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The ground-state deformations of the Ge isotopes are investigated in the framework of Gogny-Hartree-Fock-
Bogoliubov (HFB) and Skyrme Hartree-Fock plus pairing in the BCS approximation. Five different Skyrme
parametrizations are used to explore the influence of different effective masses and spin-orbit models. There is
generally good agreement for binding energies and deformations (total quadrupole moment and triaxiality) with
experimental data where available (i.e., in the valley of stability). All calculations agree in predicting a strong
tendency for triaxial shapes in the Ge isotopes with only a few exceptions owing to neutron (sub)shell closures.
The frequent occurrence of energetically very close shape isomers indicates that the underlying deformation
energy landscape is very soft. The general triaxial softness of the Ge isotopes is demonstrated in the fully
triaxial potential energy surface. The differences between the forces play an increasing role with increasing
neutron number. This concerns particularly the influence of the spin-orbit model, which has a visible effect on
the trend of binding energies toward the drip line. Different effective mass plays an important role in predicting
the quadrupole and triaxial deformations. The pairing strength only weakly affects binding energies and total
quadrupole deformations, but it considerably influences triaxiality.

DOI: 10.1103/PhysRevC.76.034317 PACS number(s): 21.60.Jz, 21.10.Dr, 21.30.Fe, 27.50.+e

I. INTRODUCTION

In recent years, the development of radioactive nuclear
beams and new γ -ray detector arrays, together with the
powerful ancillary detectors for light ions, has allowed the
experimental studies of nuclei close to the proton and neutron
drip lines [1–3], making theoretical studies of the ground-
state properties of these nuclei important. These nuclei may
reveal interesting phenomena of nuclear structure physics and
provide a testing ground for theoretical models, which should
explain the systematics of various properties over long chains
of isotopes.

Atomic nuclei exhibit a variety of shapes, varying from
spherical to quadrupole and higher order multipole deforma-
tions. The possible shape that the nucleus may adopt results
from a delicate balance between collective and single-particle
energies and their dependence on deformation. Nuclear triax-
iality, associated with the breaking of axial symmetry of the
quadrupole deformation, brings up many interesting collective
motions (e.g., wobbling motion and chiral and γ bands).
Recent measurements of the quadrupole moments and B(E2)
transition probabilities from Coulomb excitation experiments
[4,5] give more direct indications of nuclear triaxiality.

Various theoretical methods, including the shell model
[6,7] and self-consistent mean-field models [8,9], as well
as the interacting boson model [10] have been employed to
predict nuclear exotic shapes. Many authors [11–13] discussed
nuclear shape extensively, but imposed axial and reflection
symmetries to alleviate the complex numerical problems. In
axially symmetric calculations, both prolate and oblate minima
with energies very close to each other can coexist in the
nuclear deformation energy curve as a function of quadrupole
deformation. In such cases, one cannot definitely conclude
which shape is the ground-state configuration and whether
there is a real shape coexistence or if there is yet another type

of deformation, such as γ -instability with a valley linking the
prolate and oblate shapes through the triaxial region. A study
of the Zn and Ge isotopes within the relativistic mean-field
theory [14] indicates that the restrictions imposed by the
assumption of axial symmetry may be too severe and a triaxial
calculation is necessary.

The motivation for the present work is to study the triaxiality
and shape transitions in a number of Ge isotopes from
the proton to the neutron drip line. These isotopes are the
best candidates for examining the degree to which nuclear
ground states can adopt triaxial deformation, and there are
several indications from theoretical studies already for a
potentially rich variation in deformation. For example, recent
Hartree-Fock-Bogoliubov (HFB) calculation predicted that the
nucleus 64Ge is extremely soft toward triaxial deformation
[15]. Triaxial Routhian surface calculations for 64Ge predicted
a well-deformed minimum at β2 = 0.3 and γ ≈ 15◦ [16].
Calculations using the IBM-3 approach [10] described 66Ge
and 68Ge as vibrational nuclei, and an oblate shape was
predicted for the ground-state band of 68Ge by excited VAMPIR

calculations [17]. Thus, this region should provide an excellent
opportunity to test nuclear structure models. Moreover, the
study of various isotope chains with different theoretical
models allows the possibility to distinguish what is general
from what is particular in the behavior of these nuclei.

The three most widely used self-consistent mean-field
models are the Skyrme energy functional, the Gogny force,
and a relativistic mean-field Lagrangian; for a recent review
see Ref. [18]. In the present work two mean-field methods
are employed to study the nuclear triaxiality. One is the
Skyrme energy density functional plus BCS pairing (see,
e.g., Ref. [19]). In this case it is to be noted that several
parametrizations exist for the Skyrme functional, among which
we will choose five different ones to cover a sufficient variety
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of open options. The other method is the HFB theory with
the Gogny interaction [20–22]. The finite-range Gogny force
is designed to provide a simultaneous description of both the
particle-hole (HF) and the particle-particle (pairing) channels
of the mean field.

