

B(E2; I−
i → I−

f ) ∼ I−−
E2 = 32/(15π ), (29)

whereas in the opposite situation πχ = (−)

B(E2; I+
i → I+

f ) ∼ I−−
E2 = 32/(15π ) (30)

B(E2; I−
i → I−

f ) ∼ I++
E2 = 8/(3π ). (31)

Thus for πχ = (+) the B(E2) transition probabilities between
positive-parity members of the doublet appear slightly en-
hanced with respect to the probabilities between the negative
ones. For πχ = (−) an enhancement in the B(E2) transition
probabilities between the negative-parity states is predicted.
The model predictions for B(E1) and B(E3) transition
probabilities between states with different parity do not show
such a peculiarity since I+−

Eλ = I−+
Eλ .

V. NUMERICAL RESULTS AND DISCUSSION

The split-parity doublet structure of the spectrum is
observed in a wide range of heavy odd nuclei, allowing a
detailed test for the present coherent quadrupole-octupole
model scheme. As a first step in this direction we examined
various nuclear regions to identify possible parity-doublet
structures. We have considered the presence of E1 transition
intensities between positive- and negative-parity levels as a
strong criterion for the forming of a parity-doublet structure
based on quadrupole-octupole degrees of freedom. A weaker
criterion based on the specific level ordering of positive- and
negative-parity states was also applied to get more general
systematic information about the evolution of quadrupole-
octupole collectivity in odd-A nuclei.

In this framework, we applied the model to several nuclear
regions obtaining a reasonable description of the respective
experimental data. The applicability of the model scheme
has been verified for the nuclei 151Nd, 151,153Pm, 153,155Sm,
153−159Eu, 157,159Gd, 157−163Tb, 159−165Dy, 163−169Ho,
219−225Fr, 219−227Ra, 219−227Ac, 223,225,229,231Th, 233Pa,
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233−237U, 235−239Np, 237−243Pu, 239−245Am, 245,247Cm, and
247,249Bk. The model descriptions were obtained by taking the
theoretical energy levels Ẽ0,k(I ) = E0,k(I ) − E0,k(I0) from
Eq. (13), with I0 being the ground-state angular momentum.
The model parameters ω, b, d0 and the decoupling parameter
a (for the case of K = 1/2) have been adjusted with respect
to the experimental data. In the cases where B(E1) and/or
B(E2) transition probabilities are described, the available
experimental data were fitted together with the energy values
by adjusting the parameter c in Eqs. (22) and (23). The
angular momentum projection K was taken as suggested
in the experimental references, whereas for nuclei without
suggestions we have assumed K = I0. In all considered nuclei

the calculations successfully reproduce the energy levels with
both positive and negative parities.

Hereafter we give several representative examples for the
model descriptions obtained in different regions of heavy
nuclei. In Tables II and III the theoretical and the experimental
levels of the nuclei 161,163Dy, 219,221Fr, 223,225Th, 237U, and
239Pu are compared. The parameters of the fits are given also
there. In the cases of gaps in the sequences of experimental
data the calculations provide respective model predictions.

In Table II the results obtained for the nuclei 161Dy and
163Dy illustrate the applicability of the model in the rare
earth region. These nuclei possess one of the best-developed
parity-doublet structure among the odd-A rare-earth nuclei,

TABLE II. Theoretical and experimental energy levels (in keV) of the positive- and negative-parity bands in the nuclei 161,163Dy, 219,221Fr,
and 223,225Th. The values of ω are given in MeV/h̄, whereas b and d0 are in h̄−2 and h̄2, respectively. The Coriolis parameter a is in units h̄,
whereas c is dimensionless. The root-mean-square (RMS) deviations (in keV) are given in the first column. The data for 161Dy, 219Fr and 223Th
are taken from Ref. [15], whereas those for 163Dy, 221Fr and 225Th are from Refs. [16,17] and [18], respectively.

Nucl./K params. I π = (+) π = (−) Nucl./K params. I π = (+) π = (−)

Th. Exp. Th. Exp. Th. Exp. Th. Exp.

