
PHYSICAL REVIEW C 76, 034312 (2007)

Hypernuclei in the deformed Skyrme-Hartree-Fock approach

Xian-Rong Zhou,1 H.-J. Schulze,2 H. Sagawa,3 Chen-Xu Wu,1 and En-Guang Zhao4

1 Department of Physics and Institute of Theoretical Physics and Astrophysics,
Xiamen University, Xiamen 361005, People’s Republic of China

2 INFN Sezione di Catania, Via Santa Sofia 64, I-95123 Catania, Italy
3 Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560, Japan

4 Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
(Received 11 May 2007; published 11 September 2007)

The properties of � hypernuclei in a broad mass region are studied by using a deformed Hartree-Fock approach
using realistic nucleonic Skyrme forces, pairing correlations, and a microscopically determined lambda-nucleon
interaction based on Brueckner-Hartree-Fock calculations of hypernuclear matter. The results suggest that the
core nuclei and the corresponding hypernuclei have similar deformations with the same sign. Some light single-�
hypernuclei are substantially deformed and the � binding energy is modified by the deformation.
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I. INTRODUCTION

The study of hypernuclei is crucial for providing infor-
mation about hyperon-nucleon (YN ) and hyperon-hyperon
(YY ) interactions. Quantitative information on these forces
is very important to understand the properties of multistrange
systems and also neutron stars. The experimental study of
hypernuclei [1–5] is one of the few possibilities to constrain
theoretical models of these interactions. Currently there are
many experimental data for various single-� hypernuclei
over almost the whole mass table [5] and a few double-�
hypernuclei [6–9].

Many theoretical studies of hypernuclei have been per-
formed either based on phenomenological models, i.e., rel-
ativistic mean-field models [10–12], Skyrme Hartree-Fock
(SHF) models [13], or Woods-Saxon potential [14] with an
effective hyperon-nucleon interaction, or by using microscop-
ically derived lambda-nucleon (�N ) forces. In Refs. [15,16]
the properties of �-hypernuclei were studied by using a
�N G-matrix that incorporates the short-range correlations,
whereas in Refs. [17,18] a SHF model was used together
with a microscopical �N force without adjustable parameters,
derived from Brueckner-Hartree-Fock (BHF) calculations of
isospin-symmetric hypernuclear matter [19].

All these calculations of hypernuclei were based on
spherical symmetry, except some attempts of deformed HF
calculations with nonrealistic interactions [20] and the Nilsson
model study of p-shell nuclei in Ref. [21]. However, it is well
known that many p-shell and d-shell nuclei are deformed
in the ground state. For example, according to experiment,
10B and 11C have large quadrupole moments [22]. One can
describe deformed (hyper)nuclei within several models such
as the α-cluster model [2], the projected shell model [23], and
the deformed self-consistent SHF method [24]. Deformation
of p-shell hypernuclei was taken into account in Ref. [21]
by using the Nilsson model [25,26] and assuming the same
deformation for both the core and the hypernuclei. So far there
is no study of a self-consistent model treating the core and
the hypernuclei with realistic effective interactions for both
nucleon-nucleon and �N channels.

The aim of this article is to investigate how much the
observables of hypernuclei depend on the deformation in
a deformed SHF (DSHF) model, including the hyperon
degree of freedom (hereafter we call this model the extended
DSHF model). The DSHF method has been used to describe
the properties of light and medium-heavy normal nuclei in
Ref. [27] and is extended in this article to the study of hyper-
nuclei. For this purpose we generalize the microscopic �N

force developed in Refs. [17,18] for nearly symmetric nuclei
to isospin-asymmetric nuclei. This effective �N interaction is
derived from Brueckner-Hartree-Fock calculations of isospin-
asymmetric hypernuclear matter [19] with the Nijmegen soft-
core hyperon-nucleon potential NSC89 [28] and the Argonne
V18 nucleon-nucleon interaction [29], including explicitly the
coupling of the lambda-nucleon to the sigma-nucleon states.
Furthermore, nucleonic pairing correlations are now included
in the model and we perform the DSHF and extended DSHF
calculations using three different nucleonic Skyrme forces.

The present study is a generalization of the calculations
of closed-shell spherical hypernuclei in Refs. [17,18] for
more complex open-shell nuclei using realistic effective
interactions. We study many nuclei in a broad region of the
mass table from light p- and sd-shell nuclei, medium mass
nuclei, and also heavy nuclei up to 207Pb and 208

�Pb.
This article is organized as follows. In Sec. II we present

the SHF formalism including an effective hyperon-nucleon
interaction derived from microscopic BHF calculations of
asymmetric nuclear matter. The calculated results of DSHF for
core nuclei and extended DSHF for hypernuclei with one or
two � are given in Sec. III and compared with the experimental
data. Finally, discussions and conclusions are given in Sec. IV.

