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Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex, France

Eric van Dalen
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Asymmetric nuclear matter is investigated in the low-density region below the nuclear saturation density.
Microscopic calculations based on the Dirac-Brueckner-Hartree-Fock (DBHF) approach with realistic nucleon-
nucleon potentials are used to adjust a low-density functional. This functional is constructed on a density expansion
of the relativistic mean-field theory that allows a clear interpretation of the role of the mesons in the equation of
state. It is shown that a correction term should be added to the functional to take into account the effects beyond
the mean field. Two functionals with different corrections are obtained and their topological properties have been
studied. Those functionals converge to predict a reduction of the spinodal zone in asymmetric nuclear matter by
about 15–20% and an isoscalar unstable mode closer to the constant Z/A direction than the functional without
correction.
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I. INTRODUCTION

How do nuclear matter properties change when the den-
sity decreases from saturation densities? In this low-density
regime, what is the role of isospin asymmetry? Indeed,
although the nuclear density functional below saturation
density has not been studied much it has importance for
several topics concerning atomic nuclei surface properties, the
equation of state of the core of neutron stars, and the dynamical
description of heavy-ion collisions, both at intermediate and
relativistic energies. Recently, several attempts have been
made to establish a relation between the low-density equation
of state and nuclear properties such as surface behavior and
pairing properties [1–4], neutron radii [5], or the spinodal
instability [6]. Those works are based on phenomenological
density functionals or fits of ab initio calculations but without
considering the very low properties of the equation of state.
Below saturation density, the effects of two-body correlations
are important and induce anomalies in the density dependence
of the equation of state [7].

Models that make predictions for the nuclear equation
of state (EOS) can roughly be divided into three classes:
phenomenological density functionals, effective field theory
approaches, and ab initio approaches. The phenomenological
density functionals are based on effective density-dependent
interactions such as Gogny or Skyrme forces [8,9] or
relativistic mean-field (RMF) models [10]. Parameters are
adjusted to nuclear bulk properties and finite nuclei. Effective
field theory (EFT) approaches are based on a perturbative
expansion of the nucleon-nucleon interaction or the nuclear
mean field within power-counting schemes. These approaches
lead to a more systematic expansion of the EOS in powers
of density, respectively, the Fermi momentum kF . The EFT
approaches can be based on density functional theory [11,12]

or, for example, on chiral perturbation theory [13,14]. The
advantage of EFT is the small number of free parameters and
a correspondingly higher predictive power. However, when
high-precision fits are intended, the EFT functionals are based
on approximately the same number of model parameters as
phenomenological density functionals because of fine-tuning
through additional parameters.

Ab initio approaches are based on high-precision free-space
nucleon-nucleon interactions. In addition, predictions for the
nuclear EOS are parameter free. Examples of such approaches
are variational calculations [15,16], Brueckner-Hartree-Fock
(BHF) [17–20] or relativistic Dirac-Brueckner-Hartree-Fock
(DBHF) [21–26] calculations, and Green’s function Monte
Carlo approaches (GFMC) [27–29]. Nonrelativistic ab initio
calculations do not meet the empirical region of saturation,
whereas relativistic calculations do a better job. This deficiency
can be solved by the explicit inclusion of three-body forces
where the relativistic approach accounts already effectively
for part of these contributions. For a more detailed discussion
see, for example, Ref. [20].

In the present work microscopic calculations based on
the DBHF approach [26] using a realistic nucleon-nucleon
potential (i.e., the Bonn A interaction [30]) are used to obtain
a functional that describes the EOS from low densities up
to saturation density. The construction of this functional is
motivated by RMF theory [31,32]. Since both DBHF and RMF
are relativistic approaches based on Dirac phenomenology
they have similar features, in particular the occurrence of
large and canceling scalar and vector fields in the isoscalar
sector. That the occurrence of such fields is a fundamental
consequence of the elementary nuclear force has recently been
shown in Ref. [33]. Similar fields, which are, however, smaller,
also occur in the isovector sector. Thus, RMF theory is well
suited for the present investigations. However, RMF theory is
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insufficient to reproduce the more complex nonlinear behavior
of the DBHF energy density near ρB = 0.1 fm−3, where for
instance effects of the deuteron pole show up. Corrections
beyond the mean field are necessary and the nonlinear behavior
is then corrected by adding new terms to the functional.

The paper is organized as follows: The relativistic DBHF
is shortly sketched in Sec. II. Section III is devoted to
the relativistic mean-field approach and the series expan-
sion in the baryonic density. This expansion allows a clear
interpretation of the meson contributions to the equation
of state. The parameters of the functionals are obtained in
Sec. IV. With these density functionals the dynamics of the
liquid-gas transition induced by heavy-ion collisions at Fermi
energies (i.e., the spinodal instabilities) are investigated and
analyzed in Sec. V. Finally, we end with a conclusion in
Sec. VI.

II. DBHF APPROACH

We consider homogeneous nuclear matter at low density
so that two-body correlations dominate. Of course, at very
low density, clustering phenomena can occur (e.g., deuteron,
tritium, helium, and α-particle formation) [7,34,35]. There-
fore, we are going to consider densities that are low with
respect to saturation density but still large compared to
typical values where the onset of clustering occurs. Typically,
we are considering densities between about one-tenth to
one-half of the saturation density. In this density region,
microscopic calculations based on the relativistic DBHF
approach [21,24–26,36] are expected to be quite accurate, and
they will be, therefore, the starting point of our analysis.

