
PHYSICAL REVIEW C 76, 034310 (2007)

Nuclei embedded in an electron gas
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The properties of nuclei embedded in an electron gas are studied within the relativistic mean-field approach.
These studies are relevant for nuclear properties in astrophysical environments such as neutron-star crusts and
supernova explosions. The electron gas is treated as a constant background in the Wigner-Seitz cell approximation.
We investigate the stability of nuclei with respect to α and β decay. Furthermore, the influence of the electronic
background on spontaneous fission of heavy and superheavy nuclei is analyzed. We find that the presence of
the electrons leads to stabilizing effects for both α decay and spontaneous fission at high electron densities.
Furthermore, the screening effect shifts the proton dripline to more proton-rich nuclei, and the stability line with
respect to β-decay is shifted to more neutron-rich nuclei. Implications for the creation and survival of very heavy
nuclear systems are discussed.
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I. INTRODUCTION

Nuclear astrophysics lies at the heart of our understanding
of the origin of the physical world and our mere existence.
One of its key questions is “How and where did the chemical
elements originate?” Many challenging questions concerning
the processes and mechanisms for nucleosynthesis are at the
focus of modern research. In this respect, supernovae and
neutron stars are the most interesting objects to study.

The first attempt to explain abundances of chemical
elements in the solar system was performed by Gamow in
1946–1948 (see, e.g., Ref. [1]). He proposed a mechanism that
was based on a continuous building up of chemical elements
by neutron capture in the early universe. Later it became clear
that this mechanism could not explain the production of heavy
elements because of the very high specific entropy of the early
universe, S/B ∼ 1010, where S is the total entropy and B is the
net baryon number. According to the present understanding of
the element creation the lightest elements (up to He, and partly,
Li) were formed during the first moments of the expansion of
the universe, immediately after the Big Bang. Heavier elements
up to oxygen are predominantly produced in thermonuclear
reactions in stars like our Sun. Elements up to iron and nickel
could be produced in more massive stars. The origin of heavier
elements such as gold and uranium remains at the focus of
current research. It is widely believed that heavy elements were
mostly synthesized in the course of supernova explosions in
the so-called r-process (subsequent neutron capture by stable
and unstable nuclei, see a recent review [2]).

A type II supernova explosion is one of the most spectacular
events in astrophysics, with huge energy release of about 1053

erg or several tens of MeV per nucleon [3]. When the core
of a massive star collapses, it reaches densities several times
larger than the normal nuclear density ρ0 = 0.16 fm−3. The
repulsive nucleon-nucleon interaction gives rise to a bounce-
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off of matter and the formation of a shock wave propagating
through the in-falling stellar material, predominantly Fe.

Hydrodynamical simulations (see, e.g., Refs. [4,5]) show
that during the collapse and subsequent explosion temperatures
T ≈ (0.5–10) MeV and baryon densities ρB ≈ (10−5–2)ρ0

can be reached. Unfortunately, these simulations do not
produce successful explosions yet, even when neutrino heating
and convection effects are included. This means that some
important aspects of the physical processes involved are still
missing.

Besides supernova explosions, protoneutron and neutron
stars are interesting objects from a nuclear physics point of
view. They are quite similar to huge, extremely neutron-rich
macroscopic nuclei that gain additional stability and binding
due to the gravitational force. Neutron stars are very compact
objects with a central density of about ρ = 1015 g/cm3, a
typical radius of R = 10 km and masses up to two solar masses.
Protoneutron stars are newly-born neutron stars formed in the
course of a supernova explosion. They are somewhat bigger
than neutron stars and have temperatures up to 30 MeV. The
regime of interest for our considerations are baryon densities
in the range 0.001–0.5ρ0, where very heavy and neutron-rich
nuclei may be present [6–9]. Nuclear pasta phases, i.e., nuclear
matter in various geometries such as slabs and parallel plates,
reminiscent of pasta [10–13] start at densities slightly above
0.5ρ0. In this regime the surrounding gas of neutrons needs to
be taken into account.

Since the heaviest elements occurring in nature are uranium
isotopes, there should have been corresponding extreme
conditions for their creation and persistence in supernova
explosions, crusts of neutron stars, or other sites. Thus we
may wonder if very heavy and superheavy systems can and
will be produced under such conditions too. We would like to
understand how the properties of nuclear systems are altered
in dense environments.

The properties of nuclei in astrophysical environments have
enjoyed continuous interest for over more than 30 years. The
seminal work by Negele and Vautherin [14] laid out the path
for microscopic studies of nuclei in stellar environments,
see, e.g., Refs. [8,12,13,15–20]. The investigation of the
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rich properties of nuclear systems under extreme conditions
in astrophysical environments is on the rising path. Since
many astrophysical calculations, from r-process to dynamical
simulations of supernova explosions, depend on theoretical
nuclear input, it is important to understand how nuclei subject
to these special conditions differ from nuclei studied in the
laboratory on earth.

In this paper we focus on the physics of nuclei embedded
in a dense electron gas. This investigation is important by
itself as well as for further studies including the neutron gas.
We consider nuclei across the periodic chart up to superheavy
nuclei embedded in a Wigner-Seitz cell with constant electron
density. The presence of the electrons will effect the location
of the β-stability line and the proton drip line as well as decay
modes such as α-decay and spontaneous fission.

The paper is structured as follows. In Sec. II, we present
the relativistic mean-field model which is employed in the
calculations as well as the concept of the Wigner-Seitz cell
and its concrete implementation for spherical and deformed
nuclear systems. In Sec. III, we discuss the β-equilibrium
condition and present results for the β-stability line and the
proton and neutron drip lines in the presence of electrons.
The evolution of the α-decay mode in heavy nuclei as a
function of the electron Fermi momentum is demonstrated
in Sec. IV A. In Sec. IV B, deformed nuclei are considered
and spontaneous fission under the influence of the electron
background is studied. Finally, in Sec. V we conclude and
give an outline of future research directions.