The paper is organized as follows: Section II gives a brief
outline of the two theoretical models, Skyrme HF plus BCS
and Gogny HFB. In Sec. III, triaxial features of the Ge isotopic
chain are presented within both models. The Skyrme HF-BCS
calculations predict shape isomers and γ -softness in many Ge
isotopes. The effects of the spin-orbit interaction, the effective
mass, and the pairing strength on the systematic properties
of the Ge isotopic chain are discussed with various Skyrme
forces and different pairing strengths. Our calculated ground-
state properties are compared with the available experiments.
Section IV is devoted to a summary.

II. THEORETICAL MODELS

A. Skyrme Hartree-Fock plus BCS

The zero-range and density-dependent Skyrme force has
been widely applied to self-consistent nuclear structure calcu-
lations owing to its numerical simplicity. Various parametriza-
tions of the Skyrme force are available, many of which provide
an excellent description of basic nuclear bulk properties
(binding energies, radii, etc.), but differ in other aspects (e.g.,
excitations, fission barriers, or neutron matter properties [23]).
For this work we have chosen five typical parametrizations that
differ with respect to effective mass and spin-orbit terms and
with respect to the bias in the fit. The force SkM∗ is meanwhile
an established standard, one of the first forces that managed
to cover several observables with quantitative success [24].
The force SkT6 stems from a systematic survey of varied
parametrizations at the level of quality in these years (see
SkM∗) and it is a choice having an effective nucleon mass
around unity [25]. The force SkP was originally developed to
compute the pairing matrix elements from the same Skyrme
force as used for the mean field [26]. We take it here as an
alternative for a force with unit effective mass and employ the
same type of pairing force as for the other parametrizations.
The force SLy6 is a recent fit including more data with
emphasis on isotopic trends, neutron-rich nuclei, and neutron
matter [27]. It has rather low effective mass. The force SkI3
is also a recent fit having low effective mass [28]. It employs
an extended spin-orbit force, which was built in analogy to
relativistic models [29]. Its fit also includes the nuclear charge
form factor, which, in turn, provides a more realistic (i.e.,
softer) surface thickness. The effective masses for the five
Skyrme parametrizations are given in column two of Table I.

The Skyrme energy functional consists of kinetic en-
ergy, Skyrme interaction energy, Coulomb energy including
exchange in Slater approximation, pairing energy, and a
correction for the spurious center-of-mass motion. All terms
besides the center-of-mass energy can be expressed in terms
of local distributions, namely density, kinetic energy density,
spin-orbit current, and pair density. The pairing correlations
are treated in the BCS approximation by using a delta
pairing force [30,31], Vpair(�r, �r ′) = Vqδ(�r − �r ′). The pairing

TABLE I. The isoscalar effective mass m∗/m in infinite nuclear
matter and the pairing strengths Vp for protons and Vn for neutrons
for the Skyrme interactions used in the calculations.

Force m∗/m Vp (Mev fm3) Vn (Mev fm3)

SkT6 1.00 −202.526 −204.977
SkP 1.00 −252.619 −236.237
SkM∗ 0.79 −279.082 −258.962
SLy6 0.69 −298.760 −288.523
SkI3 0.57 −335.432 −331.600

strength Vp for protons and Vn for neutrons depend on the
mean-field parametrization. For each parametrization they are
separately fitted to the pairing gaps in the selected isotopic and
isotonic chains. The pairing strengths for the different Skyrme
parametrizations are taken from Ref. [32] and listed in Table I.
Note that they vary dramatically with the force. They depend
on the actual shell structure, in particular on the effective
mass. The variation of the energy functional with respect to the
single-particle wave functions yields the mean-field equations
and variation with respect to the occupation amplitudes gives
the associated pairing equations.

The coupled HF-BCS equations are solved on a grid in coor-
dinate space with Fourier representation of the derivatives. No
symmetry restriction has been imposed in the calculation. The
stationary states are found with the damped gradient iteration
method [33]. As the most sensitive criterion for convergence
we take the variance of the mean-field Hamiltonian, which
is required to become smaller than 10−4 MeV. Experience
shows that this is a sufficient safeguard against being deceived
by pseudo-convergence (an iteration being stuck at a certain
energy value for very long times). We start the iteration from
various initial states to explore the landscape of isomers that are
stable stationary minima besides the ground state. Deformation
and energy of the isomers help to indicate the softness of the
deformation energy landscape. Note, however, that the search
for isomers is only exploratory. We do not aim at unraveling
the complete landscape of isomers. We rather consider the
isomers that we happen to find as indicators for the softness of
the underlying deformation energy landscape.

B. Gogny Hartree-Fock-Bogoliubov

We use the finite-range Gogny force with parametrization
D1S [34,35]. It consists of a finite-range part with Gaussian
shape containing the four relevant spin-isospin exchanges
(Wigner, Majorana, Heisenberg, and Bartlett), a density-
dependent zero-range term, a zero-range spin-orbit force, and
the Coulomb force. Exchange field is treated exactly in all
terms.