II. FORMALISM

Our model is based on the self-consistent DSHF method
[24] solved in coordinate space with axially symmetric shape
[30], including the �N interaction. The total energy of a
hypernucleus in the extended DSHF model is expressed as

E =
∫

d3rε(r) (1)
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with the energy density functional

ε = εN [ρn, ρp, τn, τp, Jn, Jp] + ε�[ρn, ρp, ρ�, τ�], (2)

where εN is the total energy density of neutrons and protons
[24,31] and ε� is the contribution due to the presence of
hyperons. The one-body density ρq , kinetic density τq , and
spin-orbit current Jq read

ρq =
Nq∑
i=1

ni
q

∣∣φi
q

∣∣2
, (3a)

τq =
Nq∑
i=1

ni
q

∣∣∇φi
q

∣∣2
, (3b)

Jq =
Nq∑
i=1

ni
qφ

i
q

∗(∇φi
q × σ

)/
i, (3c)

where φi
q (i = 1, Nq) are the single-particle wave functions of

the Nq occupied states for the different particles q = n, p,�.
The occupation probabilities ni

q (for nucleons only) are
calculated by taking into account pairing interactions within a
BCS approximation. The pairing interaction is taken to be a
density-dependent delta force [32],

Vq(r1, r2) = V ′
q

[
1 − ρN (r)

ρ0

]
δ(r1 − r2), (4)

where ρN (r) is the nucleonic HF density at r = (r1 +
r2)/2 and ρ0 = 0.16 fm−3. As pairing strength we use V ′

q =
−410 MeVfm3 for both neutrons and protons of light nu-
clei [33] and V ′

p = −1146 MeVfm3, V ′
n = −999 MeVfm3 for

medium-mass and heavy nuclei. A smooth energy cutoff is
employed in the BCS calculations [34]. In the case of an
odd number of nucleons, the orbit occupied by the unpaired
nucleon is blocked in the BCS calculations, as described in
Ref. [26].

For the nucleonic energy density functional εN we use
the standard Skyrme forces SIII, SkI4, or SGII, whereas the
energy-density functional due to the presence of hyperons, ε�,
is written as [17],

ε� = τ�

2m�

+ εN�(ρn, ρp, ρ�)

+
(

m�

m∗
�(ρn, ρp, ρ�)

− 1

)
τ� − Cρ

5/3
�

2m�

(5)

with C = (3/5)(3π2)2/3 ≈ 5.742 and

εN� = (ρn + ρp + ρ�)
B

A
(ρn, ρp, ρ�)

− (ρn + ρp)
B

A
(ρn, ρp, 0) − Cρ

5/3
�

2m�

. (6)

The energy density functional εN� is obtained from a fit to the
binding energy per baryon, B/A(ρn, ρp, ρ�), of asymmetric
hypermatter, as generated by BHF calculations [19]. The
adequate � effective mass,

m∗
�

m�

=

1 + U�

(
k

(�)
F

) − U�(0)

k
(�)
F

2/
2m�




−1

, (7)

is computed from the BHF single-particle potentials U�(k)
obtained in the same calculations. In practice we use the
following parametrizations of energy density and � effective
mass in terms of the partial densities ρn, ρp, ρ� (ρN and ρ�

given in units of fm−3, εN� in MeV fm−3):

εN� ≈ −[
368 − (1717 + 268α − 920α2)ρN

+ (2932 − 776α + 2483α2)ρ2
N

]
ρNρ�

+ (
449 − 2470ρN + 5834ρ2

N

)
ρNρ

5/3
� , (8)

m∗
�

m�

≈ 1 − (1.58 + 0.12α − 0.12α2 + 0.54y − 0.14y2)ρN

+ (4.11 + 2.11α + 2.88α2 + 0.35y + 1.17y2)ρ2
N

− (4.03 + 7.08α + 5.18α2 − 0.93y + 3.27y2)ρ3
N,

(9)

where ρN = ρn + ρp, α = (ρn − ρp)/ρN , and y = ρ�/ρN .
The minimization of the total energy Eq. (1) implies the

SHF Schrödinger equation[
−∇ · 1

2m∗
q(r)

∇ + Vq(r) − i∇Wq(r) · (∇ × σ )

]
φi

q(r)

= ei
qφ

i
q(r) (10)

and the gap equation

ni
q = 1

2


1 − ei

q − µq√(
ei
q − µq

)2 + (
f i

q	i
q

)2


 , (11)

	i
q = −

∑
k

(f uv)kq

∫
d3r1d

3r2

∣∣φk
q (r1)

∣∣2
Vq(r1, r2)

∣∣φi
q(r2)