II. THE FRAMEWORK

A. The RMF model

Over the years self-consistent mean-field models have
reached high predictive power. They can be applied from
medium-light systems up to superheavy nuclei and to systems
ranging from the proton drip line to the neutron drip line.
They are based on the formulation of an effective nucleon-
nucleon interaction meant to be employed in the Hartree or
Hartree-Fock treatment of nuclear systems. The modern way
of formulating them is in terms of an energy functional that
can incorporate terms which cannot be constructed via a two-
(or three- or four-)body force.

In this paper we employ the relativistic mean-field (RMF)
model [21,22]. The effective in-medium nucleon-nucleon
interaction is parametrized via the exchange of several meson
fields: scalar-isoscalar (σ ), vector-isovector (ωµ), and vector-
isovector ( �ρµ).

This model is based on an effective Lagrangian of the form

L =
∑

α

wαψ̄α(iγµ∂µ − mN )ψ + 1

2
∂νσ∂νσ

− 1

2
m2

σ σ 2 − b

3
σ 3 − c

4
σ 4 − gσ

∑
α

wασ ψ̄αψα

− 1

4
ωµνω

µν − 1

2
m2

ωωµωµ − gω

∑
α

wαωµψ̄αγµψα

− 1

4
�ρµν · �ρµν − 1

2
m2

ρ �ρµ · �ρµ − gρ

∑
α

wα �ρµ · ψ̄αγµ�τψα

− 1

4
FµνF

µν − e
∑

α

wαAµψ̄αγµ

1 + τ3

2
ψα. (2.1)

The field tensor for the ω meson is defined as ωµν = ∂µων −
∂νωµ, and similar definitions hold for the field tensors of the
ρ meson and the photon. The parameters gσ , gω, gρ,mσ , b, c

are adjusted to experimental data of nuclear ground-state
observables. The masses of the ρ and ω mesons are fixed at
the experimental values, since the performance of the model is
not quite sensitive to their values. As it is written down in the
Hartree approximation, the meson fields are treated as classical
potentials and the nucleons are represented by Dirac spinors.
The isoscalar-scalar σ meson delivers the intermediate-range
attraction, while the isoscalar-vector ω meson is responsible
for the short-range repulsion. The isovector-vector ρ meson
couples to the isovector nucleon density and thus parametrizes
the isovector properties of the model. The photon is coupled in
standard fashion. No (explicit) exchange terms are taken into
account.

It is worth mentioning that these meson fields have only
loose correspondence with the physical meson spectrum.
Mean-field models employing contact interactions between
nucleons have a comparable predictive power for nuclear
ground-state observables and excited states [23–25].

The wα denote occupation probabilities of the nucleon
states and originate from the treatment of pairing. We employ
BCS pairing with a density-independent δ-force, see Ref. [26]
for details. In time-reversal even-even systems, only the time
components of the vector mesons are nonzero. Proton and
neutron states are not allowed to mix, hence only the third
components of the isovector-vector ρ field associated with τ3

survives.
The single-particle equation for the nucleons reads

[
i �γ · �∂ + mN + gσσ + gωω0γ0 + gρρ

0
3τ3

+ eA0 1 − τ3

2
γ0

]
ψ = εγ0ψ. (2.2)

The binding properties of nuclear matter and nuclei are
generated from the strong scalar and vector fields, US =
gσσ ≈ −350 MeV, UV = gωω0 ≈ +300 MeV, which add up
to a normal nucleon potential UN = US + UV ≈ −50 MeV.
They add up with the same sign to generate the strong
spin-orbit potential in nuclei, which (in the nonrelativistic
limit) is given by

Vls ∝ d

dr
(VS − VV γ0)�l · �s. (2.3)

This spin-orbit force emerges from the covariant formalism
with the right sign and magnitude without introducing addi-
tional parameters. This is an important consequence of the
relativistic description.

In order to account for the electron background, we modify
the source term of the photon field by adding the electron
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density, i.e.,

φ = −e(ρp − ρe) = −eρch, (2.4)

which is the Poisson equation for the electrostatic potential
φ ≡ A0. Further down we discuss the concrete implementation
in different symmetries. All other equations remain the same
as in vacuum.

Calculations are performed in coordinate space, but the
derivatives are performed as matrix multiplications in Fourier
space. We employ the mean-field parametrization NL3 in these
studies [27] which delivers accurate values for nuclear ground-
state properties. Furthermore, since the external electron
background couples only electromagnetically to nucleons,
no additional parameters need to be introduced, and no
readjustment of the present parameters is needed.

B. The Wigner-Seitz approximation

In this paper we study properties of nuclei embedded in
a uniform electron gas at zero temperature. The calculations
are performed within the Wigner-Seitz (WS) approximation
by dividing the system into WS cells, each containing only
one nucleus and the number of electrons equal to the nuclear
charge Z, see Fig. 1 for an illustration.

The construction of the WS cell is aimed at an ap-
proximate and convenient segmentation of an ensemble of
nuclei surrounded by the uniform background of electrons.
Its construction should ensure that the physics contained in
the Wigner-Seitz cell is to an optimally large degree isolated
from the surrounding. This requires, for example, charge
neutrality of the cell. However, there could be also other
requirements which minimize the electrostatic interactions
with neighboring cells (see below). Recently the validity of
the WS approximation for the inner neutron-star crust has
been discussed, e.g., in Refs. [28,29].

At electron densities considered in this work, the Coulomb
potential due to the nucleus is a small perturbation compared
to the Fermi energy of the electrons. Thus the electrons will
only be weakly affected by the presence of the nucleus which
justifies the approximation of constant density.

In the numerical implementation, however, we use a
Fermi-type distribution of the electron density with a smooth
boundary. The reason is that on a spherical grid in coordinate

FIG. 1. (Color online) Illustration of a Wigner Seitz cell for a
spherical nucleus (left) and an axially deformed nucleus (right). The
inner dark filled region denotes the charge density of the nucleus,
the outer region denotes the extension of the electron background
surrounding the nucleus. The figure is not to scale.

space, the cell radius cannot be fixed exactly (it is limited to
any value that is a multiple of the grid spacing r). A smooth
surface region allows us to realize the electron shell for any grid
spacing and radius. The parameters of the shell are chosen to
satisfy the charge neutrality condition

∫
dVρch(�r) = 0, where

ρch(�r) is the total charge density. Since in the computer code
the derivatives are calculated in Fourier space, the numerical
realization of the smooth surface region is not very sensitive
to the chosen grid spacing. This construction of the electron
density allows us to calculate nuclei throughout the nuclear
chart without introducing artificial jumps in the energy caused
by a step-like change of the WS cell radius.