We have taken into account all the contributions to HF
and pairing fields arising from the Gogny and Coulomb
interactions as well as the two-body correction of the kinetic
energy in the self-consistent procedure. The finite-range
Gogny force allows us to derive the HF Hamiltonian and
the pairing field simultaneously from one and the same
Hamiltonian. The practical treatment is, of course, much more
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cumbersome. To save CPU time in the numerical calculations,
the P̂ e−iπĴz (z-simplex) and P̂ e−iπĴy τ̂ (ŜT

y ) symmetries are

imposed [36,37], where P̂ is the parity operator, e−iπĴi the
rotation operator around the i-axis with an angle π , and τ̂

the time reversal operator. Owing to the z-simplex and ŜT
y

symmetries, a mass asymmetry of the nucleus is allowed only
along the x-axis.

The HFB equation has been solved in a three-dimensional
harmonic oscillator basis [22,38,39]. The triaxial oscillator
parameters of the Hermite polynomials were optimized for
each nucleus to obtain the largest ground-state binding energy.
In our calculations of the Ge isotopes, the optimization was
done with an expansion of single-particle wave functions up
to a principal quantum number N0 = 8 in the oscillator basis.
This basis size together with the optimized basis parameters
provides a very good description, comparable to the calculation
with 12 shells in the fixed basis [22]. No isomeric states could
be calculated, however, because the optimization of the basis
produces convergence only into the ground state.

III. TRIAXIALITY AND SHAPE COEXISTENCE

We discuss the properties of ground states and coexistent
isomeric states for the Ge isotopes from the proton-rich isotope
with neutron number N = 26 to neutron-rich nuclei until close
to the neutron drip-line at N = 76.

Figure 1 shows the energies of ground states (filled
symbols) and isomers (open symbols). The energies as such
would have a huge variation and lead to a rather meaningless
plot, so we show relative energies, in the upper panel relative to
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FIG. 1. Binding energies along the chain of Ge isotopes for the six
forces, Gogny, SLy6, SkI3, SkT6, SkM∗, and SkP, as indicated. The
lower panel shows the energy differences from FRLDM values [40]
and the upper panel the differences from the experimental values [41].
Filled symbols denote ground states and open symbols isomers.

experiment and in the lower panel relative to the results from a
macroscopic-microscopic model, the finite-range liquid-drop
model (FRLDM) with results taken from Ref. [40]. In the range
of experimentally accessible isotopes, there is a clear sorting
of energies with forces, with Gogny predicting underestimated
binding throughout. The older Skyrme forces (SkM∗, SkT6,
and SkP) tend to overbinding. The typical deviation from
experiment is smallest for SLy6 and SkI3, which is no surprise
because these two forces are the most recent developments
in our sample. The exotic regime (i.e., the wings of the
distributions) shows a much wider span of energy predictions,
as is expected since the uncertainty in extrapolations grows
when going farther away from the regime of stable nuclei for
which the forces were adjusted. Even the ordering of energies
with forces is interchanged owing to different isovector
properties in the different parametrizations.

The lower part of the figure shows the energies in a
much broader range of isotopes drawn as the difference from
FRLDM values because experimental data are not available
in that deeply exotic regime. The span of the predictions
grows substantially as could be expected in a regime of bold
extrapolation. The trends that had already started to develop in
the range of experimentally accessible nuclei (see upper panel)
are basically continued with Gogny tending to lowest binding
energies whereas the Skyrme forces span a broad band up to
very strong binding at large neutron excess for SkM∗. Simple
dependencies (e.g., on the effective mass) cannot be seen.
There is a mix of various influences, with symmetry energy
and shell structure determined by effective mass as well as
spin-orbit splitting. Note that the trend of SkI3 to stronger
binding develops late on the isotopic chain (see the crossing
of trends at the rather large A = 94). This is a consequence of
the different isotopic mix in the spin-orbit term whose impact
grows with neutron excess [28].

For the Skyrme energy functional there appear isomers
in many cases and it is noteworthy that isomer energies are
usually extremely close. This indicates that the energy land-
scape is very soft, often producing energetically competing
shapes. The dominant shape parameter is the quadrupole
deformation Q2µ = 〈r2Y2µ〉. For better comparison, it is
useful to handle it in terms of the dimensionless quadrupole
deformations

β =
√∑

µ

β2
2µ, (1a)

γ = atan
(β22 + β2−2√

2β20

)
, (1b)

β2µ = 4π〈r2Y2µ〉
5〈r2〉 . (1c)

Figure 2 is an attempt at visualizing the typical energy
landscapes by showing a cut of the potential-energy surfaces
(PES) along axial shapes (i.e., along β20) for three examples,
a proton-rich isotope 76Ge, the most stable nucleus 82Ge, and
98Ge as a very neutron rich case. The PES are indeed very
soft, particularly for 76Ge and 82Ge. More structures seem
to develop on the proton-rich side. However, the prolate and
oblate minima are softly connected along the path of triaxiality,
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FIG. 2. Potential-energy surfaces (PES) versus axially symmetric
quadrupole deformation computed with SLy6 for three selected Ge
isotopes as indicated. Positive quadrupole moments correspond to
prolate shapes and negative moments to oblate ones.