161Dy 5/2 0 0 79.6 25.7 163Dy 5/2 137.9 250.9 0 0
K = 5/2 7/2 55.6 43.8 135.0 103.1 K = 5/2 7/2 204.8 285.6 67.4 73.4
ω = 0.923 9/2 126.9 100.4 205.9 201.1 ω = 1.339 9/2 290.5 336.5 153.7 167.3
b = 0.599 11/2 213.6 184.2 292.2 320.7 b = 0.418 11/2 394.8 412.4 258.7 281.6
d0 = 1000 13/2 315.4 267.4 393.5 457.2 d0 = 1000 13/2 517.3 497.2 382.1 415.2
c = 2.57 15/2 432.2 407.0 c = 2.348 15/2 657.7 627.7 523.4 568.7
RMS = 39 17/2 563.5 508.1 RMS = 48 17/2 682.5 734.3 815.7 740.0

19/2 709.0 718.6 19/2 858.8 923.6 990.8 930.9
21/2 868.4 826.1 21/2 1051.8 1046.8 1182.6 1137.1
23/2 1041.2 1118.3 23/2 1261.2 1310.1 1390.7 1363.9
25/2 1227.2 1221.8 25/2 1486.4 1431.0 1614.5 1601.3

27/2 1727.0 1778.9 1853.6 1858.3
219Fr 1/2 310.6 55.9 81.0 221Fr 1/2 160.4 145.8 8.9 26.0
K = 1/2 3/2 229.6 210.4 153.1 139.8 K = 1/2 3/2 114.4 99.9 104.1 99.6
ω = 2.123 5/2 390.7 384.3 17.4 15.0 ω = 0.138 5/2 223.1 234.5 0 0
b = 0.081 7/2 201.8 191.3 244.1 269.2 b = 0.29 7/2 126.7 150.0 191.5 195.8
d0 = 6514 9/2 491.5 506.5 0 0 d0 = 11 9/2 300.5 294.8 44.5 38.5
a = −11.28 11/2 195.0 216.0 355.8 333.5 a = −4.62 11/2 170.9 286.0
RMS = 17 13/2 419.4 199.5 RMS = 12 13/2 386.8 119.9
223Th 225Th 3/2 0 0 13.4
K = 5/2 5/2 0 0 36.5 K = 1/2 5/2 41.8 31 39.7
ω = 0.446 7/2 53.8 51.3 90.1 ω = 0.276 7/2 78.7 68 98.1
b = 1.265 9/2 122.5 118.9 158.5 180.5 b = 5.7 9/2 153.5 135 145.3
d0 = 525 11/2 205.7 212.3 241.3 243.0 d0 = 1159 11/2 211.0 187 236.3 254
RMS = 14 13/2 303.0 320.0 338.2 324.1 a = −0.226 13/2 318.0 303 303.9 326

15/2 448.6 428.7 413.8 412.4 RMS = 13 15/2 395.6 370 426.6 433
17/2 572.0 569.6 537.7 547.3 17/2 533.8 530 513.9 520
19/2 707.9 706.0 674.2 657.0 19/2 630.7 615 667.3 668
21/2 855.8 858.1 822.6 838.1 21/2 799.0 807 773.5 769
23/2 1015.0 1021.6 982.4 962.1 23/2 914.3 911 956.1 957
25/2 1185.0 1185.4 1152.9 1179.4 25/2 1111.1 1127 1080.3 1072
27/2 1365.1 1370.6 1333.7 1313.8 27/2 1243.9 1250 1290.6 1291
29/2 1554.9 1551.7 1524.1 1558.4 29/2 1467.6 1485 1431.8 1426
31/2 1753.7 1756.8 1723.6 1702.5 31/2 1617.0 1631 1668.3 1658
33/2 1961.1 1952.7 1931.6 33/2 1866.0 1870 1825.4 1824

35/2 2030.7 2047 2086.3 2057

034324-5



N. MINKOV et al. PHYSICAL REVIEW C 76, 034324 (2007)

TABLE III. The same as shown in Table II but for the nuclei 237U and 239Pu. Data from Ref. [19].

Nucl./K params. I π = (+) π = (−) Nucl./K params. I π = (+) π = (−)

Th. Exp. Th. Exp. Th. Exp. Th. Exp.

