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Nuclear surface studies with antiprotonic atom x rays
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The recent and older level shifts and widths in p̄ atoms are analyzed. The results are fitted by an antiproton-
nucleus optical potential with two basic complex strength parameters. These parameters are related to average
S and P wave-scattering parameters in the subthreshold energy region. A fair consistency of the x-ray data for
all Z values, stopping p̄ data, and the N̄N -scattering data has been achieved. The determination of neutron
density profiles at the nuclear surface is undertaken, and the determination of the neutron Rrms radii is attempted.
Uncertainties due to the input data and the procedure are discussed.
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I. INTRODUCTION

Recent CERN/LEAR measurements of x-ray transitions in
antiprotonic atoms provide new data on the level shifts and
widths in heavy systems [1]. These results complement older
CERN, Brookhaven National Laboratory (BNL), and other
[2–4] studies in medium Z atoms and fairly recent experiments
with hydrogen, deuterium, and helium [5–8]. The main
distinction of the new results from those obtained earlier in
light nuclei is a much broader data basis, extended to the region
of neutron excess and deformed nuclei. With the enlarged
data one can attempt an extraction of a phenomenological
p̄ optical potential that contains separate strengths of pp̄

and np̄ interactions [9,10]. It allows study of the properties
of the neutron density distributions at the nuclear surface.
As stressed on many occasions the p̄ atoms are well suited
for such studies. A problem is met on this way as the best
description of the atomic data indicate the pp̄ and np̄ absorption
rates to be roughly the same. This result is in conflict with
the chamber studies of low energy p̄ annihilation [11,12]. The
latter experiments indicate the pp̄ absorption rate to be twice
as fast as the np̄ one. This discrepancy has to be understood
and we indicate the solution.

The content of this article is as follows. In Sec. II, the
optical potential is constructed for p̄ bound into atomic states.
It consists of two terms, the central and the gradient one.
The strengths of these terms are phenomenological parameters
that describe the S and P wave N̄N -scattering amplitudes
extrapolated below the N̄N threshold. The easiest way to
learn about such amplitudes are the simple systems 1,2H-p̄
and 3,4He-p̄. Here, we rely on the absorptive amplitudes
extracted from these atoms. Additional constraints follow from
the chamber experiments [11,12]. Some degree of unification
of these data is obtained in terms of N̄N interaction potentials,
in particular the recent updates of the Paris potential [13]. This
allows for an approximate separation of the S and P wave
absorption that is implemented into the optical potential.

The x-ray data from the four lightest atoms indicate the
existence of two quasi-bound N̄N states. One state occurs in
an S wave. It finds strong support in the J/ψ → p̄pγ decays
that allow us to pinpoint its quantum numbers, [14]. The second

quasi-bound state occurs in a P wave [15] and so far has no
independent confirmation. The S-wave state is reproduced by
the Paris model, [13], and this facilitates our discussion of the
p̄ atoms. Second question studied in Sec. II is the sensitivity
of atomic levels and level widths to the nuclear densities.
A significant dependence on the input charge densities is
found. We attempt a model independent parametrization of the
neutron densities and argue that p̄ atoms test nuclear surfaces
but not the single particle asymptotic density regions.

The optical potential parameters are found via the best-
fit procedure to 117 atomic x-ray data. The fit is improved
considerably by the effect of N̄N S wave quasi-bound state.
The other, P -wave, state is of no importance but it can explain
anomalies observed in p̄ capture on loosely bound nucleons
[16].

In a number of cases the atomic level widths may be rather
precisely measured for two orbits per atom, the “lower” and
the “upper” one. Such widths are useful to study properties
of the nuclear surface. Atomic level shifts are less accurate
and more difficult to understand. These difficulties reflect to
a large extent the uncertainties in the understanding of basic
N̄N interactions.

In Sec. III, the Rrms radii of the neutron density
distributions—Rrms—are extracted for several isotopes of Ca,
Zr, Sn, Te, and Pb. This is done on the basis of x-ray data
and radiochemical measurements [17,18] that test the ratios of
neutron and proton densities in the region even more peripheral
than that for the x-rays [19]. The radiochemical data determine
the rate of p̄n capture relative to p̄p capture at very large
distances. These are discussed as a separate issue, because
the nuclear region involved in this process is located about
1 fm farther away from the region tested by the atomic x rays.
Most of the effort is devoted to the evaluation of uncertainties
involved in this method of density determination.

Two appendices discuss details of the gradient potential and
the lightest p̄ atoms.

The present publication addresses also three more specific
questions:

(i) The optical potential for antiprotons involves uncertain
quantities: the range and strengths of the N̄N interaction
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and nuclear densities at large distances. Errors due
to these uncertainties on the atomic level widths are
evaluated.

(ii) The experimental level widths in heavy atoms are
determined by high moments of the neutron density.
However, the nuclear structure physics is more interested
in the low moments, in particular in the rms radius. How
well could we determine the latter?

(iii) Can antiprotonic data distinguish a neutron skin from a
neutron halo as defined in Ref. [20]?

A number of phenomenological optical potentials have been
fitted to the p̄ x-ray data. Recent results may be found in
Refs. [9,10]. The present work is different in several aspects:

(i) We include recoil effects in the P wave N̄N interactions.
(ii) The constrains from Z = 1, Z = 2 atoms, p̄ absorption

in flight and N̄N potential models are accounted for.
(iii) The data set is larger.

The constraints allow to obtain the absorptive optical
potential parameters close to those inferred from the N̄N -
scattering data. In consequence a good fit to the atomic x-ray
data is obtained.

II. THE OPTICAL POTENTIAL

Atomic energy levels of antiprotons are determined es-
sentially by the Coulomb and fine structure interactions. In
addition, the p̄-nucleus interactions generate level shifts ε and
p̄ annihilation generates level broadenings �. Both effects
may be conveniently described by a complex nuclear optical
potential. The standard potentials, well tested for π atoms [9],
are composed of two terms

V opt = �p,n[VS(r) + ∇VP (r)∇] = VS + V̂P , (1)

with the sum extending over protons and neutrons. Both terms,
the local VS and the gradient VP , are expected to have a folded
form

VS,P (r) = 2π

µN̄N

aS,P

∫
du gS,P (u)ρ(r − u), (2)

where µN̄N is the N̄N reduced mass and ρ is the nuclear
density. The relation of aS to S wave-scattering lengths and
aP the P -wave-scattering volumes is an involved question
that will be discussed later in the text. Two profile functions
gS,P , normalized by

∫
dugS,P (u) = 1, reflect the range of

interactions. The N̄N annihilation radius ro is expected in the
range 0.8–1.0 fm. Such values follow from phenomenological
or quark models of N̄N interactions. The effective annihilation
radius in models with much shorter annihilation potentials is
similar [13]. However, the ranges involved in Re VS and Re
VP may be different. In this work, the same interaction range
is assumed for all the components, and it is left as a free
parameter. A Gaussian profile g is used.