1. The spherical cell

For a given nuclear charge Z the WS cell radius RC is
uniquely determined by the charge neutrality requirement

4π

3
R3

Cρe = Z. (2.5)

Expressing the electron density in terms of the electron Fermi
momentum kF , ρe = 1

3π2 k
3
f , one can write the cell radius as

RC =
(

9πZ

4

)1/3 1

kF

. (2.6)

The parametrization with a smooth surface, as used in this
work, is given by

ρe(r) = ρe0

1 + exp (r−rC )
a

, (2.7)

where ρe0 is the background electron density, rC is adjusted
in order to fulfill charge neutrality, and a is the diffuseness
parameter of the distribution, taken to be 0.45 fm. The
parameter a is chosen such that the charge density is dropping
from 90% to 10% of its value at r = 0 within the diffuseness
interval σ = 4.4 a = 2 fm. We have checked that the results,
in particular the differences of nuclear binding energies, are
not sensitive to the choice of a. The Poisson equation (2.4) has
to be solved numerically.

While these calculations can be performed quite easily for
high electron densities, for low electron densities when the
WS cell radius becomes quite large, numerical problems arise.
For example, for a tin nucleus, at kF = 0.1 fm−1, the WS cell
radius is RC ≈ 70 fm, while for kF = 0.01 fm−1 it corresponds
to RC ≈ 700 fm.

An alternative way of calculating the effect of the electron
gas is to add the potential of a homogenously charged sphere
of electrons to the electric potential of the proton charge
distribution, i.e., first the proton electric potential

φp = −eρp (2.8)

is calculated, then the potential due to electrons

φ = φp + φe (2.9)

is added, where φp is the solution of the Poisson equation for
the proton charge density. The electric potential caused by the

034310-3
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FIG. 2. The electrostatic potential φ shown for the doubly-magic
lead nucleus for the cases of no electrons, for the inclusion of the
electron density (ρ), and for the inclusion of the external electron
potential (φe), respectively, at kF = 0.1 fm−1.

uniform background of electrons reads

φe(r) =




−Ze

4πRC

[
3

2
− 1

2

r2

R2
C

]
, r < RC

−Ze

4πr
, r � RC.

(2.10)

As can be seen from Fig. 2, the two different ways of
calculating the total electric potential, Eqs. (2.4) and (2.9), lead
to identical electric potentials [apart from the correction due
to the smooth surface region in Eq. (2.4)] and, therefore, to the
same structure of the nucleus. This demonstrates consistency
and accuracy of the treatment of the electron background in
our numerical calculations.

From a physical point of view the total energy of the cell
should include the interaction energy of the electrons with
the electromagnetic field, which is not the case when the
electrons are employed as an external potential, Eq. (2.9).
This interaction energy can be easily calculated for the case
when the (spherical) electron and proton charge distributions
are replaced by step functions:

ρe(r) = ρe0θ (RC − r), ρp(r) = ρp0θ (RA − r), (2.11)

where RC and RA are the cell radius and nuclear radius,
respectively. An elementary calculation yields for the total
electrostatic energy of the cell

ECoul = 3

5

Z2e2

4πRA

c

(
ρe0

ρp0

)
, c(x) = 1 − 3

2
x1/3 + 1

2
x.

(2.12)

This expression has the correct behavior at x → 0, when it
goes to the Coulomb energy of an isolated nucleus, and at
x → 1, when it yields zero (electron and proton charges fully
compensate each other). One can see that the Coulomb energy
of the nucleus is screened by the electrons. This screening
effect is very significant even at moderate electron densities.
For instance, at x = 10−3(kF ≈ 25 MeV) the screening effect
is about 15%. As we shall see below, this change should lead
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FIG. 3. The proton (left) and neutron (right) single-particle
potentials in 208Pb for various electron Fermi momenta. The proton
and neutron Fermi energies are shown as horizontal bars.

to important modifications of the decay channels involving
charged particles, such as α-decay and fission.

The influence of the spherical electron cloud on the
self-consistent proton potential is demonstrated in Fig. 3
for 208Pb. We note that this nucleus, in the presence of
electrons, is not stable anymore and would undergo electron
capture. It is displayed here to demonstrate the effect of
the attractive interaction between electrons and protons.
The electron background leads to a downward shift of the
potential but its structure remains basically unchanged within
the nuclear volume. However, the principle difference from
the pure Coulombic potential is evident at larger distances
where the electric potential reaches zero (and zero derivative)
at the boundary of the Wigner-Seiz cell. This is clearly seen
in Fig. 3 for kF = 0.5 fm−1 and the cell radius RC = 16.7 fm.
This behavior is a result of the charge-neutrality condition due
to which the electric field vanishes outside the cell. We can
conclude that at fixed Z and N the structure of the nucleus, in
particular the single-particle level spacings, remains to good
approximation unaltered by the presence of the electrons. As
an example, we note that the proton rms radius in the heavy
nucleus 240Pu decreases by approximately 0.5% when adding
electrons with kF = 0.5 fm−1.

The Fermi energy of the protons also experiences a down-
ward shift equal to the amount given by the additional electric
potential. As expected, the neutron single-particle properties
are only minimally altered. The proton single-particle levels
of 208Pb are shown in Fig. 4 for kF = 0.0 fm−1 and kF =
0.5 fm−1. The downward shift of all levels is approximately
10 MeV. We note that while the level density as such remains
unaltered, the positioning of the levels with respect to the
continuum threshold has changed. For kF = 0.5 fm−1, the
number of proton states which correspond to bound orbitals has
increased, and the density of states close to the continuum has
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FIG. 4. (Color online) The proton single particle levels for kF =
0.0 fm−1 (left) and kF = 0.5 fm−1 (right) in 208Pb. The proton Fermi
energies are shown as horizontal dashed lines.

increased. Furthermore, the proton separation energies have
become larger. These changes in the single-particle spectra
could affect, for example, nuclear reactions, in particular
electron and neutron capture rates.