237U 1/2 0 0 375.2 239Pu 1/2 0 0 349.2 469.8
K = 1/2 3/2 20.3 11.4 393.2 K = 1/2 3/2 12.6 7.9 374.0 492.1
ω = 1.46 5/2 51.5 56.3 425.4 ω = 1.58 5/2 55.3 57.3 394.2 505.6
b = 0.102 7/2 98.4 82.9 467.1 b = 0.107 7/2 84.4 75.7 451.9 556.0
d0 = 618 9/2 154.0 162.3 524.6 d0 = 791 9/2 160.7 163.8 488.0 583.0
a = 0.038 11/2 226.8 204.1 589.2 a = −0.3 11/2 206.0 193.5 577.7 661.2
RMS = 30 13/2 305.8 317.3 671.0 RMS = 63 13/2 314.8 318.5 629.1 698.7

15/2 403.1 375.1 757.7 846.4 15/2 375.6 359.2 749.8 806.4
17/2 504.2 518.2 862.4 930.0 17/2 515.4 519.5 816.0 857.5
19/2 624.6 592.0 969.8 1027.5 19/2 590.9 570.9 966.0 992.5
21/2 746.2 762.8 1096.1 1131.0 21/2 760.0 764.7 1046.2 1058.1
23/2 888.0 853.0 1222.8 1250.7 23/2 849.4 828.0 1224.0 1219.4
25/2 1028.5 1048.7 1369.1 1376.1 25/2 1045.9 1053.1 1317.3 1300.9
27/2 1189.7 1155.1 1513.4 1515.7 27/2 1148.1 1127.8 1521.0 1487.4
29/2 1347.5 1372.2 1678.0 1662.3 29/2 1369.9 1381.5 1626.4 1584.9
31/2 1526.3 1494.1 1838.5 1821.8 31/2 1484.0 1467.8 1854.1 1795.4
33/2 1699.7 1729.2 2019.8 1987.7 33/2 1729.1 1748.5 1970.7 1908.9
35/2 1894.4 1868.2 2194.9 2166.5 35/2 1854.0 1847.0 2220.4 2143.4
37/2 2081.7 2117.2 2391.2 2349.7 37/2 2120.3 2152.2 2347.4 2272.0
39/2 2290.6 2272.2 2579.5 2547.5 39/2 2255.2 2263.0 2617.2 2529.4
41/2 2490.5 2530.1 2789.3 2746.7 41/2 2540.7 2590.1 2753.6 2672.0
43/2 2712.1 2702.5 2989.4 2960.5 43/2 2684.6 2714.0 3041.8 2951.4
45/2 2922.9 2963.8 3211.2 3174.7 45/2 2987.6 3060.1 3186.7 3108.0
47/2 3155.8 3154.5 3422.0 3401.5 47/2 3139.5 3198.0 3491.6 3407.0
49/2 3376.5 3415.8 3654.6 3630 49/2 3458.3 3559.1 3644.2 3578.0
51/2 3619.5 3625.5 3874.9 3865 51/2 3617.5 3713.0 3964.2 3895
53/2 3848.9 3886.8 4117.1 4105 53/2 3950.5 4087.1 4123.8 4080.0
55/2 4100.7 4115 4345.8 4344 55/2 4116.2 4256 4457.4 4413
57/2 4338.0 4377 4596.7 4597
59/2 4597.7 4832.9 4835

which is reasonably reproduced by the model. As shown below,
the considerable number of experimental B(E2) transition
probabilities observed in both nuclei and several B(E1) values
available for 161Dy allow a more detailed test of the model.

Also in Table II the results obtained for 219Fr and 221Fr
illustrate the specific behavior of the model scheme in the
case of a strong Coriolis interaction. We see that the level
structures in 219Fr with I0 = (9/2)− and K = 1/2, and 221Fr
with I0 = (5/2)− and K = 1/2, are strongly perturbed, with
quite large values a = −11.28 and a = −4.02, respectively,
obtained for the Coriolis decoupling parameter. In the two
nuclei several states with lower angular momenta appear at
higher energy with respect to their neighbors. In such a way
the ground states of both nuclei appear with higher angular
momenta with respect to several higher-energy states. This
complicated structure of the spectrum is reproduced within
the model scheme due to the Coriolis term in the model
Hamiltonian.

Again in Table II, the good model description of the
split-parity doublet structure in the nuclei 223Th and 225Th
is demonstrated. We remark that these nuclei represent the
odd-A counterparts of the respective even-even thorium nuclei
providing the best examples for nuclear quadrupole-octupole

collectivity. In Table III the result for the longer level sequences
in 237U and 239Pu is illustrated. This result suggests that the
parity doublet structure of the spectrum can be developed to
rather high angular momenta such as I = 59/2 with the model
scheme being still capable of reproducing it.