having, in fact, a shallow minimum at a fully triaxial shape
(see Table II). The general triaxial softness of the Ge isotopes
is demonstrated for the case of 76Ge in Figure 3, which shows
the PES in the fully triaxial deformation landscape. The weak
prolate minimum extends, in fact, as a shallow valley deep
into the regime of triaxiality. In this way the PES will be
very soft in many cases, with the actual ground state having
large shape fluctuations about the minima in the mean-field
configurations. This requires, in principle, the computation of
the collective ground-state correlations as done, for example,
in the surveys of Refs. [42–44]. Such calculations, however, are
very cumbersome and remain restricted to axial symmetry. For
a first exploration, the deformations at the mean-field minima
still provide useful guidelines for the structure and low-energy
dynamics of the nuclei.

Figure 4 summarizes the results for deformations and
pairing energies. The quadrupole deformation is quantified
in terms of β and triaxiality γ as defined in Eq. (1). Table II
supplies the complementary detailed numbers. All calculations
agree in predicting a strong tendency to triaxial shapes for the
Ge isotopes and they all, except SkP, show a clearly spherical
82Ge, which is no surprise because neutron number N = 50

FIG. 3. Triaxial PES with SLy6 for the nucleus 76Ge. The contour
lines are labeled with the energy in MeV. The two straight lines
indicate the directions of triaxial deformation, γ = 30◦ and 60◦.

corresponds to a closed neutron shell. Previous theoretical
works [15,16] have selected a few specific nuclei in this
mass region to study nuclear exotic shapes, thus motivating
the present systematic study of the isotopic chains from the
proton to the neutron drip line. For example, HFB in coordinate
space and the two-basis method [15] predicted the ground-state
deformation of the nucleus 64Ge as β = 0.27 and γ = 25◦,
and triaxial Routhian surface calculations for 64Ge yielded
a well-deformed ground state at β2 = 0.3 and γ ≈ 15◦ [16].
They predicted similar ground-state deformations for 64Ge as
our Gogny, SLy6, and SkI3 calculations (as shown in Table II).
At variance are the predictions of SkM∗, SkP, and SkT6, which
have the higher effective masses in our sample and which all
yield a spherical ground state. This isotope with 32 neutrons is
in the transitional region still near magic number 28 and such
nuclei are sensitive to faint changes in shell structure.

At second glance, we see more interesting differences in
detail. The simplest pattern is provided by the Gogny force.
Except for the closed shell 82Ge, all nuclei are well deformed
and all of these except two are clearly triaxial. Quite similar
global deformation is found also for SLy6 and SkI3. Here
we have a few more spherical ground states related to the
known neutron subshell closures (N = 40 and N = 28 for
SLy6; N = 40 and N = 70 for SkI3). More differences are
seen concerning triaxiality. Although the Gogny force predicts
triaxial minima almost throughout, SLy6 and SkI3 have many
axially symmetric exceptions near the stable isotopes. In
these cases there are, however, many triaxial isomers and the
energy separations are generally very small, which indicates
that the situation is extremely soft in triaxial direction. A
certain ambiguity between axial and triaxial deformations is
also apparent from the zigzag pattern of triaxiality along the
isotopic chain. Fully correlated calculations would smooth the
fluctuations and, seen with a smoothing filter, the predictions of
Gogny, SLy6, and SkI3 are in general quite similar, predicting
the general importance of triaxiality for the Ge isotopes.

The situation is somewhat different for the other three
Skyrme forces shown in the lower panels. These forces agree
nicely with the others for the very neutron rich isotopes
but yield generally smaller deformations near the valley of
stability. This is related to the higher effective mass, which
acts here to reduce the energy gain from deformation for the
mid-shell neutron numbers. The three forces SkM∗, SkP, and
SkT6 have a broad transitional region of sphericity around the
magic N = 28 before deformation develops. Further spherical
dips appear at the (sub)shell closures N = 50 and N = 58.
Both features are caused by shell structure (i.e., the higher
effective mass of these three forces). The majority of isotopes
carrying deformation are similar, although the two forces SkP
and SkT6 with effective mass one have generally smaller
deformations. They are also distinguished by showing broad
regions of axiality around A = 80, where the other forces
show more transitional behavior, switching between axial and
triaxial shapes. In spite of all these differences in detail, we
have to keep in mind that all forces agree in predicting softness
and triaxiality in the region of neutron-rich Ge isotopes.

The experimental information on the ground-state shapes
of the nuclei 70−76Ge [4,5] is shown for comparison. There
is good agreement for Gogny, SLy6, SkI3, and SkM∗. The
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TABLE II. The properties of ground states (GS) and coexistent isomeric states (IS) for Ge isotopes with
the Gogny HFB and Skyrme HF-BCS using the SLy6, SkI3, SkT6, SkM∗, and SkP parametrizations. The eight
columns represent the nucleus calculated; the force used; the type of state; the total, HF, and pairing energies;
quadrupole deformation β; and triaxial deformation γ (given in degrees). The available experimental results
(Exp.) are listed for comparison.