∣∣2

(12)

with the single-particle energies ei
q , the chemical potentials

µq, (uv)kq =
√

nk
q(1 − nk

q), and the additional factors f k
q due

to the smooth energy-dependent pairing cutoff procedure [34].
The extended SHF mean fields in Eq. (10) are given by

Vq = V SHF
q + ∂εN�

∂ρq

+ ∂

∂ρq

(
m�

m∗
�

)
τ� − Cρ

5/3
�

2m�

,

V� = ∂εN�

∂ρ�

+ ∂

∂ρ�

(
m�

m∗
�

)
τ� − Cρ

5/3
�

2m�

−
(

m�

m∗
�

− 1

)
5

3

Cρ
2/3
�

2m�

, (13)

where V SHF
q (q = n, p) is the nucleonic Skyrme mean field

without hyperons and Wq is the nucleonic spin-orbit mean
field, as given in Refs. [24,31]. At the present level of
approximation we do not include a spin-orbit force for �,
which is justified by the experimental observation of very
small spin-orbit splittings [35]. The total nucleon mean field
is thus modified due to the presence of hyperons, causing a
rearrangement of the nucleonic core of a hypernucleus.

Axial symmetry is assumed for the SHF deformed poten-
tials and the Schrödinger equation is solved in cylindrical
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FIG. 1. (Color online) Self-consistent DSHF calculations of 8Be,
9
�Be, and 10

��Be with different interactions SIII, SkI4, and SGII.

coordinates (r, z). The optimal quadrupole deformation
parameters

β
(q)
2 =

√
π

5

〈2z2 − r2〉q
〈z2 + r2〉q (14)

are found by minimizing the total energy of the (hyper)
nucleus.

FIG. 2. Self-consistent DSHF calculations with the SkI4 interac-
tion for (a) 7Be and 8

�Be; (b) 8Be, 9
�Be, and 10

��Be; and (c) 9Be and
10
�Be. Each single-particle and single-� configuration is assigned by

the quantum number Kπ in the deformed potential. The abbreviation
“n” stands for the neutron configuration.

(a)

(b)

(c)

FIG. 3. Same as described in the caption to Fig. 2 but for the SGII
interaction.

(a)

(b)

(c)

FIG. 4. Self-consistent DSHF calculations with the SkI4 interac-
tion for (a) 8B and 9

�B, (b) 9B and 10
�B, and (c) 10B and 11

�B. The
abbreviation “p” stands for the proton configuration. See the caption
to Fig. 2 for more details.
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(a)

(b)

FIG. 5. Self-consistent DSHF calculations with the SkI4 inter-
action for (a) 11C and 12

�C and (b) 12C and 13
�C. See the caption to

Fig. 2 for more details.

III. RESULTS

We calculate the various experimentally studied hypernu-
clei including light, medium, and heavy systems by performing
the DSHF+BCS and extended DSHF+BCS calculations
with the microscopic �N force. In order to obtain realistic
deformation minima for C isotopes and C hypernuclei, we
reduce the spin-orbit interactions of the SkI4 and SGII forces
to 60% of the original strength as in Ref. [27], while the original
strength is used in all other HF and extended HF calculations
of nuclei and hypernuclei, respectively. Several hypernuclei
turn out to be spherical or nearly spherical in the present
DSHF model, while some p-shell and sd-shell hypernuclei
show deformed minima in the calculated energy surfaces. We
will discuss in the following the effect of deformations on
hypernuclei.

The nucleus 8Be is known to be strongly deformed due to
its double-α structure. In order to study the interaction depen-
dence of the results, we display in Fig. 1 the energy surfaces
for 8Be and the hypernuclei 9

�Be and 10
��Be, obtained with

the three different Skyrme forces SIII, SkI4, and SGII. These
interactions are commonly used in mean-field calculations and
also random phase approximations for excited states. While the
total energies predicted by the different forces vary by about
8 MeV in Fig. 1, the � binding energy,

B� = E(A−1Z) − E
(A

�
Z

)
, (15)

and the �� bond energy,

	B�� = 2E
(A−1

�
Z

) − E
(A−2

Z
) − E

( A

��
Z

)
, (16)

(a)

(b)

FIG. 6. Self-consistent DSHF calculations with the SkI4 interac-
tion for (a) 27Si and 28

�Si and (b) 50V and 51
�V. See the captions to

Figs. 2 and 4 for more details.

are nearly the same with the three forces, namely
we obtain B� = 7.16, 6.96, 7.06 MeV and 	B�� =
−0.29,−0.12,−0.24 MeV with the SIII, SkI4, and SGII
force, respectively, compared with the experimental values
of B� = 6.71 ± 0.04 MeV [3] or 5.99 ± 0.07 MeV [5], and
	B�� = 4.3 ± 0.4 MeV [6] or −4.9 ± 0.7 MeV [7].