The obtained numerical results allow an analysis of the
parity doublet splitting, given by the quantity �E(I±) =
E(I+) − E(I−), as a function of the angular momentum. This
quantity is sensitive to the Coriolis interaction and exhibits
a staggering behavior indicating the respective perturbation
of the spectrum. In Fig. 1 it is illustrated that the model
calculations reproduce the staggering behavior of �E(I±)
induced by the Coriolis interaction in the spectra of 219,221Fr,
219,225Ra, 219Ac, and 225Th with K = 1/2. In Fig. 2 we observe
a smooth behavior of �E(I±) as a function of I for the nuclei
225Fr, 225Ac, 231Th, 239,243Am, and 245Cm where K �= 1/2
and the Coriolis effect does not perturb the spectrum. The
near linear dependence of the doublet splitting, is clearly
explained through the decrease of the ratio k2/I (I + 1) with
the increasing angular momentum in Eq. (13). As explained
in the end of Sec. III, this behavior can be associated with
the forming of a degenerate parity doublet structure at higher
angular momenta and has a clear physical meaning.
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FIG. 1. (Color online) Experimental and theoretical parity-doublet splitting in 219,221Fr, 219,225Ra, 219Ac, and 225Th. The data for 221Fr and
225Th are taken from Refs. [17] and [18], respectively, whereas those for the other nuclei are from Ref. [16].

The above analysis allows a detailed estimation of the
possible values of the angular momentum projection K on
which the parity-doublet structure is built. This is illus-
trated in Fig. 3 through the doublet splitting �E(I±) =
E(I+) − E(I−) observed in 223Ra. It is seen in Fig. 3(a) that
the experimentally assumed value K = 3/2 does not support
the staggering behavior of the parity splitting observed in the
experimental data. Figure 3(b) shows that if a K = 1/2 value
is assumed, the staggering behavior of �E(I±) is reproduced.
In such a way the presence of the staggering effect indicates
a strong contribution of an intrinsic K = 1/2 configuration
related to the Coriolis coupling interaction. The considered
example suggests a possibility to get information about the
single-particle orbitals that contribute to the K configurations
associated with the particular collective spectrum of the
nucleus.

We have implemented model calculations for B(E2)
and B(E1) reduced transition probabilities in the spectra
of 161,163Dy, 151Pm, 227Ra, and 239Np, where the available
experimental data allow to get information about the angular
momentum dependence of these quantities. The theoretical
transition values have been determined after fitting the
parameter c in Eqs. (22) and (23). The scaling (effective
charge) parameters were taken as b2 = 103 in all nuclei and
b1 = 2 × 10−4 for 161Dy and b1 = 10−4 for the remaining
nuclei. The calculated results are compared to experimental
data in Figs. 4–8. Figure 4 shows the behavior of B(E1)
transition probabilities between positive- and negative-parity
counterparts in the spectrum of 161Dy. The data, which are
reasonably reproduced by the theoretical values, indicate a
decrease of this quantity with increasing angular momentum.
Although the number of experimental points is not enough to
draw a detailed conclusion, the observed behavior of B(E1)
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FIG. 2. (Color online) The same as in Fig. 1 but for the nuclei 225Fr, 225Ac, 231Th, 239,243Am, and 245Cm. Data from Ref. [15].

can be interpreted within the model framework. Based on the
remark in the end of Sec. III, the decreasing model values
of B(E1) can be associated with the respective decrease
in the doublet splitting. In the limiting case of degeneracy
this transition probability is completely reduced. Considering
that toward the degeneracy limit the collective dynamics of
the nucleus is less affected by the single-particle parity, one
can suppose that the quenched B(E1) transition probabilities
between positive- and negative-parity counterparts at higher
angular momenta are no longer of a prominent collective
character.

In Figs. 5 and 6 the results for the B(E2) transition
probabilities within sequences of a given parity of the nuclei
161Dy and 163Dy are shown. We see that the theory reproduces
the overall behavior of the experimental data in the cases of
�I = 1 and �I = 2 transitions. Some staggering behavior
of B(E2) is observed in the data of 161Dy. As far as the
E2 transitions are of quadrupole character one may suppose

that such perturbations in the B(E2) values are due to the
mixing with other level sequences in the spectrum based on
quadrupole degrees of freedom [16]. However, the integral (23)
incorporates the simultaneous contribution of the quadrupole
and octupole degrees of freedom in the level energies.
Therefore the B(E2) transition values between members of
the parity doublet also carry the sign of quadrupole-octupole
collectivity.