The form of V opt given in Eq. (1) is related to the
parametrization of the low-energy scattering amplitudes

f = aS + 3pp′aP (3)

where p, p′ are the relative momenta of the colliding particles
before and after the collision. An important distinction
between N̄N and πN cases is that in the NN̄ collisions the
nucleon recoil effect is important and the relative momentum
is p = (pN − pN̄ )/2. It involves the nucleon pN and antiproton
pN̄ momenta in equal proportions. As a consequence, gradients
over nucleon wave functions arise in the optical potential.
One needs a formula that generalizes Eq. (1). The scattering
amplitude (3) leads now to a new form of the gradient potential

V̂G(r) = 2π

µNN

aP

3

4
�α

∫
dr′ϕ∗

α(r′)(
←−∇ N − ←−∇ N̄ )

× fP (r − r′)(
−→∇ N̄ − −→∇ N )ϕα(r′), (4)

where ϕα are the nucleon wave functions. The summation over
nucleon states α and the integration over nuclear coordinates
r′ are to be performed. This leads to a three-term expression
for VG

V̂G = V̂P + VN + Vmix (5)

and

V opt = �p,n [VS + V̂G]. (6)

The first term in Eq. (5) corresponds to the standard gradient
potential, VN is due to the gradients over nucleon functions,
whereas Vmix follows from mixed nucleon and antiproton
derivatives. In the states studied in experiments the nucleon-
dependent part VN + Vmix contributes about half of the VG

strength and amounts to a quarter of the total V opt. On a
phenomenological level these two terms could be included into
the VS potential term. However, the difference arises when one
attempts to relate aS and aP to the scattering data. A special
effect comes from the dependence of these terms on the state
of the nucleus, in particular on the angular momentum in
the valence shells. In addition the mixing term may induce
some nucleon-antinucleon correlations in odd-A nuclei. A
more detailed discussion of the gradient terms is given in
Appendix A, where some approximations are also introduced.

A. The choice of nuclear charge densities

The nuclear charge densities are well determined in the
region of the nuclear surface between c − 2a and c + 2a,
where c is the half-density radius and a is the surface diffuse-
ness. These are the results of electron scattering and muonic
atom experiments summarized in Refs. [21,22]. However,
the antiprotonic atoms involve also lower nuclear densities.
Figure 1 shows the average radii of p̄ absorption in the “lower”
atomic orbits. At those radii the nuclear charge densities
amount to 5% of the central density. For the “upper” levels
these radii are larger by 0.2–0.4 fm and involve charge densities
smaller by a factor of 2. The absorption regions are localized
in nuclear layers of about 3 fm radial depth. In these regions,
the charge densities are not well known.

To indicate the uncertainty, Fig. 2 shows several ratios of
charge densities obtained from the electron scattering to those
obtained from µ atoms. To select the “best” charge profile
we follow the “averaging procedure” outlined in Ref. [23] for
hyperonic atoms. Thus, the lowest moments 〈r2〉, 〈r4〉, 〈r6〉
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FIG. 1. (Dots) The average antiproton absorption radii 〈RL〉
(weighted by ψ2

atom Im V optr2) calculated for the “lower” atomic level,
left scale in fm. (Squares) The charge densities at these points, given
on the right scale as a percentage of the central charge densities. The
bottom scale shows atomic numbers Z. Calculations are done with
densities from Ref. [22].

are compared for several available charge profiles (Fermi,
Gaussian, multi-Gaussian) and an average density in the sense
of average moments is extracted. In the cases of Al, S, Ca,
Pb, studied in Ref. [23], one always finds the average to be
the closest to the profiles given in the most recent compilation
by Fricke et al. [22]. The same is found in all Ni, Zr, and Sn
isotopes studied here. We use the parameters of Ref. [22] as
the basis of our calculations. The only exception is 16O, where
the sum of Gaussians and the deformed nuclei U, Th, where
monopole density component were used [21]. Later, in specific
cases, the comparison with other densities is presented.
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FIG. 2. Uncertainties of the charge distributions at large dis-
tances. Densities obtained from the electron scattering are divided
by the densities obtained from the µ atoms. The data come from the
most recent compilations [21] and [22] correspondingly. The latter
are parameterized as two parameter Fermi profiles (2pF). For the
former three parameter Fermi (Ca, Ni) and 2pF (Sn,Pb) were used.
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FIG. 3. The proton and neutron densities in two Ca isotopes
calculated in a HFB shell model have been approximated by the
two-parameter Fermi distribution with constant c and variable a(r).
Functions a(r) are plotted to show it’s asymptotic behavior at large
distances. The arrows indicate absorption radii for the lower (L),
upper (U), and radiochemical (R) experiments, correspondingly.

B. The parametrization of nuclear densities

To understand the p̄ atomic data, one needs a reliable
extrapolation of the densities to very large distances. The
related problems are visualized in Fig. 3. For two Ca isotopes
the densities were calculated with a HFB-SkP model [29] and
fitted at large distances by a two-parameter Fermi profile

ρ(r) = 1/(1 + exp[(r − c)/a(r)]. (7)

Instead of a constant diffuseness one has to introduce certain
functions a(r), which are plotted in Fig. 3. The dependence
on radial distance is rather distinct. There are clear advantages
of the 2pF profile, but with a constant a it does not reproduce
the density in far away regions. That result is also fairly model
independent and the shapes of a(r) in Fig. 3 indicate a certain
degree of universality. At distances c + 3a � r � c + 6a one
finds essentially the same slope of a(r) for a wide range
of nuclei in Hartree-Fock, Hartree-Fock-Bogolubov [19,29],
and relativistic mean-field calculations [31]. However, at radii
beyond this region, different nuclear models may produce
different behavior.