The total charge density for the doubly-magic lead nucleus
embedded in an electron gas is displayed in Fig. 5. The negative
contribution due to the electrons and the downward shift in the
interior of the nucleus are clearly visible.

2. The deformed cell

For spherical nuclei the spherical shape of the WS cell
is the obvious choice. In this case, the electric field and its
derivative vanish on the cell boundary so that different cells
do not experience Coulomb interactions. However, when we
investigate deformed nuclei, there are several possibilities of
dealing with such a situation. One possibility is to employ
again a spherical WS cell, with the deformed nucleus sitting
in its center. This again corresponds to a constant electron
background that is not affected very much by the presence of
the nucleus. However, due to the deformed proton distribution,
the quadrupole moment of the whole cell is nonzero in this
case. This means that the neighboring cells will experience
quadrupole-quadrupole interactions. We think that for the
description of deformed nuclei it is more reasonable to use
deformed cells too. Therefore, we consider axially deformed
spheroidal cells with the eccentricity determined by the
condition of vanishing quadrupole moment.
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FIG. 5. The total charge density in a cell containing 208Pb for
various electron Fermi momenta.

The quadrupole moment of a given charge distribution is
defined as

Q20 = 1

2

√
5

4π

∫
d3xρ(�r)(2z2 − r2). (2.13)

In our case ρ(�r) = ρp(�r) − ρe(�r). Thus, we adjust the shape
of the electron spheroid such that Q20 ≡ 0. For the electron
Fermi momenta considered in this work the electron charge
density is considerably smaller than the proton charge density
at the center of the nucleus, therefore the electron spheroid
has larger axes. At the same eccentricity, this would result in
a larger negative quadrupole moment of the electron cloud
as compared with the positive quadrupole moment of protons.
Thus, to balance these two contributions, the electron spheroid
must have a smaller eccentricity than the proton one.

The realization of the deformed WS cell is illustrated in
Fig. 6 for the ground state and for a largely-deformed state
of 240Pu. The latter shape is chosen arbitrarily to illustrate the
point concerning the shape of the WS cells. At the electron
Fermi momentum kF = 0.5 fm−1 the equivalent spherical
WS cell radius is 17.5 fm. In the ground state of plutonium
with a deformation of β2 = 0.28, the electron cloud is almost
spherical. At the deformation of β2 = 1.9, the electron back-
ground clearly has a spheroidal shape. Still, its eccentricity
is much smaller than the one of the plutonium nucleus
which is much more elongated. This shape corresponds to the
nucleus behind the second barrier (see below). Note that this
nucleus will eventually fission through the asymmetric barrier
which is energetically favorable. However, the spheroidal
shape used in our study can be used for axially-symmetric
and reflection-symmetric nuclei and, accordingly, only for
symmetric fission. Generalizations of this parametrization
would involve more complicated shapes allowing also for
hexadecupole and octupole degrees of freedom.
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FIG. 6. (Color online) Total charge density of 240Pu in the ground
state (top) and at a deformation of β2 = 1.9 (bottom) for electron
Fermi momentum kF = 0.5 fm−1

For the superheavy nucleus 292120, the corresponding
charge densities are shown in Fig 7. Again, the (spherical)
ground state and a state at large deformation are displayed. This
nucleus exhibits a semibubble [30,31] shape corresponding
to a depletion of the baryon in its center that changes with
deformation.

III. NUCLEAR CHART

A. β-stability line

In this section we analyze how the nuclear β-stability valley
and the proton and neutron drip lines change with increasing
electron Fermi momentum. As shown before, the proton
single-particle potential experiences a constant downward
shift. This downward shift of the proton potential and hence
the gap between proton and neutron chemical potentials is
the reason for the new β-stability line. In the following, we
investigate the possibility of certain decay modes of nuclei
in the electron background. In particular, electron capture by
nuclei leads to a shift of the stability line to the neutron-rich
side. In the presence of electrons the equilibrium condition
with respect to weak decays (n → p + e− + νe, p → n +
e+ + ν̄e) reads

µn = µp + µe, (3.1)

FIG. 7. (Color online) Total charge density of the superheavy
nucleus 292120 in the ground state (top) and at a deformation of
β2 = 1.5 (bottom) for electron Fermi momentum kF = 0.5 fm−1

where µn and µp are neutron and proton chemical potentials
calculated within the framework of the RMF model, i.e.,

µN =
√

(mN + gσσ )2 + p2
FN + gωω0 + gρρ

0τ3, N = n, p.

(3.2)

The electron chemical potential is simply given by

µe =
√

k2
F + m2

e, (3.3)

where the contribution of the electrostatic potential has
been neglected since it cancels out with the corresponding
contribution from the proton in Eq. (3.1).

If µn > µp + µe holds, neutrons can decay into available
proton states with the electron going on the top of the Fermi
distribution. On the other hand, if µn < µp + µe, protons
can capture electrons from the Fermi distribution and occupy
neutron states. Only when the condition in Eq. (3.1) is fulfilled,
nuclear systems are stable with respect to these decay modes.
Note that this relation becomes the well-known condition for
β-stability in vacuum, µn ≈ µp, for kF = 0.
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FIG. 8. (Color online) The line of β-stability (line in the middle, black), the proton drip-line (left-most line, blue) and the two-neutron
drip-line (right-most line, red) for various electron fermi momenta.