The relativistic mean-field model of Ref. [11] predicts
	B�� ≈ 0.3 MeV for this nucleus. Although there are two
experimental reports about the double-� hypernucleus 10

��Be,
more experimental events are desperately needed to confirm
the data with better statistics, as discussed in Ref. [8]. In fact
a recent measurement of 6

��He shows a weakly attractive
	B�� ≈ +1MeV for this nucleus [9]. We remark that the
slightly repulsive bond energy is obtained because of no
�� interaction in our model, because the underlying NSC89
potential [28] does not provide it. Results obtained with
the NSC97 potentials including hyperon-hyperon interactions
yield similarly small numbers, however [18,36].

The predicted deformations are very similar for the three
interactions, namely β2 = 0.63, 0.63, 0.65 for 8Be, β2 =
0.57, 0.59, 0.59 for 9

�Be, and β2 = 0.52, 0.55, 0.55 for 10
��Be,

respectively. The calculations with the three interactions sug-
gest that the core nucleus 8Be and the 9

�Be, 10
��Be hypernuclei

have similar deformation parameters with the same sign, which
agree with the results of Ref. [2]. These results also justify
the assumption of the same deformations in the core and the
hypernuclei made in the Nilsson model potential [21]. For
comparison, we perform also spherical HF calculations for
the same nuclei disregarding the deformation. The predicted
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(a)

(b)

FIG. 7. Deformation parameters (upper panel) and binding ener-
gies of the last � (lower panel) for multi-� hypernuclei with a 8Be
core using the SkI4 interaction.

� binding energies of the spherical hypernucleus become
B� = 7.53, 7.47, 7.50 MeV. Although the deformations lower
the binding energies of both the core and hypernuclei, the
differences of the two binding energies are smaller by about
0.5 MeV for the results of DSHF, because the deformations of
hypernuclei are slightly smaller than of their core nuclei in the
case of Be isotopes.

Figures 2–6 show the binding energy surfaces for the
core nuclei 7,8,9Be, 8,9,10B, 11,12C, 27Si, and 50V and the
corresponding hypernuclei with the SkI4 and SGII forces.
Comparing Figs. 2 and 3 it is seen that the two interactions
give almost equivalent results apart from a global shift of the
energies. One notes in these figures that the ground state of 7Be
has the quantum number Kπ = n 1

2
−

, whereas Kπ = n 3
2

−
for

9Be. All the core nuclei 7,8,9Be have large prolate deformations,
especially 8Be as we discussed above. The corresponding
hypernuclei have similar shapes for the ground states. We
can see the same phenomena in Fig. 4: the ground states of
8,9,10B and the corresponding hypernuclei are prolate with little
difference of the deformation parameter β.

We notice in Fig. 5 that the shapes of the ground states of
11,12C show oblate deformations, being different from those
of 7,8,9Be and 8,9,10B, and the corresponding hypernuclei have
also similar oblate deformations. Our calculations predict that
the ground states of 9Be and 10B are prolate, while 11C is
oblate. These results are consistent with the experimental data
of the Q-moments of these nuclei [22]. It was pointed out in
Ref. [21] that the deformation plays a very important role for
the nonmesonic decay of light hypernuclei. The behavior of the

(a)

(b)

FIG. 8. Same as described in the caption to Fig. 7 but for a 50V
core.

nonmesonic decay rates for the two hypernuclei 9
�Be and 12

� C,
whose core nuclei are known to be largely deformed, deviates
in opposite directions from the prediction of the spherical limit
due to the different shapes. Figure 6 indicates that the ground
state of 27Si is oblate with Kπ = n 1

2
+

, whereas 50V is prolate

with p 3
2

− ⊗ n 7
2

−
. The corresponding hypernuclei have similar

deformations with the same sign as the core nuclei.
Tables I and II contain the numerical values of the

deformation parameters β
(q)
2 , binding energies E and B�, and

rms radii rq for the core and hypernuclei in Figs. 2–6. The
results of some medium and heavy core and hypernuclei are
also tabulated. We find in general that the calculated � binding
energies agree with the experimental values within about 10%
of accuracy. The calculated results of heavy hypernuclei show
systematic underbinding compared with the experimental data.
The hyperon observables hardly depend on the nuclear Skyrme
force chosen for the calculation, but the deformation reduces
the � binding energy by a few percentages compared to the
nondeformed results (B� values given in brackets) in some
light nuclei.

The deformations of the single-� hypernuclei are always
smaller than those of the corresponding core nuclei. To study
this aspect in more detail, we display in Figs. 7 and 8
the deformations of hypothetical multihypernuclei n+8

n�Be and
n+50

n�V and the binding energies of the last � hyperon up to their
� driplines. The formation of � hyperons is not considered in
these calculations. In the case of the 8Be core, the deformation
of the N� = 1, 2 hypernucleus is always smaller than that
of the core nucleus, as also shown in Tables I and II. It is
interesting to notice that the deformation difference between
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TABLE I. Deformations, energies (in MeV), and radii (in fm) of different (hyper-)nuclei obtained with the Skyrme interaction SkI4. The
B� values in brackets are the results of the spherical HF calculations without deformations. Experimental data for B� are from Refs. [3–5].