The average annihilation radii ra in Ca are marked by
arrows. In the lower and upper states one has ra = 4.9 fm and
5.3 fm, respectively, and a(r) is seen to be fairly stable at these
ranges. However, the radiochemical data involve larger radii
from ≈5.1 fm up to r ≈ 7.5 fm [19]. The diffuseness parameter
a(r) is seen to fall down in this region. The difficulty involved
in the radial dependence of a(r) is moderated by the optical
potential that involves folded densities. With the folding range
of ≈1 fm the corresponding downfall of afolded(r) is pushed
away by ≈0.5 fm.
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To understand a(r) the first question to answer is where
the single-particle asymptotic limit is reached and what is its
form. For a single neutron of angular momentum L bound in
an external potential the asymptotic wave function is described
by

ϕα ∼ hL(irkα) = exp(−rkα)

r
WL

(
1

kαr

)
, (8)

where kα = √
2mNEα,Eα is the neutron binding energy and

WL is a polynomial given by the Hankel function of order L

(see, e.g., Ref. [39]). This wave function allows us to scale the
asymptotic density ρ(r) = ϕα(r)2. The ratio of two densities
ρ(r)/ρ(ro), taken at two points ro and r , allows us to find

1

a(r)
=

{
1

a(ro)
− 2kα + 2 ln

[
WL(ro)r

WL(r)ro

]}
ro

r
+ 2kα. (9)

This formula reproduces the shapes of a(r) in the region of
r ≈ 5–8 fm with kα ≈ 1.25 fm−1, which corresponds to Eα ≈
30 MeV. However, the separation energies are, respectively,
16 MeV (40Ca) and 10 MeV (48Ca). Thus the “true” single-
particle asymptotic density given by valence neutrons begins
farther away. The second observation is that the effective
kα , which reproduces Fig. 3, corresponds to bindings larger
than the average binding weighted by contributions of neutron
orbitals to the total neutron density. The behavior of a nucleon
at large distances involves virtual excitations of the residual
system and a sizable fraction of kα is due to the nuclear
correlations. Contrary to a frequently expressed belief, the radii
tested by antiprotons do not represent the far-away distances
of single-particle asymptotic wave functions and in this sense
are more interesting for the nuclear structure research.

In practical terms the shortcomings of constant a can be
corrected by the a(r) given by Eq. (9) with kα ≈ 1.25 fm−1.
Because of the large value of kα the result is in practice
independent of the value of L. Relation (9) is used here to
interpolate between two values of the diffuseness parameter.
The initial value a(ro) taken at ro = c + 3a is due to the full
complexity of the nuclear structure that includes the average
field and effects of nuclear correlations. It is kept as a free
parameter, the a, to be determined from experiments and
reproduced by models. Such a procedure serves only as a
guiding principle for the best correlation of the atomic x-ray
data and the radiochemical data. With an improved optical
potential and more precise data it should be repeated with
specific nuclear models. However, at this stage the proper
choice of a(ro) and the form of the proton (charge) densities
are more urgent questions.

C. Constraints on the optical potential parameters

The NN̄ amplitudes of Eq. (3) are related to the amplitudes
tested in scattering experiments. The latter extrapolated to the
NN̄ threshold yield scattering lengths and scattering volumes
that parametrize the low-energy scattering. The relation of
the experimental lengths and volumes to those required in
the optical potential is not direct. First, aS(E) and aP (E) are
strongly energy dependent and one needs these amplitudes
for bound particles and, second, some nuclear many-body

corrections may arise. An additional difficulty is related to
the large number of NN̄ partial waves involved, and at this
stage of research one can operate only with the spin-averaged
values. So far, the safest method to find the optical potential
was to extract the potential parameters from the best fit to the
atomic data [9,10]. In our work we adopt a mixed procedure:
the parameters are semi-free and subject to constraints from
other experiments. These supplementary experiments will be
analyzed in terms of Paris potential [13].

At the nuclear surface p̄ may interact with quasi-free but
bound nucleons. In the Np̄ system the relevant energy is
negative because both particles are bound and some recoil
energy is taken away by the relative motion of the Np̄ pair
with respect to the residual A − 1 nucleons. Hence, one needs
to know the amplitude f below the Np̄ threshold

f = aS(−EB − Erec) + 3pp′aP (−EB − Erec), (10)

where EB is the sum of antiproton and nucleon separation
energies and Erec = p2

rec/2µrec is the recoil energy. The
distribution of the recoil momenta—prec—is calculable from
the Fourier transforms of the antiproton and nucleon wave
functions 
p̄(r)ϕN (r). In practice, such calculations can be
done easily in the lightest atoms: deuterium [33] and helium. In
the “lower” (l = 0) and “upper” (l = 1) orbitals of 2H p̄ atoms
one obtains average values 〈Erec〉 = 9 and 4 MeV, respectively.
In heavier nuclei such calculations are less reliable but the
spectrum of prec was measured with p̄ stopped in Ne streamer
chamber [25]. The prec distribution peaks at ≈180 MeV
and gives 〈Erec〉 ≈ 11 MeV. This value is used in further
calculations. In addition, we estimate a 5-MeV difference of
〈Erec〉 in the “lower” and the “upper” atomic state.

The energy dependence of the absorptive parts of aS may
be obtained from the 1H, 2H, 3He, 4He antiprotonic atoms
because the nucleon separation energies in these nuclei span
the region from 0 to 21 MeV. Calculations based on the
multiple-scattering series summation from Ref. [33,34] and
data from Refs. [5–8] are described in Appendix B and results
are presented in Fig. 4. Nucleon binding energies characteristic
for surfaces of large nuclei locate the EB + Erec energies in
the sector 40 to 15 MeV. Corresponding values of Im aS

and Im aP indicate the strengths of the absorptive optical
potentials expected in nuclei. One result of significance in the
analysis of the optical potential is that the S-wave absorption
strength Im aS increases with the decreasing energy. To
understand this result we refer to the Paris potential [13].
Model quantities that may be compared to aS are the S wave
NN̄ -scattering amplitudes for a given isospin I averaged over
spin states, i.e., aI

S = �J a(2J+1),(2I+1)(2J + 1)/�J (2J + 1),
where a(2J+1),(2I+1) are the amplitudes for total spin J = 0, 1.
The information obtained from deuteron and helium atoms
does not allow us to distinguish isospin states and aI

S must be
still averaged over pp̄ and np̄ states. However, the chamber
data allow for such a distinction. The corresponding, spin
averaged, amplitudes are plotted in Fig. 4. For each partial
wave these are calculated in the nuclear physics manner as
a(E) = ∫

drt(r, E) where

t(r, E) = µNN̄

2π

V (r)NN̄ψ(r, E)

ψo(r, E)
(11)
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FIG. 4. (Left panel) The absorptive parts of p̄N S-wave amplitudes in the subthreshold region extracted from the atomic level shifts and
widths in 1H, 2H, 3He, 4He. Im aS(E) averaged over spins and isospin of the nucleons is given by squares located at the corresponding values
of EB + 〈Erec〉. The curves are calculated with the last update of Paris NN̄ potential, [13]. The dotted lines refer to pp̄ and the continuous lines
to np̄ systems. (Right panel) The absorptive parts of p̄N P -wave-scattering volumes, in the subthreshold region, extracted from the atomic
level shifts and widths in 1H, 2H, 3He, 4He.

is given in terms of ψ(r, E)—the solution of Shroedinger
equation with the Paris potential VN̄N and the free wave
ψo(r, E). A set of such solutions may be found in Ref. [30].
The subthreshold enhancement of absorption is due to broad,
quasi-bound NN̄ state. It is generated by the Paris potential
in I = 0, J = 0 wave and is stable against free parameters
of this model. Its existence is also inferred from the p̄p

correlations observed in J/ψ → p̄pγ decays [14]. Despite
low statistical weight this state dominates aS . The impact of
such phenomenon is discussed in the next section, it is clearly
seen in the comparison of “lower” and “upper” widths.