For zero temperature, the proton and neutron chemical
potentials coincide with their Fermi energies. We note that this
correspondence is not uniquely defined anymore for systems
with pairing, where the effective Fermi energy is determined
to yield 〈N̂〉 = A, but can lie somewhere between the last level
contributing with nonzero occupancy and the next one. Thus,
in order to obtain the (N,Z) dependence of the stability line,
instead of Eq. (3.1) we employ the criterion

|µe − (µn − µp)| < , (3.4)

where  = 1 MeV.
In Fig. 8, the β-stability lines are plotted for various values

of kF . In the same plot we show also the proton and neutron
drip lines (see below). As kF increases, the line of β-stability
is shifted more and more to the neutron-rich side, i.e., the
presence of electrons stabilizes neutron-rich nuclei. This shift
is so strong already for kF = 0.1 fm−1 that β-stability is
reached only in the region of the two-neutron drip line.
This means that the β-equilibrium is reached only when free
neutrons appear in the system.

B. Proton and neutron drip lines

The neutron and proton drip lines are defined by the
conditions µp = mp and µn = mn, respectively. It is clear
that these nuclei are unstable with respect to weak decays
so that the condition of β-equilibrium, Eq. (3.1), does not
hold. In finite systems the drip lines can be defined in
terms of separation energies Sp = B(N,Z) − B(N,Z − 1)
and Sn = B(N,Z) − B(N − 1, Z). Since in this work we are
only calculating even-even system, we will consider instead
two-proton and two-neutron drip lines. The two-proton drip
line is defined as the position where the two-proton separation
energy, defined as

S2p(N,Z) = B(N,Z) − B(N,Z − 2), (3.5)

goes from positive to negative values. As an approximate
relation, the single-proton separation energies Sp(N,Z) are
related to the two-proton separation energies by S2p(N,Z) ≈
2Sp(N,Z). The neutron drip line is the same for all cases
shown in Fig. 8 since its position is almost not affected by the
presence of the electrons. This follows from the fact that the
neutron single-particle potential is not affected by the changes
in the proton potential. Thus the neutron single-particle states
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BÜRVENICH, MISHUSTIN, AND GREINER PHYSICAL REVIEW C 76, 034310 (2007)

40 80 120 160 200 240 280
N

20

40

60

80

100

120

140

160

180

Z

kf = 0.5 fm
-1

kf = 0.25 fm
-1

kf = 0.1 fm
-1

kf = 0.0 fm
-1

FIG. 9. (Color online) The proton drip-line for various electron
Fermi momenta.

are (almost completely) identical in all cases and the neutron
drip line does not change. However, the results on the neutron
drip line need to be taken with a grain of salt. Firstly, the
calculations here are performed in spherical symmetry and
deformation effects will wash out some of the strong shell
effects appearing in these calculations. Secondly, we employ
BCS pairing which overestimates the coupling to continuum
states and the pairing contribution of the loosely bound
orbitals. For nuclei close to or at the neutron drip line, full
Hartree-Fock-Bogoliubov calculations should be performed.
However, since here we are not interested in the precise details
of the position of the neutron drip line, the BCS calculations
can give us useful information on the relation between the line
of β stability and the neutron drip region.

The evolution of the proton drip line as a function of
the Fermi momentum is—in addition to Fig. 8—displayed
separately in Fig. 9. As expected, this drip line shifts to more
proton-rich nuclei as the electron Fermi momentum increases
due to the additional binding of protons produced by the
electron background. It is interesting that for kF = 0.5 fm−1,
the proton drip line is very close to the N = Z condition.
We can summarize our findings by stating that the region of
nuclei between the conditions of proton drip and β stability
has increased.

IV. DECAY MODES

A. α-decay

In this section we investigate the influence of the electron
background on α-decay of nuclei. The Qα value of the reaction
is defined as

Qα(N,Z) = B(N,Z) − B(N − 2, Z − 2) − B(2, 2) (4.1)

and corresponds approximately, neglecting nuclear recoil, to
the kinetic energy of the α particle leaving the nucleus. In the
considered environment, the binding energies of mother and
daughter nuclei as well as the binding energy of the α-particle
increase due to the attractive electromagnetic interaction of
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FIG. 10. (Color online) Qα-values for kF = 0 fm−1 (top) and
kF = 0.25 fm−1 (bottom). The lower boundary corresponds to Qα =
0. Nuclei for which no convergent solution has been achieved have
been left out.

protons with the electron background. Figure 10 demonstrates
this effect. One can see that the overall trend is that the Qα

values decrease. Also, the boundary for which Qα = 0 shifts to
more proton-rich nuclei. For Qα < 0, α-decay is not possible
anymore and these systems are completely stabilized with
respect to this decay mode.

The calculation of the α-decay lifetimes in the presence of
electrons is not completely trivial. There are two competing
effects. As seen above, the Qα value is lowered due to the
increased nuclear binding caused by electrons, which alone
(for the same barrier) could increase the lifetime. We have
also seen that the presence of the electrons leads to screening
and modification of the Coulomb potential, see Eq. (2.12).
Therefore, we need also to take into account the change of
the barrier through which the α particle has to penetrate. To
quantify this effect we use a simple one-parameter model of
Ref. [32] which expresses the α-particle potential Vα as

Vα = 2Vp + 2Vn, (4.2)

where Vp and Vn are, respectively, proton and neutron single-
particle potentials. The α particle is treated as a boson. The
half-life is written as τ1/2 = ln 2/λ, where the decay constant
λ is parametrized as λ = cP . Here the preformation factor and
the knocking frequency in the Gamow picture are absorbed
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FIG. 11. α-potential for α-decay of the nucleus 218U.

into one parameter c, which is adjusted to known data.1 The
probability for transmission through the barrier, P = eS , is
calculated within the WKB approximation

S = −2
∫ R2

R1

dr

√
2µ[Vα(r) − Qα]

h̄2 , (4.3)

where R1 and R2 are the turning points of the barrier.
As demonstrated in Ref. [32], this model performs better

than the four-parameter Viola-Seaborg systematics and addi-
tionally incorporates isovector trends, i.e., the α lifetime for
a nucleus with given charge number possesses a dependence
on the neutron number due to the self-consistent interrelation
between proton and neutron single-particle potentials.