Kπ β2 β
(p)
2 β

(n)
2 β

(�)
2 −E B� B�(exp.) rp rn r�

7Be n 1
2

−
0.52 0.53 0.50 40.36 2.49 2.24

n 3
2

− −0.15 −0.13 −0.18 39.54 2.40 2.15
8
�Be n 1

2

− ⊗ � 1
2

+
0.46 0.49 0.47 0.23 46.79 6.43 2.44 2.22 2.20

n 3
2

− ⊗ � 1
2

+ −0.17 −0.16 −0.20 −0.09 46.22 6.68(6.73) 6.84 ± 0.05 [3] 2.37 2.15 2.26
8Be 0+ 0.63 0.63 0.63 52.76 2.47 2.46
9
�Be 0+ ⊗ � 1

2

+
0.59 0.62 0.62 0.34 59.72 6.96(7.47) 6.71 ± 0.04 [3],

5.99 ± 0.07 [5]
2.45 2.45 2.30

10
��Be 0+ ⊗ �0+ 0.55 0.60 0.60 0.31 66.56 2.41 2.43 2.31

9Be n 3
2

−
0.46 0.53 0.41 59.48 2.37 2.49

n 1
2

− −0.16 −0.16 −0.16 58.32 2.26 2.40
10
�Be n 3

2

− ⊗ � 1
2

+
0.43 0.52 0.40 0.25 67.34 7.86 2.36 2.48 2.27

n 1
2

− ⊗ � 1
2

+ −0.13 −0.13 −0.14 −0.07 66.43 8.11(8.16) 9.11 ± 0.22 [3] 2.25 2.39 2.20
8B p 3

2

− ⊗ n 1
2

−
0.33 0.30 0.39 42.34 2.58 2.18

p 1
2

− ⊗ n 3
2

− −0.20 −0.19 −0.22 41.63 2.55 2.15
9
�B p 3

2

− ⊗ n 1
2

− ⊗ � 1
2

+
0.30 0.29 0.36 0.16 50.11 7.77 2.52 2.17 2.17

p 1
2

− ⊗ n 3
2

− ⊗ � 1
2

+ −0.17 −0.17 −0.20 −0.09 49.46 7.83(7.90) 8.29 ± 0.18 [3] 2.50 2.13 2.15
9B p 3

2

−
0.46 0.41 0.53 57.54 2.51 2.37

p 1
2

− −0.16 −0.16 −0.16 56.36 2.42 2.26
10
�B p 3

2

− ⊗ � 1
2

+
0.44 0.40 0.52 0.25 65.78 8.24 2.48 2.36 2.24

p 1
2

− ⊗ � 1
2

+ −0.13 −0.14 −0.13 −0.07 64.89 8.53(8.56) 8.89 ± 0.12 [3],
8.1 ± 0.1 [5]

2.39 2.25 2.17

10B p 3
2

− ⊗ n 3
2

−
0.30 0.30 0.30 69.18 2.40 2.38

p 1
2

− ⊗ n 1
2

− −0.20 −0.20 −0.20 68.49 2.37 2.36
11
�B p 3

2

− ⊗ n 3
2

− ⊗ � 1
2

+
0.28 0.30 0.29 0.16 78.20 9.02 2.38 2.38 2.22

p 1
2

− ⊗ n 3
2

− ⊗ � 1
2

+ −0.18 −0.18 −0.18 −0.10 77.59 9.10(9.17) 10.24 ± 0.05 [3] 2.35 2.35 2.20
11C n 1

2

− −0.30 −0.30 −0.31 72.56 2.57 2.45

n 3
2

−
0.26 0.23 0.30 71.86 2.54 2.42

12
�C n 1

2

− ⊗ � 1
2

+ −0.29 −0.29 −0.30 −0.17 82.36 9.80 2.54 2.44 2.26

n 3
2

− ⊗ � 1
2

+
0.24 0.22 0.28 0.14 81.77 9.91(10.06) 10.76 ± 0.19 [3] 2.51 2.41 2.24

12C 0+ −0.31 −0.31 −0.31 87.55 2.54 2.52
13
�C 0+ ⊗ � 1

2

+ −0.29 −0.30 −0.30 −0.17 97.74 10.19(10.52) 11.69 ± 0.12 [3],
11.38 ± 0.05 [5]