In the relativistic Brueckner approach the nucleon inside the
medium is dressed by the self-energy �. The in-medium T ma-
trix, which is obtained from the relativistic Bethe-Salpeter (BS)
equation, plays the role of an effective two-body interaction
that contains all short-range and many-body correlations of
the ladder approximation. In solving the BS equation the Pauli
principle is respected and intermediate scattering states are
projected out of the Fermi sea. The summation of the T matrix
over the occupied states inside the Fermi sea yields finally the
self-energy in the Hartree-Fock approximation. This coupled
set of equations states a self-consistency problem that has to
be solved by iteration. Technical details of the present DBHF
calculations, in particular the treatment of isospin asymmetry,
can be found in Ref. [26]. The results are based on the Bonn
A one-boson-exchange potential for the bare nucleon-nucleon
interaction [30].

Figure 1 compares the prediction for the low-density
regime of symmetric nuclear matter (below zero) and pure
neutron matter (above zero) from microscopic many-body
approaches. It shows in addition the equations of state obtained
by two typical phenomenological RMF models. From the
microscopic side these are the DBHF results [26], which
will be further analyzed, nonrelativistic Brueckner (BHF)
calculations from Ref. [1], and variational calculations from
Ref. [16]. The variational and BHF calculations are based
on the AV18 Argonne potential. The variational calcula-
tions include in addition phenomenological three-body forces
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FIG. 1. (Color online) Comparison of several equations of state
with the DBHF results. The DBHF calculations are represented
by the stars, the variational calculations by the empty squares,
the nonrelativistic Brueckner results by the dashed line, and two
different relativistic mean-field parametrizations NL3 and DD-TW
by dashed-dotted and dotted lines, respectively.

(Urbana IX) and relativistic boost corrections, neither
of which, however, play an important role in the low-
density regime. The phenomenological models are the well-
established NL3 [37] RMF parametrization and the RMF
model of Ref. [38] (DD-TW). The latter is a phenomenological
version of density-dependent RMF theory using density-
dependent meson-nucleon couplings [39], which allows for a
larger freedom in the adjustment of the EOS. Both approaches
fit finite-nuclei properties with high accuracy.

The first thing that becomes evident from Fig. 1 is the
remarkable agreement of the microscopic approaches (DBHF,
BHF, and variational) for the pure neutron matter EOS.
This agreement indicates that both the interaction and the
many-body schemes are well controlled in the nn sector
at low densities. This is because of the large nn scattering
length and the lack of clustering phenomena (d, α, etc.),
which make the treatment of neutron matter at subnuclear
densities less model dependent. In this context it is worth
noticing that the microscopic calculations (BHF, DBHF, and
variational) are consistent with the low-density limit of “exact”
quantum–Monte Carlo calculations for neutron matter [27] and
with the result of the renormalization group Vlowk approach
[40].

The situation seems to be different for symmetric nuclear
matter. The Brueckner calculations show significantly more
binding than the variational calculations of Ref. [16]. However,
the DBHF and BHF results are very close and exhibit the same
low-density behavior: In contrast to RMF theory and also to the
results of Ref. [16] one can observe a nonlinear convergence
to zero when the density decreases. This fact is associated
with the deuteron channel and can possibly be interpreted
as a manifestation of the onset of the superfluid phase. In
this context it is interesting to note that a recent study of
low-density nuclear matter [7], based on a virial expansion
that includes protons, neutrons and α-particle degrees of
freedom, revealed a low-density EOS taht is in qualitative
agreement with the DBHF predictions. In the virial approach
the binding energy goes smoothly to zero for neutron matter
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while the energy per particle E/A minus the (free) kinetic
energy in symmetric matter remains practically constant at a
value of around −8 MeV down to extremely low densities
(ρB � 0.0002 fm−3) before it rapidly drops to zero (Fig. 15 in
Ref. [7]). Subtracting the kinetic energy of a nonrelativistic
Fermi gas, 3k2

F /10M, from the DBHF result yields at
kF = 0.5 fm−1 (ρB = 0.0084 fm−3) a value of −8.4 MeV,
which coincides remarkably well with the virial low-density
limit.

III. SERIES EXPANSION OF THE RMF LAGRANGIAN IN
THE BARYONIC DENSITY

A Lagrangian density of an interacting many-particle
system consisting of nucleons, isoscalar (scalar σ , vector ω),
and isovector (scalar δ, vector ρ) mesons is the starting point
of the RMF theory:

L = ψ̄[iγµ∂µ − (M − gσσ − gδ �τ · �δ)

− gωγµωµ − gργ
µ�τ · �ρµ]ψ + 1

2

(
∂µσ∂µσ − m2

σ σ 2
)

−U (σ ) + 1
2m2

ωωµωµ + 1
2m2

ρ �ρµ · �ρµ

+ 1
2

(
∂µ

�δ · ∂µ�δ − m2
δ
�δ2
) − 1

4FµνF
µν − 1

4
�Gµν

�Gµν, (1)

where σ is the σ -meson field, ωµ is the ω-meson field, �ρµ

is ρ-meson field, and �δ is the isovector scalar field of the
δ meson, and where Fµν ≡ ∂µων − ∂νωµ, �Gµν ≡ ∂µ �ρν −
∂ν �ρµ, and the U (σ ) is a nonlinear potential of σ meson:
U (σ ) = 1

3aσ 3 + 1
4bσ 4. Dynamical equations deduced at the

mean-field approximation are presented in Appendix A. We
refer to the appendix for all the standard definitions. Hereafter,
we introduce the coupling constants fi = gρ/mi for i =
σ, δ, ω, and ρ, and the nonlinear constant f nl

σ = a(fσ /mσ )3.
In the following the energy density ε is expanded up to a
power of 4 in proton and neutron densities. The expression
for the density of energy is given in Appendix A. For the
linear version of the RMF model, that is, without a nonlinear
σ -meson potential U (σ ), such an expansion can be found in
Ref. [41]. Here we extend this expansion to the nonlinear
case and to the isospin sector, that is, to ρp �= ρn (i.e., the
isovector mesons ρ and δ are included). Notice, however, that
in the present form only the nonlinear term with the coupling
constant a is included because the one with the coupling
constant b contributes to higher terms in the density expansion.