We employ this model here also for finite electron density
where the potentials and the Qα values are taken from the
RMF calculations in the electron background. As an example
we present results for the nucleus 218U with the magic neutron
number N = 126. We have checked in axially-symmetric
calculations that both this nucleus as well as its daughter
are spherical, thus no deformation effects enter the results
on α-decay.

As seen in Fig. 11, the α-particle potential is lowered as a
function of increasing electron Fermi momentum, making it
easier for the α particle to escape the nucleus. Together with
the Qα value this leads to an overall decreasing of α half lives,
see Fig. 12. This holds true at low electron densities. However,
this trend changes in the vicinity of the point where the Qα

value turns negative at a certain electron Fermi momentum
kcrit
F . At kF > kcrit

F , α-decay becomes forbidden and the nucleus
becomes stable with respect to this decay mode. In the uranium
isotope discussed here, kcrit

F = 0.24 fm−1. However, the poten-
tial barrier experienced by the α particle at kcrit

F = 0.24 fm−1

is still ≈13 MeV high. If the barrier would result from a pure
nuclear charge, the lifetime for Qα ≈ 0 would increase by a
huge amount compared to situations with a finite Qα value.
The reason is that in vacuum the Coulomb barrier goes to

1A model variant that computes the knocking frequency numerically
[32] yields quite similar results.

zero asymptotically as 1/r , thus at Qα ≈ 0 the integration
distance for the WKB formula is very large. By using a
Taylor expansion of the Gamow factor for a 1/r potential
one can find the approximate relation ln τ1/2 ≈ Q

−1/2
α , which

leads to an infinite lifetime at Qα → 0. In the case of
electron background, however, the Coulomb potential is fully
screened for distances larger than the Wigner-Seitz radius,
which decreases with increasing electron Fermi momentum.
Thus, this approximate relation is not applicable anymore.
We expect that the WKB-based calculation underestimates
the upward trend shown in Fig. 12 (right), since close to the
threshold this method is not accurate [33].

This situation can be illustrated by a text-book one-
dimensional tunneling problem. A particle coming from the
negative x direction encounters a rectangular barrier of height
V between x = 0 and x = d. It can be shown [34] that the
transmission coefficient T is given by

T =
[

1 + V 2

V 2 − (2E − V )2
sinh2

(√
2m(V − E)d

h̄

)]−1

,

(4.4)

where E and m are the energy and the mass of
the tunneling particle, respectively. For typical cases of
E ≈ V/2 and

√
2m(V − E)d/h̄ 
 1 (corresponding to a

broad barrier compared to the de Broglie wavelength of
the tunneling particle), we have sinh(

√
2m(V − E)d/h̄) ≈

(1/4) exp(2
√

2m(V − E)d/h̄) 
 1. Since the preexponential
is of order 1, we can neglect the first term in brackets of
Eq. (4.4) and obtain

T ≈ exp[−2/h̄
√

2m(V − E)d]. (4.5)

This is exactly what follows from the WKB approximation of
Eq. (4.3). For electron Fermi momenta close to kcrit

F , however,
we have E → 0, and hence the prefactor diverges, i.e.,

V 2

V 2 − (2E − V )2
≈ V

4E
→ ∞, E → 0. (4.6)

This gives additional suppression of the tunneling probability
as compared to the one obtained in the WKB approximation.
Thus, the trend to longer lifetimes can be expected to set in for
even smaller values of kF compared to our calculations using
the WKB approximation (Fig. 12, full squares). This means
that there is a kmin

F for which the lifetime reaches its minimum,
and for kF > kmin

F the lifetimes increases until the nucleus
becomes stable with respect to this decay mode for kF � kcrit

F .
To illustrate the trend we have made estimates of the lifetimes
obtained by multiplying Eq. (4.5) with the prefactor of Eq. (4.6)
for E = Qα . Results are shown in the right part of Fig. 12 with
open squares. In this case the reversal of the downward trend
in half-lives occurs earlier and more dramatically compared to
the previous calculations. For the electron Fermi momentum
kF = 0.1 fm−1 the prefactor has the value 1.53, while for kF =
0.2405 fm−1 it reaches the value 1255. A further modification
would arise from the fact that the exponential function in
Eq. (4.4) would have to be replaced by the sinh function of
Eq. (4.5) which could yield even more stabilization with
respect to α decay.

034310-9
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FIG. 12. The evolution of Qα values (left)
and α decay half lives (right) for the nucleus 218U
as a function of the electron Fermi momentum.
In the right panel, the full squares correspond to
calculations within the model of Ref. [32], and
open squares give results for life times multiplied
with the prefactor of Eq. (4.6). The lines are
drawn to guide the eye.

The linear decrease of the Qα values shown in Fig. 12
as a function of kF can be understood if we consider the
electric potential caused by a spherical electron cloud given in
Eq. (2.10). The potential energy Vpot of a point charge located
in the middle of the cloud is inversely proportional to the
WS cell radius RC . Taking into account that RC ∝ 1/kF ,
Eq. (2.6), we obtain Vpot ∝ kF , i.e., a point-like nucleus gains
potential energy proportional to kF . If Z denotes the charge
number of the mother nucleus and Z1 and Z2 denote the charge
numbers of the daughter products (Z1 = 2 and Z2 = Z − 2
for α decay), the change in the Q value stemming from the
additional binding due to the electron cloud is given by

δQ = −3

8π

(
4

9π

)1/3

e2kF

[
Z5/3 − Z

5/3
1 − Z

5/3
2

]
. (4.7)

Thus the Qα value, which depends on the energies of the
mother and daughter nuclei, decreases linearly with kF . We
also see that since Q ∝ Z5/3 the largest contribution to δQ is
coming from the mother nucleus.

B. Spontaneous fission

1. Deformed calculations

In order to investigate the influence of the electron back-
ground on the fission barrier of heavy and superheavy nuclei,
we compute the energy of the system as a function of deforma-
tion. The cuts through the potential energy surface (PES) are
calculated in axial symmetry for reflection-symmetric shapes
using a constraint on the total quadrupole moment Q20 of the
nucleus. This is achieved by adding −λQ̂20 to the Hamilton
operator and minimizing 〈Ĥ − λQ̂20〉. All other multipole
moments that are allowed by the symmetry of the calculation
are not constrained and adjust themselves to the solution
of minimal energy. Thus, in contrast to the macroscopic-
microscopic approach [35], we are not operating in a limited
deformation space. On the other hand, we are not necessarily
exactly following the gradient in the multidimensional PES
which would only be the case if the fission valley would be
parallel to the Q20 direction [36].