Another resonant-like behavior arises in a P -wave close
to −10 MeV. It affects the antiproton capture on very loosely
bound nucleons noticed in atomic and radiochemical data,
[16]. Such a state is generated by the Paris potential model,
where it is attributed to the isotriplet, spin-singlet 31P1 quasi-
bound state. However, the energy of this state is unstable
against parameter changes and is not indicated in the figure.

A different constraint on the isospin structure of Im aS

follows from studies of π mesons produced by p̄ stopped in
chambers [11,12]. These experiments yield ratios of annihila-
tion rates Rn/p = σ (p̄n)/σ (p̄p) given in Table I. Because the
p̄ are stopped in light elements the interaction involves S waves
and the cross sections are related to the absorptive amplitudes
σ (Np̄) ∼ Im aS(Np̄) for the np̄ and pp̄ pairs, respectively.
Inspection of Fig. 4 shows that the Rn/p(S) for the S waves

TABLE I. The experimental antiproton capture
ratios Rn/p = σ (p̄n)/σ (p̄p) extracted from capture
in flight.

Element Rn/p Reference

2H 0.81(3) [11]
3He 0.47(4) [12]
4He 0.48(3) [12]

is well reproduced by the Paris potential model. The same
model predicts Rn/p(P ) ≈ 1 for the average of P waves at
energies of our main interest. These constraints are considered
as possible improvements of our optical potential. It turns out
that the condition Rn/p(P ) ≈ 1 is consistent with the atomic
data. In this respect our results follow the findings of Ref. [10].
The chamber result Rn/p(S) ≈ 0.5 leads to no or a marginal
improvement over that for Rn/p(S) ≈ 1. However, it changes
the neutron density radii extracted from p̄ atoms.

D. The constrained best-fit potential

An overall best fit to the 117 atomic data was performed.
It includes measurements in N, C, O, P, S, Cl, Ca, Fe, Co,
Ni, Y, Zr, Cd, Mo, Sn, Te, Pb, Bi, Th, and U, in total 37
isotopes. Several precise results were excluded: 6,7Li, as the
optical potential may not be well applicable there; 18O, due to
the large uncertainty of the charge density profile; and Yb, due
to its uncommon deformation. An anomalous lower width in
58Fe was dropped and several very old and uncertain results
have not been considered.

One cannot find the best fit parameters jointly with the
details of uncertain neutron densities in each individual
isotope. To obtain an overall best fit the following strategy
was adopted. An overall trend of the neutron rms radius as
a function of the neutron excess δ = (N − Z)/(N + Z) was
assumed and for Z > 10 a linear interpolation was tried. Two
such trends were fitted before to the atomic p̄ data. One, called
“hadronic” is indicated by the hadronic scattering data [26]

Rnp ≡ Rrms(n) − Rrms(p) = −0.09(2) + 1.46(12) δ. (12)

It is close to the trend obtained by Friedman et al. as a result
of pionic atom data and the best-fit to the antiproton x-ray data
[10]. Another “atomic” trend follows from the p̄ atomic data
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analyzed with zero N̄N annihilation range and Rn/p = 1, [27],

Rrms(n) − Rrms(p) = −0.03(2) + 0.90(15) δ. (13)

Both slopes can be supported by nuclear model calculations
and it is appropriate at this point to remind that nuclear models
are not able to predict the neutron radii and have to fit some
parameters to experimental data. This point is particularly
strongly stressed by Furnstahl [36] and a similar point of view
is taken in the recent extensive calculation by Ring et al. [31].
Neither of these trends needs to be true, some nuclei lie far
away from the averages given above. Here, we use the slope to
get an initial insight into the best fit possibilities. Next with the
best parameters for the optical potential, we find the best results
for the neutron excess in some nuclei. This is done, following
the procedure of Ref. [20], in terms of free neutron diffuseness
an (neutron halo, cn = cp) or neutron half-density parameter
cn (neutron skin, an = ap). An additional question is whether
the inclusion of extra data, the radiochemical measurements or
other experiments, determines some correlation of these two
parameters.

The initial best fit results are given in Table II. The faster
Rrms slope deduced from the hadronic scattering offers better
χ2. This result differs from the result obtained in Ref. [27] as
it is based on both widths and level shifts, whereas Ref. [27]
used level widths. The best result Rnp = −0.10(2) +
1.65(5) δ close to Eq. (12) has been obtained with a change of
the diffuseness parameter an. The difference of our best result
and that given by Eq. (12) is due mainly to the input charge
densities. Here, the more recent µ-based data [22] are used,
whereas results of Ref. [27] are based mainly on the electron
data. As discussed in previous sections the muonic data are
close to the “average” results and in this sense seem to be
preferable. In addition, another minimum of χ2 is obtained
with changes of the half-density radius cn at a very high slope
Rrms = −0.10 + 2.0 δ. Although the total χ2 is much worse
in this case, it turns out to be better for some specific isotopes.
This question is discussed in the next section. Let us also notice
that the best potential parameters are fairly close for both the
“atomic” and the “hadronic” slopes.

The preference found in chamber experiments [11,12] for
a stronger S-wave annihilation on protons, Rn/p(S) ≈ 0.5,
is now introduced into the optical potential parameters. The

effect is given in line 4 of Table II. It does not change the
best fit, but is accepted by the data. It is also weakly reflected
in the analysis of radiochemical data as the absorption in P

waves is dominant. The effective ratio of the absorption rates
Rn/p depends on the partial wave in the antiproton-nucleon
system. For each atomic state the mixture of S and P wave
is slightly different. For a given atomic state with quantum
numbers (n, l) the Rn/p may be defined as the ratio of
average values Rn/p = 〈n, l|ImVp̄n|nl〉/〈n, l|ImVp̄p|nl〉. This
quantity increases slightly with the increasing Z because the
involved angular momenta are larger, a detailed discussion of
this point may be found in Ref. [32]. For a global average
based on all Z, n, l states of interest we obtain Rn/p =
0.86(4). The uncertainty given in parentheses describes the
dispersion of Rn/p obtained in this way. This Rn/p gives a
good representation for the capture ratio σ (p̄n)/σ (p̄p) at large
distances tested in the radiochemical experiments. It is used
here to describe these experiments.

Lines 5 and 6 in Table II give separate best fits to the lower
and upper levels. To find the best solution on those limited
data sets only Im aS was varied. The motivation for such a
choice comes from the shape Im aS(E) in Fig. 4. The best fit
absorptive parts compare well with the values of Im aS(E) at
the characteristic subthreshold energies of about −30 MeV.