The scalar field is the solution of the following self-
consistent equation:

gσσ = f 2
σ ρs − a

gσm2
σ

(gσσ )2 − b

(mσgσ )2
(gσσ )3. (2)

A low-density approximate solution is presented in
Appendix B. The solution is expressed as a function of the
scalar density ρs ,

gσσ = f 2
σ ρs − f nl

σ ρ2
s + o

(
ρ3

si

)
. (3)

The low-density expansion of the scalar density ρsi is then
required. It yields

ρsi = ρi − 3

10M∗2
i

(
6π2

γ

)2/3

ρ
5/3
i

+ 9

56M∗4
i

(
6π2

γ

)4/3

ρ
7/3
i

15

144M∗6
i

(
6π2

γ

)2

ρ3
i

+ 105

1408M∗8
i

(
6π2

γ

)8/3

ρ
11/3
i + o

(
ρ4

i

)
, (4)

where γ is the degeneracy of the system. Note that this
expansion is also a relativistic expansion in the parameter
kFi/M

∗
i .

Neutron and proton Dirac masses, also called the scalar
masses, are expressed in terms of the scalar and isoscalar
fields. By using Eq. (3) and Eq. (5), the low-density expansion
of the Dirac masses is given by (− proton, + neutron)

M∗
i = M − f 2

σ

[
ρB − 3

10M2
(3π2)2/3

(
ρ5/3

p + ρ5/3
n

)

+ 9

56M4
(3π2)4/3

(
ρ7/3

p + ρ7/3
n

) − 3

5M3
f 2

σ (3π2)2/3

× (
ρ8/3

p + ρ8/3
n

)] ± f 2
δ

[
ρ3 − 3

10M2
(3π2)2/3

× (
ρ5/3

p − ρ5/3
n

) + 9

56M4
(3π2)4/3

(
ρ7/3

p − ρ7/3
n

)

− 3

5M3
f 2

δ (3π2)2/3
(
ρ8/3

p − ρ8/3
n

)]

+ f nl
σ

[
ρ2

B − 3

5M2
(3π2)2/3ρB

(
ρ5/3

p + ρ5/3
n

)] + o
(
ρ3

i

)
.

(5)

Now, we evaluate the full density functional,

ε = εkin + 1
2f 2

σ ρ2
s − 2

3f nl
σ ρ2

s + 1
2f 2

ωρ2
B

+ 1
2f 2

ρ ρ2
3 + 1

2f 2
δ ρ2

s3 + o(ρ4), (6)

where εkin is the kinetic term. The density functional is
decomposed into several terms:

ε(ρn, ρp) = MρB + εFG(ρn, ρp) + εL(ρn, ρp)

+ εNL(ρn, ρp) + o(ρ4), (7)

where the term εFG is the contribution of the free Fermi
gas without the rest mass, the term εL is generated by
the interactions and the Dirac mass, and the term εNL is
the correction coming from the nonlinear σ coupling. In the
following, we give explicitly the form of those terms, classified
according to the power in Fermi momentum (=power in
density divided by 3) to have an integer index. The pure kinetic
contributions (FG) are εFG = εFG,5 + εFG,7 + εFG,9 + εFG,11
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FIG. 2. (Color online) Representation of the
different terms in the series expansion of the
energy functional with respect to the baryonic
density, up to 0.3 fm−3. The first three subsets
show the fast convergence in symmetric nuclear
matter (SNM) and the last subset (d) shows
the contribution of the isovector mesons in
pure neutron matter (PNM). To give an idea of
the fast convergence, we have multiplied some
of the terms by huge constants. The coupling
constants (set A NLρδ) obtained by Liu et al.
[42] have been used.

up to a power of 4 in the densities, where

εFG,5(ρn, ρp) = 3

10M
(3π2)2/3

(
ρ5/3

p + ρ5/3
n

)
, (8)

εFG,7(ρn, ρp) = − 3

56M3
(3π2)4/3

(
ρ7/3

p + ρ7/3
n

)
, (9)

εFG,9(ρn, ρp) = 1

48M5
(3π2)2

(
ρ3

p + ρ3
n

)
, (10)

εFG,11(ρn, ρp) = − 15

1408M7
(3π2)8/3

(
ρ11/3

p + ρ11/3
n

)
. (11)

The contribution of the mesons (with only linear couplings)
and Dirac mass contribution is εL = εL,6 + εL,8 + εL,10 +
εL,11, where

εL,6(ρn, ρp) = 1

2

(−f 2
σ + f 2

ω

)
ρ2

B + 1

2

(−f 2
δ + f 2

ρ

)
ρ2

3 , (12)

εL,8(ρn, ρp) = 3

10M2
(3π2)2/3

[
f 2

σ ρB

(
ρ5/3

p + ρ5/3
n

)

+ f 2
δ ρ3

(
ρ5/3

p − ρ5/3
n

)]
, (13)

εL,10(ρn, ρp) = − 9

M4

(
3π2

)4/3
f 2

σ

[
1

56

(
ρ7/3

p + ρ7/3
n

)
ρB

+ 1

200

(
ρ5/3

p + ρ5/3
n

)2
]