At each quadrupole deformation along the fission barrier,
the eccentricity and spatial extension of the electron cloud

are iteratively adjusted to match two constraints: (1) the total
charge of the deformed WS cell has to be zero, and (2)
the quadrupole moment of its charge distribution (including
contributions from both protons and electrons) should van-
ish. These two constraints can be realized by varying two
parameters characterizing the electron cloud, for example the
lengths of long half-axis and the excentricity. As discussed
above, these conditions minimize the mutual interactions of
WS cells.

2. Fission barriers

In fission studies an important role is played by the energy
of the system as a function of the deformation parameter β2.
Our analysis shows that the shape of the electron cloud has
some effect on the energy. While the spherical cloud does
not produce any changes, the deformed cloud leads to visible
effects.

Important key quantities related to fission are the width
and the height of the fission barrier. The influence of the
electrons on the fission barrier is a macroscopic effect resulting
from interaction of the protons with the Coulomb potential
produced by the electrons. The electrostatic repulsion between
the protons is weakened by the presence of the negative charge
background. This change leads to the increase of barrier
height and isomer energy. Physically speaking, the electron
background tends to slightly stabilize the system with respect
to symmetric spontaneous fission and to increase the excitation
energy of the isomeric state. We expect that asymmetric fission
will be altered in a similar way, although our consideration
does not allow octupole shapes. We note that the potential
energy surface is determined by the dependence of the energy
on the deformation. Especially for superheavy systems, the
liquid drop barrier vanishes, and their stabilization results from
shell effects.

The trends discussed above are clearly seen in Fig. 13
which displays the fission barrier of plutonium for different
choices of the electron density in the spheroidal configuration.
The inner barrier increases with increasing kF leading to a
stabilization effect toward spontaneous fission. Further on, the
properties of the shape isomer (second minimum) are altered
due to the electron background too. For kF = 0.5 fm the inner
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FIG. 13. Fission barrier of 240Pu for various electron densities in
spheroidal configurations.

fission barrier increases by approx. 0.3 MeV and the energy
of the isomeric state increases by approximately 1 MeV. Note
that the ground-state binding energy of 240Pu with NL3 is
1814 MeV, the presence of the electrons increases it to the
value of 2248 MeV (the latter does not include the kinetic
energy of the electrons). As another example, we show the
influence of the electron background on the fission barrier of
256Fm in Fig. 14. The presence of the electrons leads to a slight
increase of the first barrier. The effect is more dramatic for the
isomeric state, where an increase in energy of 2 MeV is found
at kF = 0.5 fm−1. Note that the low energy of the second
minimum, which is below the ground state, is a (unrealistic)
prediction which has also been found in a systematic study for
heavy and superheavy nuclei [37].

Figure 15 demonstrates the influence of the electron
background on the superheavy nucleus 292120. In this case,
the electron background leads to a slight decrease of the
width and height of the inner barrier calculated with the
spheroidal electron cloud. But the height of the second
minimum has increased by about 0.7 MeV. Note, however, that
the inclusion of reflection-asymmetric degrees of freedom in
these superheavy systems results in the vanishing of the second
barrier [37]. It is interesting that the potential energy surface is
affected in a different way compared to the case of plutonium.
The reasons are related to the fact that the barrier starts out
from a spherical minimum, and that the charge number in
this nucleus is much larger so that the total contribution of
the Coulomb energy to the total energy is larger compared to
plutonium.

We can speculate about even heavier systems. In Ref. [38],
the shell corrections for super- and hyperheavy nuclei were
calculated within the framework of self-consistent mean-field
models. It was found that the familiar concept of strongly-
pronounced magic numbers dissolves due to the high level-
density, and rather a broad region of shell-stabilization can be
found. We choose the hyperheavy nucleus 462154, which is
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FIG. 14. Fission barrier of 256Fm in for various electron densities
in spheroidal configurations.

located in such a region of shell-stabilization (for the RMF
force NL3), as an example. Its fission barrier can be seen in
Fig. 16. The strong shell corrections lead to a spherical
minimum and to a barrier which is which is about 6.5 MeV
high, and almost 1 MeV larger in the presence of electrons.

A word of caution is in order. For both this hyperheavy
nucleus and the superheavy system 292120 discussed before,
the calculation of the axial barrier gives us only partial
information on the principal impact of the electron background
on the fission barrier. The actual fission path, however, might
deviate quite strongly from this path, and for these heavy
systems fission through the triaxial plane is rather probable.
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FIG. 15. Fission barrier of the superheavy nucleus 292120 for
various electron densities in spheroidal configurations.
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3. Fission Q values

As discussed in Sec. II B1, due to the screening of the
electrons the Coulomb energy of nuclei is lowered as compared
to the vacuum case which leads to the reduction of the Q value
for spontaneous fission, in full analogy to the case of α decay.
Figure 17 shows the Q value for symmetric fission of 256Fm as a
function of the electron Fermi momentum. One can clearly see
this trend and we think it will be present for asymmetric fission
too. To evaluate the fission probability one should perform
detailed calculations of the fission barrier for the case of a
two-center nuclear shape. This work is in progress now. At
this stage we can only point out that due to the screening of the
Coulomb potential the fission barrier is altered and the Q value
will decrease. We expect that the latter trend is more important
so that the net effect is suppression of spontaneous fission. This
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FIG. 17. Q value for symmetric fission of 256Fm as a function of
the electron Fermi momentum kF .

follows also from simple estimates based on the liquid-drop
model. Indeed, let us consider the fissility parameter

Z2

A
= 2aS

aC

, (4.8)

where aS ≈ 18 MeV and aC ≈ 0.72 MeV are, respectively the
surface and Coulomb coefficients in the Weizsäcker formula.
If we take into account the electron screening, the Coulomb
energy is reduced by the factor c, Eq. (2.12). Therefore
the modified fissility parameter is Z2

A
= 50

c
. Since c(x) < 1,

this means that in the presence of electrons the region of
spontaneous fission moves to heavier nuclei. For instance, for
kF = 0.25 fm−1, the fissility parameter is 80 instead of 50 in
vacuum.