Nucleus Force State EB (MeV) EHF Epair β γ

58Ge Gogny GS −450.30 −449.94 0.36 0.24 16.6
SLy6 GS −455.83 −455.82 0.00 0.23 16.1
SkI3 GS −456.97 −456.97 0.00 0.24 17.1
SkT6 GS −459.30 −456.87 2.43 0.00 4.7
SkM∗ GS −459.91 −456.42 3.49 0.00 21.4
SkP GS −457.39 −453.01 4.37 0.00 4.7

60Ge Gogny GS −483.87 −480.60 3.27 0.17 60.0
SLy6 GS −489.23 −489.02 0.22 0.00 27.2

IS −489.21 −487.75 1.46 0.15 60.0
SkI3 GS −488.92 −487.71 1.21 0.20 44.0
SkT6 GS −493.70 −493.70 0.00 0.00 9.7
SkM∗ GS −493.89 −493.89 0.00 0.00 43.7
SkP GS −490.56 −487.75 2.80 0.00 41.9

62Ge Gogny GS −514.03 −511.63 2.40 0.23 23.5
SLy6 GS −518.07 −517.35 0.72 0.22 23.1
SkI3 GS −518.23 −517.29 0.94 0.24 23.1
SkT6 GS −522.70 −521.41 1.29 0.00 12.1
SkM∗ GS −522.07 −520.21 1.86 0.00 12.8
SkP GS −520.28 −516.34 3.94 0.00 16.0
Exp. GS −517.63

64Ge Gogny GS −541.52 −541.52 0.00 0.25 26.4
SLy6 GS −544.83 −544.83 0.00 0.24 27.6
SkI3 GS −545.71 −545.71 0.00 0.26 27.6
SkT6 GS −548.84 −548.84 0.00 0.00 24.4
SkM∗ GS −547.89 −547.89 0.00 0.00 42.8
SkP GS −546.83 −542.95 3.89 0.00 7.0
Exp. GS −545.88

66Ge Gogny GS −564.65 −559.63 5.02 0.24 33.8
SLy6 GS −568.35 −566.08 2.27 0.23 60.0

IS −567.65 −565.55 2.10 0.21 0.0
SkI3 GS −568.92 −566.57 2.34 0.24 60.0

IS −568.47 −566.29 2.18 0.23 0.0
SkT6 GS −571.11 −567.75 3.37 0.00 46.4
SkM∗ GS −569.76 −564.89 4.87 0.00 52.9
SkP GS −570.46 −563.08 7.37 0.00 57.5
Exp. GS −569.29

68Ge Gogny GS −586.09 −579.47 6.62 0.23 35.0
SLy6 GS −589.44 −584.99 4.45 0.21 39.4
SkI3 GS −589.94 −587.03 2.91 0.23 37.4
SkT6 GS −592.32 −587.62 4.70 0.12 58.3
SkM∗ GS −590.49 −583.51 6.98 0.01 49.4
SkP GS −592.38 −583.20 9.17 0.01 29.3
Exp. GS −590.79

70Ge Gogny GS −605.94 −598.47 7.47 0.24 32.7
SLy6 GS −609.36 −605.19 4.17 0.23 33.9

IS −609.33 −603.26 6.07 0.17 59.9
SkI3 GS −610.06 −606.80 3.26 0.24 36.2

IS −610.05 −605.78 4.27 0.15 60.0
SkT6 GS −612.31 −606.72 5.59 0.01 59.6
SkM∗ GS −610.08 −602.59 7.49 0.22 29.2
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TABLE II. (Continued.)

Nucleus Force State EB (MeV) EHF Epair β γ

SkP GS −612.78 −603.45 9.33 0.00 22.0
Exp. GS −610.52 0.23 30.9

72Ge Gogny GS −624.35 −616.54 7.81 0.24 30.4
SLy6 GS −628.45 −624.03 4.42 0.00 0.4

IS −627.85 −623.33 4.51 0.22 33.6
SkI3 GS −629.52 −623.49 6.03 0.00 0.6

IS −629.03 −625.30 3.73 0.20 49.9
SkT6 GS −631.22 −626.66 4.57 0.00 1.4

IS −630.56 −625.56 5.00 0.19 31.4
SkM∗ GS −629.13 −622.41 6.72 0.24 23.6

IS −628.90 −619.79 9.11 0.00 5.1
SkP GS −631.47 −622.98 8.49 0.00 27.9
Exp. GS −628.68 0.25 33.7

74Ge Gogny GS −641.46 −634.46 7.00 0.24 27.5
SLy6 GS −645.10 −641.67 3.42 0.24 28.1