− 9

M4
(3π2)4/3f 2

δ

[
1

56

(
ρ7/3

p − ρ7/3
n

)
ρ3

+ 1

200

(
ρ5/3

p − ρ5/3
n

)2
]
, (14)

εL,11(ρn, ρp) = 3

10M3
(3π2)2/3[f 4

σ ρ2
B

(
ρ5/3

p + ρ5/3
n

)

+ f 4
δ ρ2

3

(
ρ5/3

p − ρ5/3
n

)
+ 2f 2

σ f 2
δ

(
ρ2

p − ρ2
n

)(
ρ5/3

p − ρ5/3
n

)]
. (15)

Finally, the first-order corrections induced by the nonlinear σ

coupling is εNL = εNL,9 + εL,11, where

εNL,9(ρn, ρp) = 1

3
f nl

σ ρ3
B, (16)

εNL,11(ρn, ρp) = − 3

10M2
f nl

σ (3π2)2/3ρ2
B

(
ρ5/3

p + ρ5/3
n

)
. (17)

The convergence of this series expansion is checked in
symmetric nuclear matter (SNM) and pure neutron matter
(PNM) by using the set of coupling constants, set A NLρδ,
obtained by Liu et al. [42]. We choose this set of parameters
because it has been obtained with the same degrees of freedom
as those we consider in our Lagrangian. We show in Fig. 2 the
contribution of the different terms of the functional up to a
power of 4 in the densities. Some terms have been multiplied
by a huge factor to distinguish them from each others. The
convergence is essentially due to the truncation of powers
of kF /M that comes with our expansion. This figure shows
how negligible the terms with large power counting are in the
density expansion, even for the higher densities represented
(about 0.3 fm−3).

In the following the low-density RMF functional defined
in Eqs. (7)–(17) will be used to fit the result of the DBHF
calculation [26] and to calculate the spinodal instabilities in
low-density asymmetric nuclear matter.

IV. DETERMINATION OF THE PARAMETERS OF THE
FUNCTIONAL

In this section, we fit the result of the DBHF calculation
(Dirac mass, energy density, and binding energies) in the
density region between 0.01 and 0.2 fm−3 using the low-
density RMF functional defined in Eqs. (7)–(17). The fits
are based on the density expansion of the RMF Lagrangian
(1), which contains nonlinear terms in the scalar σ field
and linear terms in the vector field ω as well as in the
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isovector ρ and δ fields. An alternative would be to perform
such a parametrization of the DBHF results in terms of density-
dependent relativistic hadron (DDRH) theory [38,39,43–45]
where nonlinearities from higher order density corrections are
absorbed into density-dependent meson-nucleon vertices at
the level of the effective Lagrangian. The reason why we have
chosen the standard RMF Lagrangian (1) is twofold: First,
it allows a well-defined low-density expansion whereas the
density dependence of effective meson-nucleon vertices in
DDRH theory depends on the choice of a particular ansatz
for these functionals. Second, the extraction of such coupling
functions from the present DBHF self-energies [26] shows
that the DBHF vector self-energy, except for the very low
density regime, has a linear density dependence that can
be expressed by a linear ω-meson field. Nonlinearities in
the scalar channel are absorbed in the nonlinear σ terms.
The isovector dependence can also be reasonably well fitted
through the two isovector ρ and δ mesons. In summary,
such a procedure allows a well-defined comparison of the
microscopic DBHF model to RMF phenomenology and a
controlled investigation of the low-density regime, where the
RMF fits break down and require additional correction terms,
as will be seen in the following.

The adjusting procedure is twofold: First, we fit the
parameters of the RMF Lagrangian using the relativistic Dirac
mass and the energy density in symmetric and asymmetric
nuclear matter obtained from the DBHF calculation. The
fit includes 23 calculated points between ρB = 0.02 and
0.13 fm−3, plus two densities, ρB = 0.1658 fm−3 and ρB =
0.197 fm−3, for y = ρp/ρB = 0 to 0.5 with a step = 0.05. We
obtain the set of parameters called RMF presented in Table I,
by fitting the Dirac mass and the density of energy and
imposing that the functional passes exactly through the point
at ρB = 0.197 fm−3 in symmetric nuclear matter and pure
neutron matter. The latter condition is imposed to get a value
of the symmetry energy close to DBHF, as shown in Table II.
Then, we extract and fit the residual difference between the
DBHF calculation and the energy per particle in symmetric
nuclear matter and pure neutron matter separately. To check
the sensitivity of the results on the functional correction, we
have investigated two different functionals. In the following,
we give the details of the adjusting procedure.

A. Determination of the σ and δ coupling constants

The low-density expansion of the Dirac mass, Eq. (5), is
used to determine the linear sigma coupling constant fσ , the
scalar isovector δ meson fδ, and the nonlinear sigma coupling
constant f nl

σ . We deduce the value of the parameters for the
adjustment to DBHF results in asymmetric nuclear matter
with y = ρp/ρB = 0.5, 0.3, and 0.0. In Fig. 3 we compare
the DBHF results with the best fit. The linear contribution
comes from the term f 2

σ ρB in Eq. (5), then comes the quadratic
term f nl

σ ρ2
B , and the isospin asymmetry is essentially coming

from the first term f 2
δ ρ3; the contributions of the other terms

are negligible. The parameters are given in Table I and are
compared to the set A NLρδ proposed in Ref. [42]. The
parameters fσ and fδ are very similar for the two sets of
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FIG. 3. (Color online) Comparison between the best RMF adjust-
ment and the scalar mass calculated with the DBHF approach. The
asymmetry parameter y = ρp/ρB ranges from 0.5 to 0. It clearly
shows a linear (f 2