2.51 2.51 2.29

27Si n 1
2

+ −0.23 −0.23 −0.23 226.43 3.03 2.96

n 3
2

+ −0.28 −0.28 −0.28 226.10 3.04 2.96

n 5
2

+
0.18 0.17 0.20 225.78 3.00 2.94

28
�Si n 1

2

+ ⊗ � 1
2

+ −0.24 −0.24 −0.24 −0.15 242.10 15.67 3.03 2.96 2.54

n 3
2

+ ⊗ � 1
2

+ −0.24 −0.24 −0.24 −0.25 241.72 15.62 3.03 2.97 2.54

n 5
2

+ ⊗ � 1
2

+
0.19 0.18 0.21 0.12 241.51 15.72(15.80) 16.6 ± 0.2 [4,5] 3.00 2.94 2.54

50V p 3
2

− ⊗ n 7
2

−
0.16 0.16 0.15 445.14 3.51 3.58

p 1
2

− ⊗ n 7
2

−
0.12 0.12 0.12 444.90 3.54 3.58

p 3
2

− ⊗ n 1
2

−
0.25 0.24 0.25 443.85 3.54 3.63
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TABLE I. (Continued.)

Kπ β2 β
(p)
2 β

(n)
2 β

(�)
2 −E B� B�(exp.) rp rn r�

51
�V p 3

2

− ⊗ n 7
2

− ⊗ � 1
2

+
0.17 0.16 0.11 0.15 463.47 18.33(18.35) 19.97 ± 0.13 [5] 3.50 3.58 2.91

p 1
2

− ⊗ n 7
2

− ⊗ � 1
2

+
0.12 0.12 0.12 0.11 463.23 18.33 3.49 3.58 2.91

p 3
2

− ⊗ n 1
2

− ⊗ � 1
2

+
0.23 0.23 0.24 0.15 462.10 18.25 3.53 3.62 2.92

88Y p 1
2

− ⊗ n 9
2

+
0 0 0 774.22 4.13 4.25

89
�Y p 1

2

− ⊗ n 9
2

+ ⊗ � 1
2

+
0 0 0 0 794.95 20.73 22.0 ± 0.5 [4],

23.1 ± 0.5 [5]
4.13 4.25 3.34

207Pb n 1
2

−
0 0 0 1644.7 5.42 5.59

208
�Pb n 1

2

− ⊗ � 1
2

+
0 0 0 0 1667.2 22.41 26.5 ± 0.5 [4],

26.3 ± 0.8 [5]
5.41 5.59 4.21

the core and the corresponding hypernuclei is large in the
cases of N� = 1 and 2, whereas the two deformations are very
similar in the cases of N� = 3 and 4, close to the � drip line.
At the same time, the � separation energy is large in the cases
of N� = 1 and 2, whereas it is almost zero for the N� = 3, 4
hypernuclei.

The general trend of hypernuclei of 50V is quite different.
The deformations of the hypernuclei are larger than those of the
core, especially at the middle of the shells specified by N� = 8
and 20. In particular, we observe a pronounced variation of
the � and core deformations and the � binding energies
as a function of N�. This evolution of the deformations

TABLE II. Same as Table I with the Skyrme interaction SGII.

Kπ β2 β
(p)
2 β

(n)
2 β

(�)
2 −E B� B�(exp.) rp rn r�

7Be n 1
2

−
0.47 0.47 0.46 44.0 2.42 2.24

n 3
2

− −0.16 −0.13 −0.19 43.56 2.33 2.15
8
�Be n 1

2

− ⊗ � 1
2

+
0.34 0.36 0.38 0.17 50.68 6.68 2.33 2.21 2.15

n 3
2

− ⊗ � 1
2

+ −0.15 −0.14 −0.19 −0.08 50.43 6.87 6.84 ± 0.05 [3] 2.28 2.16 2.12
8Be 0+ 0.64 0.64 0.64 55.81 2.48 2.47
9
�Be 0+ ⊗ � 1