Certain incompatibility in the description of lower and
upper widths was noticed already in Ref. [9]. This effect is
also reproduced here and it is indicated in Table II. The upper
levels require weaker absorption and the explanation comes
from the left panel of Fig. 4. The p̄ in the upper level encounters
less-bound nucleons and the recoil energy is also smaller. As
discussed above, one expects the difference in recoil of some
5 MeV and the difference in the average bindings of some
3 MeV. The central energy involved in aS,P (−EB − Erec)
amounts to about −35 MeV in the lower levels and about
−27 MeV in the upper levels. This 8-MeV energy shift in
the argument of Im aS(E) may reduce its value by 0.4 fm
as required by the x-ray data. Table III indicates that such a
change reduces the total χ2 from 262 to 247. The final results
are summarized in Table III. This potential does not offer the
best fit to the data; however, it offers the best fit under the
chamber constraint on the S wave absorption Rn/p(S) = 0.5.
Relaxing this condition one can still improve the total χ2 by

TABLE II. Overall parameters for the optical potential fitted to atomic data: 78 = lower level shifts and widths,
39 = upper level widths. First line is obtained with the slope of Eq. (13). Other results correspond to slope Rh

np =
−0.10(2) + 1.65(5) δ, close to that of Eq. (12). The rrms denotes the root-mean-square radius of the folding Gaussian
profile. All charge densities come from Ref. [22]. Factor fi = 4/3 for protons and 2/3 for neutrons describes the chamber
result, an or cn denotes the neutron-density-free parameter.

“Slope” Parameter Data χ 2 χ 2/N aS [fm] aP [fm3] rrms [fm]

Eq. (13) an All 293 2.50 −1.70–0.95i −0.01–0.39i 0.80

Rh
np cn All 285 2.43 −1.70–0.95i −0.0–0.35i 0.79

Rh
np an All 262 2.24 −1.65–0.85i −0.0–0.41i 0.79

Rh
np an All 262 2.24 −1.60–fi0.95i −0.0–0.39i 0.79

Rh
np an Lower 160 2.24 −1.60–0.95i −0.0–0.41i 0.79

Rh
np an Upper 87 2.05 −1.60–0.62i −0.0–0.41i 0.79

034316-6



NUCLEAR SURFACE STUDIES WITH ANTIPROTONIC . . . PHYSICAL REVIEW C 76, 034316 (2007)

TABLE III. The best fit potential based on x-ray data, consistent with the chamber experiments, the
lightest atoms and the N -N̄ Paris potential. fi = 4/3 for protons and 2/3 for neutrons. aS(“upper”) is to
be used for the upper levels and aS(“lower”) for the lower ones.

χ 2 χ 2/N aS(“upper”) (fm) aS(“lower”) (fm) aP (fm3) ro (fm)

247 2.11 −1.60–i 0.74fi −1.60–i 1.10fi −0.0–i0.39 0.79

twp to three units. In addition, it is possible to improve the fit
to the data by relaxing the other condition Rn/p(P ) = 1. There
is no direct experimental indication for this P -wave constraint,
we are motivated entirely by the Paris potential calculations.

III. THE NEUTRON RADII

The differences of neutron and proton mean-square radii,
extracted from from several atoms, are given in Tables IV
and V. These results indicate two basic problems.

First, the extracted Rrms(n) − Rrms(p) depend rather
strongly on the charge-density input. In particular, the results
in the Sn isotopes depend on the 〈r12〉 moments dominating the
upper level width. For two charge profiles in 112,116,120,124Sn:
one from Ref. [21] (electron scattering) and the other from
Ref. [22] (µ atoms) the ratios 〈r12〉e/〈r12〉µ are 1.63, 1.32,
1.42, and 1.09, respectively. These differences reflect on the
differences in neutron radii extracted from the antiproton data.
As discussed above, the charge densities given by Fricke
et al. [22] are close to “average” densities generated in several
µ atom and electron scattering experiments.

Second, the minimum χ2 in each isotope was obtained
either by enhancing the diffuseness parameter an or half-
density radius cn. In most cases both minima offer good
χ2

pdf ≈ 1 and additional data are required to determine the
nuclear surface shape. However, in 112Sn, 116Sn, 90Zr, and
208Pb the fit is bad and χ2

pdf ≈ 3. The discrepancy comes from
the level shifts. In these cases the change of the half-density
radius offers better χ2 and such case is given in Table V for Pb.
The neutron radii obtained via the cn extension are excessively

large and run into conflict with most of the other data. We
exemplify this situation in the case of Sn and Pb atoms, but it is
typical to other large nuclei. In the Pb nucleus the two minima
yield very different results for Rrms(n) − Rrms(p). The solution
obtained by enlarging an is close to the results obtained in
(p, p′) scattering experiments [40]. Presumably it is the one
that is physically acceptable. The uncertainty related to the
charge-density input is rather large, but again there are good
reasons to favor the last column based on the Ref. [22]. It is
interesting to note that the second solution characterized by
the extension of cn and large difference Rrms(n) − Rrms(p) of
0.5 fm is close to the result first obtained in the neutron/proton
pickup experiment of Koerner and Schiffer [35]. This solution,
if it represents the reality, has an interesting astrophysical
significance [36].

The same interpretation follows from the results obtained
in Sn. The neutron radii obtained with enhanced an are close
to those obtained in the proton-scattering experiment [37] that
yields Rrms(n) − Rrms(p) = 0.25(5) fm in 124Sn, and larger
than 0.18(7) extracted via the dipole-state excitation method
[41]. The enhancement of cn, allowed by the χ2, yields very
large neutron radii not confirmed in other experiments.

It was argued in Ref. [20] that the additional data needed
to pinpoint the nuclear surface shape come from the radio-
chemical measurements. With an optical potential derived
from zero range N̄N interactions, these data favored the
halo-type solution. Such conclusion is also supported here
and exemplified in Table IV by the 124Sn case. It also favors
the halo-type solution but the extracted Rrms(n) − Rrms(p)
are larger and closer to the hadron-scattering results. The

TABLE IV. The Rrms(n) − Rrms(p), in fm units, extracted from the x-ray data in
antiprotonic Sn, Te, Zr, and Ca atoms. The first column refers to charge-density profile
the second indicates the free parameter of the neutron density. As discussed in the text, the
results obtained with charge density from Ref. [22] are the favored ones. The last column
and the entries marked by an asterisk are extracted from the x-ray and radiochemical
data.