σ ρB ) and a quadratic (f nl
σ ρ2

B ) behavior in the
baryonic density. The isospin asymmetry is also well reproduced
by the linear term f 2

δ ρ3 in the asymmetry density ρ3.

parameters whereas the parameters f nl
σ differ by a factor

of 3. In our fit, f nl
σ is obtained from the quadratic density

dependence of the scalar mass, whereas in the set A NLρδ, the
nonlinear σ coupling is adjusted to reduce the compressibility
modulus. As a consequence, we obtain a lower value for
the parameter f nl

σ , and the compressibility modulus is larger
than expected. Moreover, to obtain a good fit of the binding
energy, the nonlinear term εNL,9 defined in Eq. (16) has to be
divided by 2. This may indicate that higher order nonlinearities
in the σ field and probably also nonlinear ω terms should
be taken into account to obtain a proper description of the
DBHF EOS beyond saturation density. However, to keep the
formalism as simple as possible we stick to the strandard
NL model and apply this phenomenological correction. The
saturation properties are shown in Table II. This indicate that
one cannot reproduce the scalar mass density dependence
and the saturation density with a standard σ -nonlinear RMF
Lagrangian. This illustrates the convenience of using a density
functional where the effects of the meson couplings are
tractable. In our Lagrangian, the compressibility modulus will
be lowered by the correction terms induced by the physics
beyond the mean field.

B. Determination of the ω and ρ coupling constants

In contrast to DBHF theory, which shows a nonlinear con-
vergence to zero in the binding energy, RMF theory converges
smoothly. We show in Fig. 4 (top panel) a comparison between
the DBHF calculation and the low-density functional RMF for
the density of energy, E/V , and the binding energy, E/A.
Recall that the nonlinear term εNL,9 defined in Eq. (16) has
to be divided by 2. The low-density effects are reduced on
the energy density plot compared to the effects on the binding
energy. In fact, as E/V = ρBE/A, the low-density behavior of
the binding energy is strongly reduced by the factor of ρB in the
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FIG. 4. (Color online) Comparison of the
DBHF results (circle points) and the low-density
functionals in asymmetric nuclear matter. On the
top panels are shown the energy density and
the binding energy for the parameters RMF;
on the bottom panels are shown the binding
energies for the corrected functionals RMF+C1
and RMF+C2.

energy density. Therefore, we adjust the mean-field functional
on the energy density obtained from the DBHF calculation in
asymmetric nuclear matter, where the low-density effects are
weaker. We also force the functional to reproduce exactly the
DBHF calculations at ρB = 0.197 fm−3 in symmetric nuclear
matter and pure neutron matter. This constraint ensures that
the symmetry energy at saturation density is well reproduced.
Table I resumes the parameters obtained from the low-density
functional RMF. In the following section, we propose a
correction of the functional to take into account the correlations
beyond the mean field.

C. Corrections to the mean-field functional RMF

As already discussed and shown in Figs. 1 and 4, ab initio
calculations such as relativistic or nonrelativistic Brueckner
calculations have a completely different low-density behavior
compared to standard mean-field prediction. For neutron
matter this is a known fact and has also been investigated
in the—hypothetical—unitary limit akF → ∞, where a is
the nn scattering length. In this limit many-body calculations
(BHF, variational, and GFMC) lead to a different low-density
behavior than RMF theory (see the discussion in Ref. [27]). To
account for the low-density behavior of the DBHF EOS one has
therefore to go beyond the standard prediction of mean-field
theory.

In this paper we choose a pragmatic approach and propose
a fit of the difference between the DBHF EOSe and the

low-density RMF functional. Thus we add two new functions
gS(ρB) and gN (ρB) to the energy density so that

εDBHF(ρn, ρp) = εRMF(ρn, ρp)

+ (1 − β2)gS(ρB) + β2gN (ρB), (18)

where β = (ρn − ρp)/ρB . The additional terms gS(ρB) and
gN (ρB) are, respectively, adjusted in symmetric nuclear matter
and pure neutron matter. The isospin degree of freedom is
factorized with a quadratic function that respects the nuclear
isospin symmetry. This approximation is often performed
(see, e.g., Ref. for [1]), but in our case, it is also justified
afterward by comparing the new functionals RMF+C1 and
RMF+C2 to the DBHF binding energies at low densities
(Fig. 4, bottom panels). The functional correction is unknown,
but it is clear that this correction should be small around
saturation density and should converge to zero at very small
densities. Then an overall exponential shape imposed to fulfill
the first condition and a factorization in power of the density
ensure that the second condition is also satisfied. We obtained
two different density functionals that reproduce the data with
equal accuracy. The first phenomenological correction C1 is a
product of a polynomial function in the baryonic density with
an exponential and has the following form:

gS(ρB) = ρB

0.06

(
vS

0 + vS
1 ρB + vS

2 ρ2
B

)
e−(ρB/ρS

0 )1.2
, (19)

gN (ρB) =
( ρB

0.1

)2
vN

0 e−(ρB/ρN
0 )2

, (20)

TABLE I. The parameters of the functional reproducing the scalar mass and the energy density of the DBHF
calculation compared to the parameters proposed in Ref. [42].