2

+
0.59 0.62 0.61 0.33 62.87 7.06 6.71 ± 0.04 [3],

5.99 ± 0.07 [5]
2.43 2.45 2.29

10
��Be 0+ ⊗ �0+ 0.55 0.60 0.60 0.32 69.69 2.39 2.44 2.30

9Be n 3
2

−
0.46 0.53 0.41 63.35 2.39 2.45

n 1
2

− −0.15 −0.14 −0.15 62.69 2.27 2.35
10
�Be n 3

2

− ⊗ � 1
2

+
0.38 0.45 0.36 0.21 71.26 7.91 2.34 2.42 2.24

n 1
2

− ⊗ � 1
2

+ −0.13 −0.13 −0.14 −0.07 70.81 8.12 9.11 ± 0.22 [3] 2.25 2.39 2.20
8B p 3

2

− ⊗ n 1
2

−
0.34 0.32 0.39 47.40 2.47 2.20

p 1
2

− ⊗ n 3
2

− −0.19 −0.18 −0.21 46.86 2.43 2.16
9
�B p 3

2

− ⊗ n 1
2

− ⊗ � 1
2

+
0.31 0.30 0.37 0.17 55.62 8.22 2.40 2.20 2.12

p 1
2

− ⊗ n 3
2

− ⊗ � 1
2

+ −0.17 −0.17 −0.20 −0.09 55.14 8.28 8.29 ± 0.18 [3] 2.36 2.16 2.10
9B p 3

2

−
0.46 0.41 0.53 61.32 2.48 2.38

p 1
2

− −0.15 −0.15 −0.14 60.63 2.38 2.26
10
�B p 3

2

− ⊗ � 1
2

+
0.36 0.34 0.41 0.19 69.75 8.43 2.40 2.33 2.18

p 1
2

− ⊗ � 1
2

+ −0.14 −0.15 −0.14 −0.08 69.35 8.72 8.89 ± 0.12 [3],
8.1 ± 0.1 [5]

2.34 2.27 2.15
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TABLE II. (Continued.)

Kπ β2 β
(p)
2 β

(n)
2 β

(�)
2 −E B� B�(exp.) rp rn r�

10B p 3
2

− ⊗ n 3
2

−
0.30 0.30 0.30 72.83 2.39 2.37

p 1
2

− ⊗ n 1
2

− −0.17 −0.17 −0.17 72.31 2.36 2.34
11
�B p 3

2

− ⊗ n 3
2

− ⊗ � 1
2

+
0.29 0.30 0.30 0.16 81.87 9.04 2.37 2.38 2.21

p 1
2

− ⊗ n 3
2

− ⊗ � 1
2

+ −0.18 −0.18 −0.18 −0.10 81.45 9.14 10.24 ± 0.05 [3] 2.34 2.35 2.20
11C n 1

2

− −0.31 −0.30 −0.31 77.07 2.55 2.45

n 3
2

−
0.26 0.23 0.30 76.53 2.51 2.42

12
�C n 1

2

− ⊗ � 1
2

+ −0.29 −0.29 −0.30 −0.17 86.95 9.88 2.51 2.45 2.25

n 3
2

− ⊗ � 1
2

+
0.21 0.18 0.25 0.11 86.54 10.01 10.76 ± 0.19 [3] 2.46 2.41 2.22

12C 0+ −0.31 −0.31 −0.31 91.48 2.54 2.52
13
�C 0+ ⊗ � 1

2

+ −0.29 −0.30 −0.30 −0.17 101.70 10.22 11.69 ± 0.12 [3],
11.38 ± 0.05 [5]

2.51 2.51 2.29

27Si n 1
2

+ −0.27 −0.28 −0.27 230.19 3.07 2.99

n 3
2

+ −0.28 −0.28 −0.27 229.96 3.07 2.99

n 5
2

+
0.18 0.17 0.20 229.26 3.02 2.95

28
�Si n 1

2

+ ⊗ � 1
2

+ −0.24 −0.24 −0.24 −0.15 245.77 15.58 3.03 2.97 2.54

n 3
2

+ ⊗ � 1
2

+ −0.28 −0.29 −0.28 −0.18 245.48 15.52 3.06 3.00 2.56

n 5
2

+ ⊗ � 1
2

+
0.19 0.18 0.21 0.12 245.0 15.74 16.6 ± 0.2 [4,5] 3.00 2.95 2.54

50V p 3
2

− ⊗ n 7
2

−
0.15 0.15 0.14 450.26 3.54 3.57

p 1
2

− ⊗ n 7
2

−
0.10 0.09 0.10 450.08 3.53 3.56

p 3
2

− ⊗ n 1
2

−
0.24 0.24 0.24 449.31 3.58 3.63

51
�V p 3

2

− ⊗ n 7
2

− ⊗ � 1
2

+
0.15 0.15 0.15 0.10 468.51 18.25 19.97 ± 0.13 [5] 3.53 3.57 2.92

p 1
2

− ⊗ n 7
2

− ⊗ � 1
2

+
0.10 0.10 0.10 0.07 468.34 18.26 3.52 3.56 2.92

p 3
2

− ⊗ n 1
2

− ⊗ � 1
2

+
0.24 0.24 0.24 0.16 467.50 18.19 3.56 3.61 2.93

88Y p 1
2

− ⊗ n 9
2

+
0 0 0 781.83 4.17 4.23

89
�Y p 1

2

− ⊗ n 9
2

+ ⊗ � 1
2

+
0 0 0 0 802.12 20.29 22.0 ± 0.5 [4],

23.1 ± 0.5 [5]
4.17 4.23 3.34

207Pb n 1
2

−
0 0 0 1655.2 5.45 5.58

208
�Pb n 1

2

− ⊗ � 1
2

−
0 0 0 0 1677.6 22.39 26.5 ± 0.5 [4],

26.3 ± 0.8 [5]
5.45 5.58 4.22

is determined by the competition between the deformation-
driving particle-vibration coupling and the pairing correlations
restoring the spherical symmetry of the nuclear system.
Therefore the shell structure of nuclei gives rise to a variety of
different shapes, i.e., prolate, oblate, and triaxial, depending
on the position of the Fermi energy between two closed shells.
In the hyperon case, because of no pairing, the deformations
are only determined by the particle-vibration coupling, and
become very large between two closed shells.