Figs. 7 and 8 show some additional results for B(E1)
transition probabilities between positive- and negative-parity
states in 151Pm, 227Ra, and 239Np. In all cases there are more
than enough data to draw detailed conclusions. Nevertheless,
we can point out that the indication for decrease in the
B(E1; Iπ → I−π ) values in these nuclei, Fig. 7 and Fig. 8(a),
supports the above interpretation made for 161Dy (Fig. 4). In
the case of the B[E1; I− → (I + 1)+] transitions in 227Ra,
Fig. 8(b), both experiment and theory give an indication for an
increase with angular momentum. All these results suggest that
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(a) (b)

FIG. 3. (Color online) Experimental and theoretical doublet splitting in 223Ra with (a) K = 3/2 and (b) K = 1/2. Data from Ref. [16].

any further experimental data would provide important infor-
mation about the angular momentum evolution of quadrupole-
octupole collectivity in the split-parity doublet spectra.

We have examined the way in which the model formalism
can be limited to the presence of the quadrupole collective
mode alone, without explicitly breaking the assumption for
the coherence between quadrupole and octupole degrees of
freedom. In this limit the reduced contribution of the octupole
mode is related to the gradual reduction of the interaction
between positive- and negative-parity counterparts of the split-
parity doublet. The model quantity related to the magnitude
of this interaction is the difference �k2 = |k2

+ − k2
−| in

the quantum number k, which separates energetically the
counterparts according to Eq. (13) [see also the text below
Eqs. (15) and (16)]. In the present work �k2 is taken equal to
3, providing a relatively weak splitting of the parity doublet that
corresponds to a considerable presence of the octupole degree
of freedom. With the increasing �k2 the doublet splitting
increases and the octupole interaction between the opposite-
parity counterparts, respectively, decreases. In the limiting case

FIG. 4. (Color online) Theoretical and experimental B(E1) tran-
sition probabilities between positive- and negative-parity counterparts
in the spectrum of 161Dy. Data from Ref. [15]. The B(E1) values are
quite similar in the case of separately fitted positive- and negative-
parity bands with the same kfix = 1. See Table V for comparisons.

of large enough �k2 (�k2 → ∞) the doublet is completely
split. Then both, the positive- and negative-parity sequences
are completely separated and do not interact to each other, a
situation opposite to the degeneracy limit. As a result there is
no manifestation of octupole degree of freedom. This situation
is reproduced by the model formalism as follows. The energy
sequence containing the ground state is characterized by the
lowest value of k, k0 = 1 or 2, depending on the ground-state
parity, (+) or (−), respectively. The opposite-parity levels are
characterized by a large k � k0 value, which shifts them up
to a different (higher) energy range. In such a way only the
ground-state energy sequence remains in the model framework
and it is associated to the quadrupole degrees of freedom only.
As a main consequence of reduced octupole interaction, the
B(E1) transition probabilities between states with positive
and negative parity become zero. At the same time the
B(E2) transition probabilities within the ground-state energy
sequence correspond to pure quadrupole rotations and vibra-
tions. However, because the E2 transitions are of quadrupole
character and the octuple mode affects them only indirectly, as
mentioned above, one should not expect considerable change
in the B(E2) values toward the quadrupole limit. Note that
in this limit the quadrupole-octupole model describing two
coupled energy sequences with opposite parities is reduced
to a simple quadrupole model for one band with fixed
parity.

The above discussed quadrupole limit of the model can also
be derived by directly removing the octupole variable from the
model Hamiltonian (1), i.e., by taking C3 = 0 and d3 = 0 in
the potential (4) and solving the one-dimensional Schrödinger
equation for β2 in a potential of Davidson’s type. However, the
present analysis shows how this limit can be gradually obtained
through the increase of the model quantity �k2, which has a
clear physical meaning related to the magnitude of the octupole
interaction. We remark that a similar mechanism of complete
multiplet splitting with reduced interband interaction is known
for the ground and γ bands of even-even nuclei within the
concept of broken SU(3) symmetry [20].