Fits fσ (MeV−1) f nl
σ (MeV−2 fm3) fδ (MeV−1) fω (MeV−1) fρ (MeV−1)

RMF 1.693 × 10−2 3.735 × 10−4 7.242 × 10−3 1.299 × 10−2 8.843 × 10−3

set A NLρδ [42] 1.629 × 10−2 9.35 × 10−4 8.013 × 10−3 1.18 × 10−2 8.996 × 10−3
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are drawn for symmetric nuclear matter (left
panel) and pure neutron matter (right panel).

with the parameters: vS
0 = −48.834 MeV fm3, vS

1 =
1073.3 MeV fm6, vS

2 = −14813 MeV fm9, ρS
0 =

0.03114 fm−3, vN
0 = 5.373 MeV fm6, and ρN

0 = 0.0937 fm−3.
The second phenomenological correction C2 is a sum of two
exponentials of the form

gS(ρB) = vS
0

ρB

0.01
e−ρB/ρS

0 + vS
1

ρB

0.06
e−(ρB/ρS

1 )2
, (21)

gN (ρB) = vN
0

ρB

0.01
e−(ρB/ρN

0 )2.2 + vN
1

ρB

0.1
e−(ρB/ρN

1 )2
, (22)

with the parameters vS
0 = −9.28 MeV fm3, vS

1 =
−5.48 MeV fm3, ρS

0 = 0.0140 fm−3, ρS
1 = 0.0879 fm−3,

vN
0 = −0.334 MeV fm3, vN

1 = 4.818 MeV fm3, ρN
0 =

0.0629 fm−3, and ρN
1 = 0.1046 fm−3. We expect to have a

measure of the error induced by the peculiar choice of the
functional by comparing the prediction obtained with the two
functionals RMF+C1 and RMF+C2.

In Fig. 5, we shown the result of the adjustment of the
functional C1 (solid line) and C2 (dashed line) to the difference
between the DBHF binding energy and the low-density RMF
functional (square symbols) in symmetric nuclear matter (left
panel) and pure neutron matter (right matter). Despite the
different density dependence between the functionals C1 and
C2, those two functionals reproduce the square symbols at the
same level of accuracy.

D. Properties of the functionals

Table II gives the properties of the functionals RMF,
RMF+C1, and RMF+C2 around saturation density: the bind-
ing energy B0, the saturation density ρ0, the incompressibility
K0, and the symmetry energies a1

s and a2
s . The properties

of the DBHF calculation are also indicated. The properties
of the low-density RMF functional differ significantly from
the DBHF results. Indeed, the saturation density and the
compression modulus are higher than the DBHF results.

This is a consequence of the low value of the parameters
f nl

σ , as expected. This parameter could not be changed, as
it is already adjusted to the quadratic density dependence
of the scalar mass. However, the saturation properties of
the corrected functionals RMF+C1 and RMF+C2 are very
close to the DBHF calculation. Then, in our framework, the
reduction of the incompressibility modulus is induced by the
low-density physics. This is a very different understanding
from the standard one, which relies on nonlinear corrections
at high densities. We have also calculated the symmetry
energy in two different ways: either by assuming a quadratic
dependence in the asymmetry parameter β (a1

s ), or, because
we have a functional, by performing the second derivative
around symmetric nuclear matter (a2

s ). The latter calculation
is the exact one. We note a systematic underestimation by
about 1–2 MeV of the symmetry energy, assuming a quadratic
behavior. This is a small error with respect to the difference
in energy between symmetric nuclear matter and pure neutron
matter.

In this context it is worth mentioning that RMF fits
to finite nuclei require relatively high compression moduli
K ∼ 300 MeV [32,37]. Equations of state with a stiff high-

TABLE II. Properties of the functionals. The symmetry energy
has been obtained in two different ways: assuming a quadratic
dependence of the EOS between symmetric and pure neutron matter
(a1

s ) or performing numerical derivation of the binding energy around
symmetric nuclear matter (a2

s ). A systematic difference is observed
but is less than 5%.

Fits B0 (MeV) ρ0 (fm−3) K0 (MeV) a1
s (MeV) a2

s (MeV)

RMF −16.08 0.1933 365 35.8 37.7
RMF+C1 −16.27 0.1857 251 35.1 36.9
RMF+C2 −16.24 0.1856 242 35.1 36.9
DBHF −16.15 0.1814 230 34.4 –
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density behavior stand, however, in contrast to the information
extracted from heavy-ion reactions [46,47]. The pure RMF fits
to the DBHF EOS (i.e., discarding the low-density correction
term) provide equations of state that are stiff, however, not
because of their high-density behavior but because of the
low-density part. The compression moduli of the pure RMF
contributions without correction terms are K = 365 MeV
in contrast to the soft DBHF EOS with K = 230 MeV. If
one assumes that the correction terms contain effectively
contributions from the deuteron and/or reflect the precursor
of a superfluid low-density state, which leads to additional
binding in infinite matter but plays no substantial role in finite
nuclei, this could explain the discrepancy between the EOS
obtained from RMF fits to finite nuclei and that predicted by
DBHF or the a low-density virial expansion [7].

V. SPINODAL INSTABILITIES

Let us consider asymmetric nuclear matter characterized by
proton and neutron densities ρi = ρp, ρn. In infinite matter, the
extensibility of the free energy implies that it can be reduced to
a free energy density: F (T , V,Ni) = VF(T , ρi). The system
is stable against separation into two phases if the free energy
of a single phase is lower than the free energy in all two-phase
configurations. This stability criterion implies that the free
energy density is a convex function of the densities ρi . A local
necessary condition is the positivity of the curvature matrix:

[
Fij

] =
[

∂2F
∂ρi∂ρj

∣∣∣∣
T

]
≡

[
∂µi

∂ρj

∣∣∣∣
T

]
, (23)

where we have introduced the chemical potentials µj ≡
∂F
∂Nj

|T ,V,Ni
= ∂F

∂ρj
|T ,ρi �=j

. In the considered two-fluid system,
the [Fij ] is a 2 × 2 symmetric matrix, so it has two real
eigenvalues,

λ± = 1

2

(
Tr[Fij ] ±

√
Tr[Fij ]2 − 4Det[Fij ]

)
, (24)

associated with eigenvectors δρ± defined by (i �= j )

δρ±
j

δρ±
i

= Fij

λ± − Fjj

= λ± − Fii

Fij

. (25)

The sign of the eigenvalue indicates the direction of the
instability. It defines a local order parameter since it is
the direction along which the phase separation occurs. The
eigenvalues λ define sound velocities, c, by c2 = 1

18m
ρ1λ. In

the spinodal area, the eigenvalue λ is negative, so the sound
velocity is purely imaginary and the instability time τ is
given by τ = d/|c|, where d is a typical size of the density
fluctuation.