IS −644.84 −636.77 8.07 0.07 0.0
SkI3 GS −646.50 −644.18 2.32 0.23 31.2
SkT6 GS −648.38 −641.99 6.39 0.01 4.8

IS −648.06 −643.98 4.08 0.22 21.9
SkM∗ GS −647.12 −641.11 6.01 0.24 21.9
SkP GS −648.32 −638.11 10.21 0.00 4.1
Exp. GS −645.66 0.28 25.9

76Ge Gogny GS −657.21 −651.21 6.00 0.23 24.6
SLy6 GS −661.34 −655.65 5.69 0.16 0.0

IS −661.00 −658.59 2.41 0.24 24.2
SkI3 GS −663.10 −658.01 5.08 0.16 0.0

IS −662.72 −661.91 0.81 0.26 26.1
SkT6 GS −664.69 −659.47 5.22 0.15 0.0
SkM∗ GS −663.92 −658.64 5.28 0.23 20.5
SkP GS −663.97 −654.45 9.51 0.13 0.0
Exp. GS −661.60 0.27 28.9

78Ge Gogny GS −671.98 −665.14 6.84 0.18 0.0
SLy6 GS −676.79 −673.56 3.23 0.18 0.0
SkI3 GS −679.15 −676.56 2.59 0.19 0.0
SkT6 GS −680.21 −676.76 3.46 0.16 0.0
SkM∗ GS −680.00 −674.06 5.94 0.17 0.0
SkP GS −678.59 −671.03 7.56 0.16 0.0
Exp. GS −676.38

80Ge Gogny GS −685.22 −680.74 4.48 0.16 2.3
SLy6 GS −690.21 −687.79 2.42 0.16 0.0
SkI3 GS −692.95 −690.39 2.56 0.16 0.9
SkT6 GS −694.18 −691.73 2.45 0.14 0.0
SkM∗ GS −694.89 −690.51 4.38 0.14 0.0
SkP GS −691.67 −685.17 6.50 0.15 0.0
Exp. GS −690.18

82Ge Gogny GS −696.72 −689.21 7.51 0.00 12.6
SLy6 GS −702.03 −696.42 5.61 0.00 13.4
SkI3 GS −704.61 −698.48 6.12 0.01 17.3
SkT6 GS −707.23 −703.50 3.73 0.00 6.0
SkM∗ GS −708.99 −704.62 4.37 0.00 15.4
SkP GS −703.25 −696.44 6.81 0.11 0.9
Exp. GS −702.43

84Ge Gogny GS −704.51 −701.07 3.44 0.17 21.2
SLy6 GS −709.84 −707.16 2.68 0.16 0.4
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TABLE II. (Continued.)

Nucleus Force State EB (MeV) EHF Epair β γ

SkI3 GS −712.69 −710.02 2.66 0.17 3.9
SkT6 GS −716.02 −713.06 2.96 0.12 0.8
SkM∗ GS −718.57 −714.99 3.59 0.12 0.6
SkP GS −713.36 −707.17 6.19 0.13 0.0

86Ge Gogny GS −711.45 −709.18 2.27 0.21 21.2
SLy6 GS −716.96 −716.96 0.00 0.21 21.8
SkI3 GS −721.26 −721.26 0.00 0.22 21.4
SkT6 GS −723.88 −721.66 2.22 0.13 0.0
SkM∗ GS −727.23 −724.45 2.78 0.14 0.1
SkP GS −721.87 −715.86 6.00 0.13 0.1

88Ge Gogny GS −716.57 −711.45 5.12 0.22 22.4
SLy6 GS −722.69 −720.87 1.82 0.21 0.0

IS −722.34 −721.55 0.79 0.22 28.2
SkI3 GS −728.13 −728.13 0.00 0.24 32.5

IS −727.75 −725.69 2.06 0.23 0.0
SkT6 GS −730.37 −727.59 2.79 0.08 59.9

IS −729.92 −728.43 1.50 0.19 0.0
SkM∗ GS −734.45 −731.58 2.88 0.09 60.0

IS −734.01 −730.20 3.81 0.16 0.2
SkP GS −728.92 −723.15 5.77 0.11 59.5

90Ge Gogny GS −720.58 −713.71 6.87 0.23 23.5
SLy6 GS −727.08 −726.95 0.13 0.22 22.3

IS −726.88 −724.91 1.97 0.22 60.0
SkI3 GS −734.05 −734.05 0.00 0.24 22.0

IS −733.88 −731.67 2.21 0.24 60.0
SkT6 GS −735.72 −733.03 2.68 0.00 2.8
SkM∗ GS −740.70 −738.23 2.47 0.00 7.2
SkP GS −734.88 −728.49 6.40 0.01 5.5

92Ge Gogny GS −723.74 −714.83 8.91 0.23 28.1
SLy6 GS −730.65 −728.87 1.78 0.22 33.0
SkI3 GS −738.72 −737.90 0.81 0.23 40.0
SkT6 GS −739.11 −736.64 2.47 0.16 27.0