We examined the behavior of theoretical B(E1) and B(E2)
transition probabilities for 161Dy and 163Dy in the above
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(a) (b)

FIG. 5. (Color online) Theoretical and experimental B(E2) transition probabilities in the positive-parity sequence of 161Dy with: (a)
�I = 1, (b) �I = 2. Data from Ref. [15]. The B(E2) values are almost identical in the pure quadrupole limit. See Table IV for the comparison.

considered limit of completely split-parity doublet. For this
purpose the ground-state sequences of both nuclei were
associated with k+ = 1 (for π = +) and k− = 2 (for π = −),
respectively. The corresponding opposite-parity counterparts
were associated with the large values k− = 30 (for 161Dy)
and k+ = 31 (for 163Dy). The model calculations have been
implemented only for the ground state sequences by keeping
in the B(E1) and B(E2) transitions the same values of the
effective charge parameters as in the complete quadrupole-
octupole case. As a result we verified that the theoretical
B(E1) transition values between the (5/2)±, (7/2)±, and

(9/2)± parity counterparts in 161Dy, shown in Fig. 4 for the
quadrupole-octupole case now drop to zero. In this meaning
the nonzero experimental values for these transitions, together
with their reasonable model description in Fig. 4 indicate
the presence of coherent quadrupole-octupole modes in the
spectrum of 163Dy. The above conclusion holds also for the
B(E1) transition values in Figs. 7 and 8.

The results for the B(E2) transition probabilities within
the ground-state sequences of 161Dy and 163Dy obtained in the
quadrupole-octupole framework and in the quadrupole limit
of the model are given in Table IV together with the respective

TABLE IV. Theoretical and experimental B(E2) values (in W.u.) in the ground-state sequences
of 161Dy (with positive parity) and 163Dy (with negative parity). The column Qoc. corresponds to
model calculations with quadrupole and octupole modes, while the column Quad. corresponds to
calculations in the quadrupole limit. See the text for more details.

Ii → If
161Dy (π = +) Exp. 163Dy (π = −) Exp.

Qoc. Quad. Qoc. Quad.

7/2 → 5/2 273 269 320 (5) 304 309 281 (14)
9/2 → 7/2 233 229 250 (8) 259 263 260 (60)

11/2 → 9/2 180 178 160 (9) 200 202 –
13/2 → 11/2 140 139 70 (30) 155 156 200 (80)
15/2 → 13/2 110 110 90 (3) 123 123 120 (30)
17/2 → 15/2 89 89 9 (8) 100 99 36 (9)
19/2 → 17/2 74 74 54 (16) 82 81 44 (16)
21/2 → 19/2 62 63 9 (8)
23/2 → 21/2 53 54 12 (8)
25/2 → 23/2 45 47 4 (9, −4)

9/2 → 5/2 77 75 91 (19) 85 87 110 (20)
11/2 → 7/2 131 129 133 (24) 145 147 –
13/2 → 9/2 167 165 157 (22) 186 188 200 (80)
15/2 → 11/2 192 192 190 (30) 214 215 292 (70)
17/2 → 13/2 211 211 220 (21) 236 235 250 (40)
19/2 → 15/2 226 227 176 (19) 252 250 260 (4)
21/2 → 17/2 238 240 260 (30) 266 262 250 (43)
23/2 → 19/2 248 252 240 (30) 277 271 230 (50)
25/2 → 21/2 256 262 340 (7)
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(a) (b)

FIG. 6. (Color online) The same as in Fig. 5, but for the negative-parity sequence of 163Dy. Data from Ref. [15].

(a) (b)

FIG. 7. (Color online) Theoretical and experimental B(E1) transition probabilities between negative- and positive-parity counterparts in
the spectra of 151Pm and 239Np. Data from Ref. [15].

(a) (b)

FIG. 8. (Color online) Theoretical and experimental B(E1) transition probabilities between (a) negative- and positive-parity counterparts
and (b) negative- and positive-parity states with �I = 1 in the spectra of 227Ra. Data from Ref. [15].
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TABLE V. Theoretical and experimental B(E1) values (in W.u.) for E1 transitions between negative- and positive-parity
states in 151Pm, 161Dy, 227Ra, and 239Np (data from [15]). The column Qoc corresponds to model calculations with quadrupole
and octupole modes, whereas the column kfix corresponds to calculations with the same value of the model quantum number
k = 1 for the positive- and negative-parity states. The parameters units are the same as in Table II. See the text for more
details.

Nucl. Separate bands params. for kfix E1 transitions B(E1) transition values

Param. Band (+) Band (−) Ii → If Qoc kfix Exp.