V. CONCLUSIONS AND OUTLOOK

We have studied the properties of atomic nuclei embedded
in an electron gas as occurring in, e.g., neutron star crusts
and supernova explosions. Nuclear structure calculations have
been performed within the relativistic mean-field approach em-
ploying the force NL3. The calculations have been performed
within the Wigner-Seitz cell approximation in coordinate
space. A fermi-type distribution with a smooth surface has
been employed in order to get rid of artifacts stemming from
the discrete grid spacing. For spherical systems, a spherical
Wigner-Seitz cell has been used. We have discussed an
implementation of spheroidal Wigner-Seitz cells for axially-
deformed nuclei. We employ the criterion that in addition to
the total charge also the total electric quadrupole moment of
a cell should vanish. This leads to an iteratively self-adjusting
Wigner-Seitz cell for each given deformation of the nucleus.

The presence of electrons leads to effects of rather macro-
scopic character. We did not find any significant changes in
the single-particle levels regarding their relative positions.
Since the electron background is constant over the nuclear
volume—by construction—it leads predominantly to a con-
stant downward shift of the proton potential.

The electron gas alters the stability condition for β decay
and shifts the stability line to more neutron-rich nuclei.
Electron capture becomes a relevant process, the transforma-
tion of protons into neutrons favors large isospin in nuclei.
Furthermore, the two-proton drip line is shifted to more
proton-rich nuclei since the protons gain additional binding
due to the attractive interaction with the electrons. The neutron
drip line is not altered by the presence of the electrons since
the neutron single-particle potential remains (to a very good
approximation) unaffected.

We have found that in a dense electron background
decay modes such as α-decay and spontaneous fission are
suppressed. Our calculations show that the α decay half-lives
decrease as a function of the electron Fermi momentum kF

until they increase again for larger kF . A general trend is that
the Q values of those decay modes decrease with increasing
electron density.

We have also calculated the potential energy surface as
a function of the electron Fermi momentum within the
framework of the self-adjusting axial Wigner-Seitz cell. We
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FIG. 18. The proton single-particle potential for 218U in the absence of electrons (left) and for kF = 0.5 fm−1 (right) involving only the
direct Coulomb term (H) and involving both direct term and exchange term in Slater approximation (HF). Also shown are the proton fermi
energies for both cases.

have found that only for very large electron Fermi momenta
a change is occurring for the inner axial barrier and the
energetic position of the isomeric state. This could hint
again at stabilization of the fission mode for high electron
densities.

Overall, the electron gas broadens the part of the nuclear
chart lying between the proton drip line and the valley of
β-stability. Stabilizing effects with respect to α decay and
spontaneous fission occur for large electron Fermi momenta.
Hence, in extreme astrophysical environments, the production
of very exotic and superheavy nuclei could become possible.
This might happen during the r-process (rapid neutron capture)
and the rp-process (rapid proton capture) when the electron
background prevents the heavy (and superheavy) nuclei from
fast decay by spontaneous fission or alpha decay. As a
consequence, the nuclei, which otherwise would be unstable,
can provide a bridge to the island of superheavy elements. We
are planning to study this possibility in the future. If long-lived
or even stable superheavy nuclei exist, they could be created
in such an environment and later ejected into space. Then
one can try to search for such superheavy nuclei in cosmic
rays. Another natural step in our investigations is to add
free neutrons and study nuclei in the combined environment
of free electrons and neutrons. Work in this direction is in
progress.
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APPENDIX

A. Role of Coulomb exchange

In relativistic models such as used in this study, the
Coulomb interaction is usually calculated within the Hartree
approximation, i.e.,

Edir
Coulomb = e2 1

2

∫ ∫
d3rd3r ′ ρp(�r)ρp(�r ′)

|�r − �r ′| , (A1)

where ρp(�r) is the proton density. This relates to the fact that the
RMF model traditionally is formulated as a Hartree theory, and
no explicit exchange terms in the effective nucleon-nucleon
interaction are taken into account. In contrast to effective field
theories with contact interactions, exchange terms involving
finite-range meson fields are computationally expensive, and
so far no significant improvement over Hartree-like formula-
tions has been achieved. The role of four-fermion interactions
has been studied in Ref. [39] for the point-coupling variant of
the RMF model, the RMF-PC model. It has been found that,
while the formal structure of the model remains the same and
only a redefinition of four-fermion coupling constants occurs,
the interpretation of the various terms becomes quite different.
For higher-order point-coupling terms and derivative terms,
however, the Fierz transformations [40] yield a large number
of terms which do not improve the model [41].

In the Skyrme-Hartree-Fock approach, the Coulomb ex-
change term is usually included in the Slater approximation
[42]:

Eex
Coulomb = 3

4
e2

(
3

4

)1/3 ∫
d3r[ρp(�r)]4/3. (A2)

In our calculations, we replace the proton density by the
absolute value of the charge density, i.e., ρp(�r) by |ρch(�r)| =
|ρp(�r) + ρe(�r)|.

For nuclei close to stability, it can be shown that the
Coulomb exchange effect can be absorbed by a refit of the
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mean-field parameters [43]. It remains to be seen, however, if
this still holds true for exotic nuclei and nuclei close to the
proton drip line, as well as nuclear systems studied here. As
demonstrated in Fig. 18, the Coulomb exchange interaction
both in vacuum and at high electron chemical potential

yields a rather small contribution to the potential, and Fermi
energies for the two cases differ by 0.4 MeV only. Thus the
properties of nuclei in an electron gas are not sensitive to
the exclusion or inclusion of (Slater) Coulomb exchange in
the calculation.
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