IS −737.51 −733.93 3.58 0.30 0.0
SkM∗ GS −745.35 −740.78 4.57 0.21 28.0

IS −744.03 −742.46 1.56 0.35 0.6
SkP GS −739.17 −732.15 7.02 0.10 0.4

IS −739.07 −732.27 6.80 0.14 33.8

94Ge Gogny GS −726.31 −716.48 9.83 0.24 32.7
SLy6 GS −734.00 −732.18 1.82 0.24 38.5

IS −732.69 −729.83 2.86 0.17 0.0
SkI3 GS −743.40 −742.26 1.14 0.22 39.5

IS −742.67 −740.36 2.31 0.20 0.0
SkT6 GS −742.74 −740.78 1.96 0.22 34.6

IS −742.41 −738.90 3.51 0.14 0.1
SkM∗ GS −750.32 −745.23 5.09 0.23 28.1
SkP GS −742.94 −735.45 7.49 0.17 51.2

IS −742.79 −734.71 8.08 0.13 0.2

96Ge Gogny GS −728.29 −718.33 9.96 0.25 33.2
SLy6 GS −736.79 −735.64 1.15 0.24 38.1
SkI3 GS −747.95 −747.95 0.00 0.25 40.2
SkT6 GS −745.96 −743.98 1.98 0.23 33.8
SkM∗ GS −754.86 −749.99 4.86 0.26 26.1
SkP GS −745.94 −739.09 6.84 0.20 35.8
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TABLE II. (Continued.)

Nucleus Force State EB (MeV) EHF Epair β γ

98Ge Gogny GS −729.64 −719.63 10.01 0.26 31.0
SLy6 GS −738.75 −737.47 1.28 0.27 31.1

IS −738.57 −736.13 2.44 0.21 58.8
IS −737.46 −733.99 3.47 0.28 1.9

SkI3 GS −751.62 −749.92 1.70 0.22 60.0
SkT6 GS −748.78 −747.12 1.66 0.26 26.9

IS −748.57 −746.00 2.58 0.25 0.0
SkM∗ GS −759.01 −754.82 4.19 0.27 25.2
SkP GS −748.52 −742.38 6.15 0.22 28.6

100Ge Gogny GS −730.39 −720.45 9.94 0.27 29.2
SLy6 GS −740.38 −740.38 0.00 0.30 26.6
SkI3 GS −754.00 −753.62 0.38 0.24 45.6

IS −753.03 −748.82 4.21 0.09 60.0
SkT6 GS −751.21 −750.26 0.94 0.28 24.6
SkM∗ GS −762.68 −759.16 3.52 0.27 25.2
SkP GS −750.68 −745.18 5.50 0.23 24.9

102Ge Gogny GS −730.52 −720.34 10.18 0.26 28.1
SLy6 GS −741.30 −741.29 0.01 0.27 31.5

IS −739.07 −733.34 5.73 0.00 0.1
SkI3 GS −757.30 −751.74 5.56 0.00 1.1

IS −756.30 −755.13 1.17 0.21 33.8
SkT6 GS −753.15 −752.52 0.63 0.25 21.3
SkM∗ GS −765.84 −762.55 3.30 0.26 24.2
SkP GS −752.39 −747.36 5.03 0.23 22.6

104Ge Gogny GS −730.09 −720.17 9.92 0.25 26.4
SLy6 GS −742.02 −741.46 0.56 0.23 23.8
SkI3 GS −758.71 −758.70 0.01 0.24 26.0

IS −758.61 −753.52 5.09 0.06 56.2
SkT6 GS −754.43 −753.39 1.04 0.23 22.0
SkM∗ GS −768.51 −765.80 2.70 0.25 23.5
SkP GS −753.45 −749.22 4.24 0.23 21.3

106Ge Gogny GS −729.10 −719.78 9.32 0.23 25.2
SLy6 GS −742.22 −742.11 0.11 0.24 24.8
SkI3 GS −760.98 −757.24 3.74 0.11 0.0

IS −760.79 −760.76 0.02 0.19 24.5
SkT6 GS −755.31 −754.93 0.38 0.23 22.0

IS −755.30 −752.98 2.32 0.19 7.7
SkM∗ GS −770.60 −768.31 2.29 0.23 22.3
SkP GS −754.07 −750.25 3.82 0.22 18.4

108Ge Gogny GS −727.47 −718.11 9.36 0.21 24.1
SLy6 GS −742.21 −742.21 0.00 0.19 18.9
SkI3 GS −763.39 −761.50 1.89 0.14 0.0

IS −762.10 −762.09 0.01 0.20 25.4
SkT6 GS −756.02 −754.91 1.11 0.18 1.0
SkM∗ GS −772.28 −769.50 2.77 0.21 19.4
SkP GS −754.39 −750.29 4.09 0.21 0.3

data seem to contradict the subshell closure at N = 40 seen
for SLy6 and SkI3. But note that we see pronounced isomers
in these cases, which indicates a great openness to triaxial
effects when correlations are taken into account. Significant
differences are seen for SkT6 and SkP, although also here
the isomers provide a more balanced view. Note that these

two forces with effective mass one produce a particularly soft
PES and the pure mean-field predictions become somewhat
unreliable here.