The requirement that the local curvature is positive is
equivalent to the requirement that both the trace (Tr[Fij ] =
λ+ + λ−) and the determinant (Det[Fij ] = λ+λ−) are positive,
that is,

Tr[Fij ] � 0 and Det[Fij ] � 0. (26)

The use of the trace and the determinant, which are two
basis-independent characteristics of the curvature matrix,

0 0.05 0.1

ρ
n
   [fm

-3
]

0

0.05

0.1

ρ p   
[f

m
-3

]

RMF
RMF + C1
RMF + C2

FIG. 6. (Color online) Spinodal contour for the low-density RMF
functional, RMF, RMF+C1, and RMF+C2.

clearly stresses the fact that the stability analysis should be
independent of the arbitrary choice of the thermodynamical
quantities used to label the state [e.g., (ρp, ρn) or (ρ1, ρ3)]. If
Eq. (26) is violated the system is in the unstable region of a
phase transition.

We represent in Fig. 6 the spinodal contour for the low-
density RMF functional, RMF, RMF+C1, and RMF+C2. The
contour for the RMF functional is very similar to the one
obtained previously with nonrelativistic interactions [6,48,49].
Meanwhile, spinodal densities are a little bit larger. Indeed,
in mean-field models, it is well known that the spinodal
density in symmetric nuclear matter scales with the saturation
density [50]. The spinodal densities we obtain is just due to
a scaling effect induced by the saturation density, which is
slightly to large for the functional RMF. The corrections induce
important modifications of the spinodal contour, especially in
asymmetric nuclear matter. For an asymmetry parameter of
about y ∼ 0.4, the spinodal density ρs is reduced by about
15–20%.

In usual mean-field calculations, it has been found that the
direction of the unstable mode is still isoscalar in asymmetric
nuclear matter [6]. Because the spinodal contour calculated
with the functionals RMF+C1 and RMF+C2 differs signifi-
cantly from the functional RMF, one could wonder what would
be the consequences for the unstable mode: Would it still
be isoscalar or possibly isovector? We have represented our
results on Fig. 7, which shows the evolution of the unstable
mode δρn/δρp with density for asymmetries ranging from
y = 0.1 to 0.5. We represent only neutron-rich matter; the
curves for proton-rich matter are easily deduced from the
isospin symmetry property. An isoscalar mode is defined by
δρn/δρp = 1 whereas a mode along y = constant satisfies
δρn/δρp = y/(1 − y). For the convenience of understanding
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Fig. 7, the value y/(1 − y) is written in parentheses in
the legend of each curve. For the three functionals (RMF,
RMF+C1, and RMF+C2) the unstable mode is included in
between the isoscalar direction and the direction y = constant.
However, the results obtained with the functionals RMF+C1
and RMF+C2 are very similar and differ from the one obtained
with the functional RMF. Indeed, for the functionals RMF+C1
and RMF+C2, the unstable mode is less isoscalar than the one
calculated with the functional RMF; hence, the fractionation
mechanism should be less pronounced than the one predicted
with mean-field models [6,48,49]. The gas phase should then
be less asymmetric than what was previously predicted based
on mean-field calculations.

VI. CONCLUSIONS

We have obtained two functionals taht give a very good
description of the DBHF calculations in asymmetric nuclear
matter. Those functionals are based on the low-density RMF
Lagrangian, which is developed as a series expansion of kF /M .
Effective terms are added to account for effects beyond the
mean field such as the deuteron pole. This parametrization
has been used to understand the topological properties of the
energy density, such as the spinodal zone. We have observed
that the spinodal zone is reduced in asymmetric nuclear
matter, in contrast to all the previous mean-field calculations.
Based on the analysis of the direction of the unstable mode,
it is shown that the gas phase could be less asymmetric
than what was previously predicted based on mean-field
calculations.

This calculation has been performed at zero temperature
whereas experiments probe the liquid-gas phase transition near
the critical temperature [50]. An extension of this work to
finite temperature is then necessary, but one could expect from
mean-field calculations that the critical density scales with the
spinodal density ∼0.5ρs . In a future work, it would then be

interesting to evaluate the effects of the two-body correlations
at finite temperature.