151Pm ω 0.107 0.091 5/2− → 5/2+ 0.001208 0.001488 0.0014 (2)
b 30.1 30.1 7/2− → 7/2+ 0.000686 0.000451 >0.000210
d0 270 270
c 2.2 2.2

161Dy ω 1.052 1.388 5/2− → 5/2+ 0.000127 0.000107 0.000139 (4)
b 0.5 0.5 7/2− → 7/2+ 0.000071 0.000060 0.000055 (11)
d0 1000 1000 9/2− → 9/2+ 0.000046 0.000039 0.000054 (4)
c 2.57 2.57

227Ra ω 0.627 0.107 3/2− → 3/2+ 0.000597 0.000624 0.00058 (8)
b 0.42 0.41 3/2− → 5/2+ 0.000493 0.000412 0.00061 (8)
d0 600 100 5/2− → 5/2+ 0.000334 0.000282 0.00017 (5)
c 0.7 0.7 5/2− → 7/2+ 0.000746 0.000516 0.00076 (21)

239Np ω 0.376 0.510 5/2− → 5/2+ 0.000204 0.000212 0.000205 (11)
b 0.37 0.37 7/2− → 7/2+ 0.000116 0.000120 >0.000140
d0 300 300
c 1.3 1.3

experimental data. It is seen that the B(E2) values are almost
identical in the pure quadrupole limit. See Table IV for the
comparison. Thus, the exclusion of the octupole degree of
freedom in the quadrupole limit does not affect considerably
the behavior of these transition values. The comparison of
both theoretical sets of data in Table IV illustrates the slight
indirect influence of the octupole degree of freedom on the
quadrupole-defined B(E2) transitions.

We remark that non-zero B(E1) transition values can be
obtained by taking the same fixed value kfix = k+ = k− = 1
of the model quantum number k in Eq. (13) and separate
(independent) sets of parameters ω, b, and d0 for the both,
positive- and negative-parity sequences. (Only the parameter c

related through multiplication to the effective charge should be
kept the same for both sequences.) Results of such a calculation
for 151Pm, 161Dy, 227Ra, and 239Np are shown in Table V. We
see that the obtained B(E1) values are close to those obtained
in the coherent quadrupole-octupole calculation. However,
one should keep in mind that if the model quantum number k

is the same for both sequences it does not take into account
anymore the difference in the parity of the counterpart states.
Then the parity of the states should be assumed beyond the
considered formalism.

Finally, it is worth noting that our analysis outlines two lim-
its in the coherent quadrupole-octupole motion of the system.
First, this is the limit of doublet degeneracy realized for a finite
value of �k2 (as �k2 = 3) and increasing angular momentum.
Second, the limit of completely split-parity doublet is realized
at large values of �k2. Note that in the first case the reduction
of the B(E1) transition values with the angular momentum
is associated with degeneracy, whereas in the second case the
missing B(E1) transitions mean no presence of octupole mode
in the collective motion of the system. The systematic behavior

of nuclear quadrupole-octupole collectivity with respect to
these limits is a subject of further work.

VI. CONCLUSIONS

In conclusion, the model scheme based on coherent
quadrupole-octupole oscillations and rotations with a Coriolis
coupling to a single particle suggests a collective mechanism
for the appearance of split-parity doublet structures in odd-A
nuclei. The model reproduces split-parity doublet spectra in
a wide range of nuclei with a good accuracy and provides
predictions for further not yet observed energy levels. It
describes the fine staggering behavior of the doublet-splitting
as a function of the angular momentum. In this framework the
Coriolis interaction has important influence on the structure
of the split-parity doublets. The formalism provides respective
estimations for the possible values of the angular momentum
projection K on which the spectrum is built. Thus, one
can get information about the intrinsic K configurations
associated with the collective energy bands of odd-A nuclei.
The analysis of B(E1) and B(E2) transition probabilities in the
split parity-doublet spectra outlines the relation between the
different states within the spectrum. The particular behavior of
the doublet splitting and the B(E1) values between opposite-
parity counterparts in dependence on the angular momentum
suggests the way in which a degenerate doublet structure can
be formed. The limit of missing octupole mode is associated
with the situation of completely split (disintegrated) parity
doublet structure. Finally, the present model approach gives a
physical framework for the evolution of quadrupole-octupole
collectivity in odd-A nuclei and outlines the limits of its
manifestation in the different nuclear regions.
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