The potential energy landscape, deformation energy, and
shapes are determined by an interplay of mean-field effects
(shell structure) and pairing. The pairing energies are shown
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FIG. 4. The shape parameters β for total quadrupole deformation (middle panels) as well as γ for the triaxiality (upper panels) and the
pairing energy (lower panels) for the six forces: Gogny (upper left panels), SLy6 (upper middle), SkI3 (upper right), SkM∗ (lower left), SkP
(lower middle), and SkT6 (lower right). The ground-state values are shown with full symbols. Isomers are indicated by open symbols. Available
experimental values for deformation and triaxiality are indicated by error bars [4,5].

as complementary information in the lower panels of Fig. 4.
The Gogny force shows generally the largest pairing energies.
This is due to the quite different treatment of pairing in the
two models. Our Skyrme calculations use a rather sparse phase
space for pairing, ±5 MeV about the Fermi surface, whereas
the Gogny calculations include a larger space. Moreover,
the fitting of the pairing forces was done differently. The
Skyrme forces used the full odd-even staggering as information

whereas for the Gogny force, the staggering was enhanced
by about 20% [20] to take into account spin polarization
effects in these data [45]. But the overall scaling in pairing
energy is not important because it has negligible effect on
the global observables owing to a subtle balance between
mean-field energy and pairing contribution. What we should
compare are the trends. And even here, we see noteworthy
differences. For all Skyrme forces, particularly for SLy6 and
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SkI3, there is occasionally a breakdown of pairing, which
indicates closeness to the phase transition because of the
generally weaker pairing. A significant difference is also seen
for the trends in the region of very neutron rich isotopes.
The Gogny force shows a strong increase whereas all Skyrme
forces tend to shrink pairing strength. This result, however, has
to be considered with care. Here we are employing the pairing
with a zero-range two-body force in Skyrme HFBCS, but it is
known that a density-dependent pairing force enhances pairing
in the regime of exotic nuclei [9,46]. The relevant information
for our purposes is that the predictions on deformations, and
particularly on triaxiality, are robust with respect to quite
different treatments of pairing.

We have corroborated this statement by studying the effect
of varying pairing strength for SLy6. We find that the overall
deformation is little influenced by varying the pairing strength,
especially for the nuclei in the neutron-rich region. This means
that pairing does not overrule deformation effects dictated
by nuclear shell structure. This statement, though, has to be
taken with a grain of salt. There are sometimes exceptions
near subshell closures, where a larger sensitivity to pairing
is observed. Somewhat more sensitivity to pairing strength is
seen for triaxiality. This is not surprising as the energy gain
from triaxial deformation is smaller and can be more easily
countered by pairing. The general triaxial softness, however,
persists in these cases.

IV. CONCLUSION

We have systematically investigated the properties of the
Ge isotopic chain from neutron number N = 26 to 76 in
the framework of Gogny HFB and Skyrme HF plus BCS.
The Gogny HFB equation, where the finite-range Gogny
interaction provides both particle-hole and particle-particle
correlations simultaneously, was solved in a three-dimensional
harmonic oscillator basis with z-simplex and ŜT

y symmetries.
The coupled HF plus BCS equations, where the density-
dependent Skyrme force and a δ-pairing interaction were used
to treat the mean-field and pairing correlations, were solved
in three-dimensional coordinate space without any symmetry
restrictions. Three conclusions emerge:

(i) Both theoretical models predict that most of the Ge
isotopes have triaxial features. The binding energies and
the deformations β and γ agree in general very well
with the available experiments. The Skyrme HF plus
BCS calculations yield shape-coexistent isomers with quite
different shapes but minor energy differences in many Ge
isotopes. This may indicate γ -softness rather than true
isomeric states, although the height of the barrier between
the ground state and the isomer would yet have to be
checked.

(ii) The five Skyrme parametrizations SLy6, SkI3, SkM∗, SkP,
and SkT6 were used for studying the effects of effective
mass and spin-orbit interaction, investigating general
versus specific properties in these isotopes. We found that
the predictions with Gogny D1S, Skyrme SLy6, and SkI3
are quite similar with only a few exceptions. SkM∗ is still
quite close whereas SkP and SkT6 with effective mass
one predicted quite different nuclear shapes and prefer
more spherical deformation for the nuclei between the
proton drip line and the stable region. Comparing the
properties among the Skyrme forces, we conclude that
a mix of symmetry energy and shell effects determines
the extrapolation to large neutron excess. From the shell
effects, the effective mass is influential in all regions
and the impact of the (isovector) spin-orbit interaction
increases with increasing neutron number.

(iii) A variation of pairing strength with the SLy6 force
has been considered to study the effect of pairing on
the properties of the ground states and coexistent shape
isomers. We found that the pairing strength has little
effect on binding energy and quadrupole deformation. The
nuclear triaxiality, however, is more sensitive to pairing
strength. Triaxiality is a subtle shell effect and may be
overruled by pairing.
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