ρcharge
112Sn 116Sn 120Sn 124Sn 124Sn∗

[22] an 0.21(5) 0.22(4) 0.22(4) 0.23(4) 0.26(4)
2pF [21] an 0.12(4) 0.15(4) 0.16(4) 0.21(4) 0.25(3)
2pF [21] cn 0.25(5) 0.31(6) 0.35(8) 0.42(7) 0.45(6)

122Te 124Te 126Te 128Te 128Te∗

[38] an 0.10(7) 0.04(4) 0.12(5) 0.08+.07
−.04 0.15(5)

130Te 130Te∗ 90Zr 96Zr 96Zr∗

[22,38] an 0.10(5) 0.17(4) 0.08+.01
−.04 0.12(3) 0.16+0.06

−0.08
40Ca 42Ca 44Ca 48Ca 48Ca∗

[22] an −0.09(9) 0.01(6) .02(6) 0.09+.06
−.08 0.10(7)
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TABLE V. The Rrms(n) − Rrms(p) differences
extracted from antiprotonic 208Pb atoms. The entries
in curly brackets { } give the corresponding χ2

mostly due to the level shifts. The second line gives
the difference of neutron and proton diffuseness
parameters, anp = an − ap.

Parameter ρcharge [21] ρcharge [22]

an 0.16(3){10} 0.21(3){10}
anp 0.11 0.15
cn 0.47(8){3} 0.55(8){3}

same effect occurs in the case of Pb nucleus. The favored
neutron radius excess Rrms(n) − Rrms(p) = 0.21(3) fm given
in Table V is 0.05 fm larger than the radius obtained with
different optical potentials in Ref. [28]. There are two factors
contributing to that: the first and the dominant one is that
the chamber data enforce smaller Rn/p and the second is that
the a(r) given by nuclear models tend to be smaller at large
distances. Due to both factors the neutron radius obtained from
the x-ray data is slightly smaller than the radius obtained from
the joint x ray and radiochemical data.

IV. CONCLUSIONS

In this article a step was taken to describe the antiprotonic
atom data in a semiphenomenological way. The best-fit
optical potential was constrained by the atomic data from
the p̄ hydrogen, deuterium, and helium atoms. Additional
information on the S-wave isospin structure was extracted
from the chamber low-energy p̄ data. All these constraints
refer to the absorptive potentials. The following results have
been obtained:

(i) A consistent description of the annihilation parameters
in antiprotonic x-ray data, chamber data, and the Paris
potential model, which incorporates the N̄N scattering.

(ii) This consistency allows to separate the S- and P -wave
contributions to the optical potential for antiprotons
and estimate fairly precisely the ratio of p̄n and p̄p

annihilation at very distant nuclear surfaces. The cor-
responding parameter Rn/p = 0.86(4) averaged over a
range of nuclei is obtained at these distances and it allows
us to discuss jointly the x-ray data and the radiochemical
data.

(iii) A definite energy dependence of the N̄N -scattering
amplitudes in the subthreshold region is indicated by
the lightest atom data, chamber data, and the N̄N Paris
potential. For the S-wave it is reflected in the widths
of upper and lower levels in heavy atoms. For P -waves
there is an indication of a fairly narrow N̄N quasi-bound
state. It is likely that such a state has sizable effect in a
small sector of the radiochemical data taken on loosely
bound protons. However, apart from the deuteron, the
x-ray data offer no convincing evidence for such a state.
New x-ray experiments performed with nuclei of small
nucleon separation energies would be helpful to resolve
this question.

(iv) The p̄ x-ray data, although related to the nuclear surface,
may supply important information on the neutron radii.
However, these data taken by themselves cannot tell
precisely if the neutron excess forms an extended half-
density radius, enlarged diffuseness, or some specific
correlation of both parameters. Jointly with the scattering
and/or radiochemical data the p̄ results favor the neutron
profiles of enlarged diffuseness.

(v) One important source of uncertainty in the description of
the p̄ nucleus interactions is the real part of the optical
potential and the related level shifts. It is complicated
by the increasing evidence of p̄N quasi-bound states.
Precise measurements of the atomic fine structure, in
particular in very light atoms, would be very helpful to
resolve this question.
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APPENDIX A: THE GRADIENT POTENTIAL

The P -wave collisions of N and N̄ , described in their
center-of-mass system, involve the relative momentum p =
(pN − pN̄)/2. It generates the gradient potential given by
Eq. (4) in the main text that contains the nucleon wave
functions and their gradients. These are not easily reducible
to the nuclear densities. Summation over nucleon states
and calculations of the derivatives in Eq. (4) yield involved
expressions for VG. The input uncertainties and experimental
errors call for a simpler result. To obtain it let us note that
in the “upper” high angular momentum states |n, l〉 the level
shifts ε and widths � are quite accurately given by

ε − i�/2 � 〈n, l|V opt|n, l〉. (A1)

For such average values the gradient potential VG may be
expressed by a simpler formula [43]

〈n, l|V̂G|n, l〉 = 2π

µNN

3

4
aP

∫
dugP (u)

∫
drρ(r − u)D̄2
2

n,l(r)

+ |
n,l(r − u)|2�αD2ϕ2
α(r) + V mix (A2)

where ρ = �|ϕα|2 is the nuclear density, 
n,l is the atomic
wave function, and

D̄2
2
n,l(r) =

[

 ′2

r,n,l(r) + l(l + 1)

r2

2

r,n,l(r)

]
1

4π
, (A3)

D2ϕ2
α(r) =

[
ϕ′2

r,α(r) + L(L + 1)

r2
ϕ2

r,α(r)

]
1

4π
. (A4)

In these equations 
r,n,l denotes the radial part of the atomic
wave functions in states of main quantum numbers n and
angular momentum l. The nucleon angular momentum is
denoted by L. Equations (A3) and (A4) are obtained with
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the “gradient formula” that splits the derivative into tangential
and radial components. The two terms in Eq. (4) that contain

mixed
−→∇ p̄

−→∇ N gradients generate V mix. The latter may be
expressed by a formula obtained in Ref. [43],

〈V̂ mix〉 = 2π

µNN

3

4
aP

∫
dx

∫
dy

[−→∇ 
∗
x

−→∇ 
xgxyρy

+
(


∗
x



2

∗

x + 

2

∗

x
x

)
gxyρy + (2iµNN̄ )2

×−→
jx gxy

−→
jy

]
(A5)

A shorthand notation is used and arguments were put into
indices, i.e., gxy = g(x − y), 
x = 
(x), etc. The first and the
second term in this equation tend to cancel strongly. The last
term, where

−→
j denotes the nucleon and antiproton currents,

yields the main effect. For even A (spin zero) nuclei the
tangential currents average to zero and one is left with the radial
components that generate 
r,n,l


′
r,n,lϕ

′
r,αϕr,α contributions.

However, in odd-A nuclei the tangential components in the last
term introduce correlations of the atomic and nuclear currents.
It leads to splitting of the atomic levels. Usually, this effect is
small, but it may be magnified if both antiproton and the odd
valence nucleon have high angular momenta.