IV. SUMMARY

In summary, we studied deformations of core and hy-
pernuclei in a broad region of the mass table by using an

extended DSHF formalism. To this purpose we introduced
the microscopic �N interaction of Refs. [17,18] extended
to isospin-asymmetric matter, together with nuclear pairing
correlations and three different nucleonic Skyrme forces which
have been tested for deformed pf -shell and d-shell core
nuclei.

We found that the calculated large prolate deformations of
the p-shell nuclei 9Be and 10B are confirmed by the experi-
mental data of Q moments, while the large oblate deformation
of 11C are found both in the experiment and the calculations.
The calculated core nuclei and the corresponding hypernuclei
have similar deformations with the same sign, which agree
with the calculations of the α-cluster model in Ref. [2]. The
obtained � binding energies B� confront satisfactorily with
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experimental values, which leaves little room for additional
contributions to our effective �N interaction due to hyperonic
three-body forces or finite-size corrections. A proper treatment
of deformations is important in the future study of hypernuclei
not only regarding the binding energies of hypernuclei B� and
B��, but also other properties like the fine structure and the
nonmesonic decays of hypernuclei.
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W. Greiner, and P.-G. Reinhard, Phys. Rev. C 42, 2469 (1990);
N. K. Glendenning, D. Von-Eiff, M. Haft, H. Lenske, and
M. K. Weigel, ibid. 48, 889 (1993); C. M. Keil, F. Hofmann, and
H. Lenske, ibid. 61, 064309 (2000).

[11] H. Shen, F. Yang, and H. Toki, Prog. Theor. Phys. 115, 325
(2006).

[12] J. Schaffner, C. Greiner, and H. Stöcker, Phys. Rev. C 46, 322
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J. Žofka, Czech. J. Phys. B30, 95 (1980); W. H. Bassichis and
A. Gal, Phys. Rev. C 1, 28 (1970).

[21] K. Hagino and A. Parreño, Phys. Rev. C 63, 044318
(2001).

[22] F. Ajzenberg-Selove, Nucl. Phys. A490, 1 (1988); A506, 1
(1990).

[23] K. Hara and Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995).
[24] D. Vautherin, Phys. Rev. C 7, 296 (1973).
[25] C. Gustafsson, I. L. Lamm, B. Nilsson, and S. G. Nilsson, Ark.

Fys. 36, 613 (1967).
[26] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer-Verlag, Berlin, 1980).
[27] H. Sagawa, X.-R. Zhou, X. Z. Zhang, and T. Suzuki, Phys. Rev.

C 70, 054316 (2004); 72, 054311 (2005).
[28] P. M. M. Maessen, Th. A. Rijken, and J. J. de Swart, Phys. Rev.

C 40, 2226 (1989).
[29] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C

51, 38 (1995).
[30] V. Blum, G. Lauritsch, J. A. Maruhn, and P.-G. Reinhard,

J. Comput. Phys. 100, 364 (1992).
[31] M. Bender, K. Rutz, P.-G. Reinhard, J. A. Maruhn, and

W. Greiner, Phys. Rev. C 60, 034304 (1999).
[32] N. Tajima, P. Bonche, H. Flocard, P.-H. Heenen, and M. S. Weiss,

Nucl. Phys. A551, 434 (1993).
[33] H. Sagawa, T. Suzuki, and K. Hagino, in Proceedings of

the International Symposium on Frontiers of Collective Mo-
tions (CM2002) (World Scientific, Singapore, 2003), p. 236;
H. Sagawa, T. Suzuki, and K. Hagino, Nucl. Phys. A722, C183
(2003); Phys. Rev. C 68, 014317 (2003).

[34] M. Bender, K. Rutz, P.-G. Reinhard, and J. A. Maruhn, Eur.
Phys. J. A 8, 59 (2000).

[35] S. Ajimura et al., Phys. Rev. Lett. 86, 4255 (2001); H. Akikawa
et al., Phys. Rev. Lett. 88, 082501 (2002).

[36] I. Vidaña, A. Ramos, and A. Polls, Phys. Rev. C 70, 024306
(2004).

034312-9