As a final conclusion and outlook of this work, we would
like to stress that the low-density EOS is required for both
heavy-ion collisions as well as for the description of the crust
of neutron stars where a low-density neutron gas is formed.
The density functional theory is then an interesting framework
where these two different nuclear systems could be described
by a unique functional.
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APPENDIX A: RELATIVISTIC MEAN-FIELD MODEL

A set of coupled field equations for the meson and nucleon
fields can be obtained from the Lagrangian in Eq. (1). The field
equations in a mean-field approximation (MFA) are

[iγµ∂µ − (M − gσσ − gδτ3δ3) − gωγ 0ω0

− gργ
0τ3ρ0]ψ = 0, (A1)

m2
σ σ + aσ 2 + bσ 3 = gσ 〈ψ̄ψ〉 = gσρs, (A2)

m2
ωω0 = gω〈ψ̄γ 0ψ〉 = gωρB, (A3)

m2
ρρ0 = gρ〈ψ̄γ 0τ3ψ〉 = gρρ3, (A4)

m2
δδ3 = gδ〈ψ̄τ3ψ〉 = gδρs3, (A5)

where ρ3 = ρp − ρn and ρs3 = ρsp − ρsn, and where ρB =
ρp + ρn and

ρsi = γ

(2π )3

∫ kFi

0
d3k

M∗
i

E∗
i (k)

(A6)

are the baryon and the scalar densities, respectively.
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By neglecting the derivatives of mesons fields, the energy-
momentum tensor in the MFA can be given by

Tµν = iψ̄γµ∂νψ + [
1
2m2

σ σ 2 + U (σ ) + 1
2m2

δ
�δ2

− 1
2m2

ωωλω
λ − 1

2m2
ρ �ρλ �ρλ

]
gµν. (A7)

The equation of state (EOS) for nuclear matter at T = 0 is
straightforwardly obtained from the energy-momentum tensor.
The energy density has the form

ε = 〈T 00〉 =
∑
i=n,p

2
∫

d3k

(2π )3
E∗

i (k) + 1

2
m2

σ σ 2 + U (σ )

+ 1

2
m2

ωω2
0 + 1

2
m2

ρρ
2
0 ,+

1

2
m2

δδ
2
3 . (A8)

The pressure is given by

p = 1

3

∑
i=1

〈T ii〉 =
∑
i=n,p

2

3

∫
d3k

(2π )3

k2

E∗
i (k)

− 1

2
m2

σ σ 2 − U (σ )

+ 1

2
m2

ωω2
0 + 1

2
m2

ρρ
2
0 − 1

2
m2

δδ
2
3, (A9)

where E∗
i (k) =

√
k2 + Mi

∗2
, i = p, n. The nucleon Dirac

masses are, respectively,

Mp
∗ = M − gσσ − gδδ3, (A10)

Mn
∗ = M − gσσ + gδδ3. (A11)

In the MFA the kinetic contributions to the energy density
and pressure in Eqs. (A8) and (A9) can easily be evaluated by
partial integration, which yields

εkin =
∑
i=n,p

2
∫

d3k

(2π )3
E∗

i (k)

=
∑
i=n,p

(
3

4
ρiE

∗
i (kFi

) + 1

4
M∗

i ρsi

)
, (A12)

pkin =
∑
i=n,p

2

3

∫
d3k

(2π )3

k2

E∗
i (k)

=
∑
i=n,p

(
1

4
ρiE

∗
i

(
kFi

) − 1

4
M∗

i ρsi

)
. (A13)

The nucleon chemical potentials µi are given in terms of
the vector meson mean fields:

µi =
√

k2
Fi

+ Mi
∗2 + gωω0 ∓ gρρ0(+proton,−neutron),

(A14)

where the proton and neutron Fermi momenta kFi
are related

to the corresponding densities by kFi
= (3π2ρi)1/3.

APPENDIX B: SOLUTION METHOD OF THE NONLINEAR
SELF-CONSISTENT EQUATION FOR THE ISOSCALAR

SCALAR FIELD σ

Our starting point is the self-consistent equation (2).
Let us call σ0 the solution of this linear self-consistent
equation, gσσ0 = f 2

σ ρs , and σ1 the first-order correction
induced by the nonlinear terms. Then σ1 fulfills the following
equation:

gσσ1 = − a

gσ m2
σ

(gσσ0 + gσσ1)2 − b

(mσgσ )2
(gσσ0 + gσσ1)3.

(B1)

We first suppose that σ1/σ0 � 1 (a hypothesis we will verify
afterward). Then, Eq. (B1) leads to

σ1

σ0
= − a

m2
σ

gσσ0

(
1 + 2

σ0

σ1

)

− b

gσm2
σ

(gσσ0)2

(
1 + 3

σ0

σ1

)
+ o

(
σ1

σ0

2
)

. (B2)

Indeed, it reads 2a h̄
mσ

x + 3b
gσ

x2, where x = gσσ0/mσ =
g2

σ ( h̄
mσ

)3ρs . With typical values, for example, from the NL3
model (i.e., gσ ∼ 10,mσ ∼ 500 MeV), the parameter x is
approximately x = 1.6 at saturation density. Then, the two
terms in the denominator are about 20. The correction σ1/σ0

can be expressed as a function of the scalar density as

σ1

σ0
=

− ag2
σ

m4
σ
ρs − bg3

σ

m6
σ
ρ2

s

1 + 2 ag2
σ

m4
σ
ρs + 3 bg3

σ

m6
σ
ρ2

s

+ o

(
σ1

σ0

2
)

(B3)

and taking into account only first-order corrections, we arrive
at

gσσ1 = − a

gσm2
σ

(gσσ0)2

+
(

2a2

g2
σm4

σ

− b

(mσgσ )2

)
(gσσ0)3 + o

(
gσσ 2

1

)
. (B4)

We keep only the first term, which contributes up to the power
9 in kFi . Hence, the approximate solution of the nonlinear
self-consistent equation is

gσσ = f 2
σ ρs − af 4

σ

gσm2
σ

ρ2
s + o

(
k9
Fi

)
. (B5)

The first term on the right-hand side of Eq. (B5) is the
solution of the linear self-consistent equation; the second term
is induced by nonlinear corrections.
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