Now some approximations are introduced to make the
gradient potential applicable to practical calculations. For
nucleons, the radial gradients are needed only at large
distances. In this region one has, on average, ϕ′

r ≈ ϕr/2a,
where a is the surface thickness parameter. To account for the
tangential gradient, the angular momentum factor L(L + 1) in
Eq. (A3) is averaged over the three uppermost nucleon shells
given by simple shell model [42]. The gradients of atomic
wave functions may be given explicitly for the circular orbits
of interest. These functions are


r,n,l(r) = N (n, l)rl exp(−r/Bn)Fnucl(r), (A6)

where N is a normalization, B is the Bohr radius, and
Fnucl describes the deformation of the Coulomb wave func-
tion due to short-range (nuclear + finite charge) interac-
tions. The dominant effect in F comes from the damp-
ing due to absorption. For the radial derivative one has

 ′

r,n,l = (l/r − 1/nB + F ′/F )
r,n,l and the last term is cal-
culated in a quasi-classical way in terms of pWKB(V ) =√

2MN̄ (E − V ) the value of local momentum of the antiproton
inside the nucleus. One has F ′/F = ipWKB(Vcentr + Vcul) −
ipWKB(Vcentr + Vcul + V opt) and numerically one finds that
dropping the F ′/F term altogether yields a minute change
of the best fit parameters, making an overall χ2 worse by
2.5. Also, it was found that a numerical calculation of ∂
/∂r

makes no substantial improvement.
The approximation (A2) is well fulfilled in the “upper”

atomic orbits. Thus equation (A4) is used here to define the
local equivalent to the nonlocal gradient VG potential that gives
the same expectation value in a given atomic orbital of a given
atom. Expressions (A2), (A3), and (A4) lead to a typical folded
optical potential

V̂P (r) = 2π

µNN

aP

3

4

∫
dufP (u)D2

r ρ(r − u), (A7)

where the effect of antiproton and nucleon momenta is now
included into a function

D2
r =

[∣∣∣∣ l

r
− 1

nB
+ F ′/F

∣∣∣∣
2

+ l(l + 1)

r2

]

+
[

1

4a2
+ 〈L(L + 1)〉

r2

]
+ Re

(
l

r
− 1

nB
+ F ′/F

)
1

a
.

(A8)

These approximations bring the optical potential back to the
form given by the basic equation (1) in the main text. Now V̂P

is given by Eq. (A7) summed over protons and neutrons. The
interpretation of three terms in Eq. (A8) is fairly transparent.
The first piece contains tangential and radial momenta of the
orbital antiproton. It is the “localized” version of the gradient
term used in mesonic atoms. The second term contains radial
and tangential components of the nucleon momenta. The radial
ones are expressed in terms of the nuclear density diffuseness
parameter. The last piece is the mixed term that contains only
the radial term as for spin zero systems the average product
of tangential momenta vanishes. All together the nucleon
momentum part contributes about one quarter of V opt. On
a phenomenological level it may be approximately included
into the VS potential term. The difference arises when one
attempts to relate aS and aP to the scattering data. Another
special effect of this nucleon term is due to its dependence
on the nucleon angular momenta. Some enhancement arises in
high L shells, e.g., in Pb nucleus (12h protons and 14i neutrons
in the valence shell). Unfortunately, the L(L + 1) averaging
procedure contains some model dependence but the effect is
moderate anyway, because the 〈L(L + 1)〉 term constitutes
less than 10% of the total D2

r . In practical calculations
we used a smooth, approximate interpolation 〈L(L + 1)〉 =
2 + (3Z/2 − 10)/4. Rather slow but systematic increase of D2

r

follows the rising atomic number Z. It is due to the increase
in the L and l values. The impact of the nucleon 〈L(L + 1)〉
term is also rather limited. Dropping it requires a change of
aP from the value 0.0 − i0.41 fm3 (line 3 in Table III) to the
value 0.0 − i0.43 fm3 and the χ2 increases by four units.

APPENDIX B: EXTRACTION OF SCATTERING
LENGTHS FROM LIGHT p̄ ATOMS

The complex atomic level shifts induced by nuclear interac-
tions may be related to the scattering of the orbital antiproton
by the atomic nucleus. The relation is simple when the atomic
Bohr radius B is larger than the lengths characteristic for
nuclear interactions : the nuclear radius R and the p̄-nucleus
scattering length A0. For S-waves the difference of total energy
EnS and electromagnetic energy εnS

EnS = EnS − εnS = 2π

µ
|
n(0)|2A0(1 − 3.154A0/B),

(B1)

is known as Deser-Trueman formula, [45,46]. It is accurate to
a second order in A0/B, good enough for the p̄ hydrogen and
deuterium atoms. In hydrogen and deuterium the second-order
term in Eq. (B1) constitutes a correction of a few percentages.
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TABLE VI. Antiproton-nucleus partial wave-scattering parameters AL obtained from light p̄ atoms.
The last column shows the effective p̄N -scattering length obtained in the Born approximation from the
upper level width.

Atom A0 (fm) A1 (fm3) Im A2 (fm5) Im aeff (fm)

p̄p 0.83(1)–i0.69(3) 0.4(8)–i0.64(4) – −0.64
p̄d 0.71(16)–i0.40(27) 3.15(33)–i3.17(19) – −2.75
p̄3He – 4.3(1.0)–i 3.2(2.2) −2.04(17) −3.95
p̄4He – 3.5(0.4)–i 4.4(1.0) −1.53(6) −4.17

Such corrections are negligible in higher-angular-momentum
states and for such states a simpler linear relation

Enl = −εnl

4

n
�l

i=1

(
1

i2
− 1

n2

)
Al/B

2l+1, (B2)

obtained by Lambert [47], is sufficient. Equation (B2) ex-
presses the level shifts in terms of scattering volumes and
higher scattering parameters Al .

We consider circular states and complex level shifts
obtained in p̄p [7], p̄d [5,6], and p̄ 3He, p̄4He [8] atoms.
Scattering parameters Al obtained from these data are given in
Table VI [this table corrects a factor of 2 misprint in Im Al(He)
of Ref. [15]]. In the upper levels, atom-nucleus overlaps are
very small and may be given in the Born approximation to
an accuracy of a few percentages. Let us calculate these with
a pseudo-potential V = (2π/µN̄N )aeffρ. For each atom the
absorptive part of effective scattering length—aeff—is now
extracted from the upper level width. Values obtained in this
way are given in the last column of Table VI. A significant state
dependence of Im aeff is evident. It becomes even stronger if
the optical potential is used to fit all helium data. In this way
Im aeff (He) ≈ −7(±0.5) fm was obtained in Ref. [8]. Such
energy dependence is due to two effects. First, in each element
the nucleons are bound with different strengths and the energy
available in the antiproton-nucleon subsystem is different.
Second, for different atomic angular momenta a different
composition of N̄N partial waves enter aeff . In the next part of
this appendix we give a phenomenological resolution of these
two effects.

Following the main text we define the effective scattering
length as the expectation value of scattering amplitude f in a
given circular state of the atom |l〉,

aeff = 〈l|aS + 3∇aP ∇|l〉 = aP + 3aP λl. (B3)

Now, the scattering lengths and scattering volumes aS, aP

are our free parameters to be extracted from the data. The
derivatives over relative p̄N coordinates r have to be calculated
and this calculation yields λl , a number depending on the state
of the atom. In the leading order of r/B, one obtains in deuteron
λ0 = 0 and, λ1 = 159/(64〈R2〉) for l = 0, 1 correspondingly
[33]. The average, nuclear value of R2 is calculated with
respect to the center of deuteron. The deuteron results are
insensitive to details of the calculation, but results for helium
depend on the nuclear wave function and N̄N annihilation
radius. To calculate λl we choose a simple oscillator model
and obtain λl = α4〈R2〉 + 2lα2 + l(2l + 1)〈R−2〉, where α is

the oscillator parameter. The values used: α2 = 0.579 fm−2

for 4He and α2 = 0.55 fm−2 for 3He follow those used in
Ref. [34]. With the rrms folding range of 0.8 fm the folded
densities become equal to charge densities that are taken from
Ref. [44]. In this way the nuclear input is essentially the same
as that used in Ref. [8] where Im aeff ≈ −7 fm was obtained.
However, the optical potential is not used here. Instead, we
follow a method that avoids double scattering on the same
nucleon inherent in a simple optical potential. That leads to
smaller values of Im aeff .

The strategy adopted now is to reproduce the experimen-
tal scattering parameters Al in terms of phenomenological
scattering lengths and scattering volumes and determine the
latter directly from experiment. In the four nuclei in question,
the nucleons are bound differently and such procedure may
give energy dependent aS(E), aP (E). Unfortunately, such
determination is not unique as there are four real parameters
and only three data points per atom. It is clear that absorptive
parts are better determined as there are two level widths and
only one level shift. Following this we fit three parameters: Im
aS , Im aP , and Re aeff . The results are given in Fig. 4 of the
main text. Below, for completeness, we briefly describe the
method used to calculate Al .

The multiple-scattering expansion for p̄ interacting with
the deuteron below the breakup generates the series for p̄d-
scattering matrix T

T = t1 + t2 + t1G0t2 + t2G0t1 + t2G0t1G0t2 + t1G0t2G0t1

+ (t1 + t2)GNN (t1 + t2)

+ (t1 + t2)GNN (t1 + t2)GNN (t1 + t2) + · · · (B4)

where ti are p̄-nucleon-scattering matrices, G0 is the free three-
body propagator, and GNN = G0TNNG0 is a part of three-body
propagator that contains the nucleon-nucleon interactions. The
scattering lengths (volumes, etc.) are related to scattering
matrices in the p → 0 momentum limit

Al = − 〈T (E → 0)〉
p2l(2π )2mp̄d

(B5)

where symbol > denotes the average over the state of deuteron
and l-th partial wave for the antiproton |l, d〉. Analogously,
aeff = −t/[(2π )2mp̄p)]. The first-order sum of the series (B4)
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is obtained by

〈T 〉 = 〈t1 + t2〉
1 − �1 − �1

(B6)

with

�1 = 〈t1G0t2 + t2G0t1〉
〈t1 + t2〉 (B7)

�1 = 〈(t1 + t2)GNN (t1 + t2)〉
〈t1 + t2〉 . (B8)

This sum of quasi-geometric series is described in more
detail in Ref. [33] and next orders may be found in Ref. [48].
The expected precision of the method is a few percentages, as it
happens in the ηd case checked against the exact solution [49].
In helium, the series (B4) is generalized to few nucleons. Terms
GNN are smaller and have not been included. This calculation
improves over the optical potential as the double scattering
on the same nucleon is avoided, details may be found in
Ref. [34].
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[29] R. Smolańczuk (private communication).
[30] A. M. Green and S. Wycech, Nucl. Phys. A377, 441 (1982).
[31] G. A. Lalazissis, T. Niksic, D. Vretenar, and P. Ring, Phys. Rev.

C 71, 024312 (2005).
[32] S. Wycech, AIP Conf. Proc. 793, 201 (2005).
[33] S. Wycech, A. M. Green, and J. A. Niskanen, Phys. Lett. B132,

308 (1985).
[34] S. Wycech and A. M. Green, Z. Phys. A 344, 117 (1992).
[35] H. J. Koerner and J. P. Schiffer, Phys. Rev. Lett. 27, 1457 (1971);

G. Mairle and G. Grabmayr, Eur. Phys. J. A 9, 913 (2000).
[36] R. J. Furnstahl, Nucl. Phys. A706, 85 (2002).
[37] L. Ray, Phys. Rev. C 19, 1855 (1979).

034316-11



S. WYCECH et al. PHYSICAL REVIEW C 76, 034316 (2007)

[38] E. B. Shera, M. V. Hoehn, G. Fricke, and G. Mallot, Phys. Rev.
C 39, 195 (1989).

[39] D. Berdichevsky and U. Mosel, Nucl. Phys. A388, 229 (1982).
[40] V. E. Starodubsky and N. M. Hintz, Phys. Rev. C 49, 2118

(1994).
[41] A. Krasznahorkay, M. Fujiwara, P. van Aarle, H. Akimune,

I. Daito, H. Fujimura, Y. Fujita, M. N. Harakeh, T. Inomata,
J. Janecke, S. Nakayama, A. Tamii, M. Tanaka, H. Toyokawa,
W. Uijen, and M. Yosoi, Phys. Rev. Lett. 82, 3216 (1999).

[42] A. Bohr and B. Mottelson, Nuclear Structure (Benjamin,
New York, 1969), p. 224.

[43] A. M. Green and S. Wycech, Nucl. Phys. A467, 744
(1987).

[44] J. S. McCarthy, I. Sick, and R. R. Whitney, Phys. Rev. C 15,
1396 (1977).

[45] S. Deser, L. Goldberger, K. Kaufmann, and W. Thirring, Phys.
Rev. 96, 774 (1954).

[46] T. L. Trueman, Nucl. Phys. 26, 57 (1961).
[47] E. Lambert, Helv. Phys. Acta 43, 713 (1970).
[48] S. Wycech and A. M. Green, Phys. Rev. C 64, 045206

(2001).
[49] A. Deloff, Phys. Rev. C 61, 024004 (2000).

034316-12


