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Additivity of effective quadrupole moments and angular momentum alignments in A ∼ 130 nuclei
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The additivity principle of the extreme shell model stipulates that an average value of a one-body operator
be equal to the sum of the core contribution and effective contributions of valence (particle or hole) nucleons.
For quadrupole moment and angular momentum operators, we test this principle for highly deformed and
superdeformed rotational bands in A ∼ 130 nuclei. Calculations are done in the self-consistent cranked
nonrelativistic Hartree-Fock and relativistic Hartree mean-field approaches. Results indicate that the additivity
principle is a valid concept that justifies the use of an extreme single-particle model in an unpaired regime typical
of high angular momenta.
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I. INTRODUCTION

The behavior of the nucleus at high angular momenta is
strongly affected by the single-particle (s.p.) structure (i.e.,
shell effects). Properties of the s.p. orbits around the Fermi
level determine the deformability of the nucleus, the amount
of angular momentum available in the lowest energy con-
figurations, the moment of inertia, and the Coriolis coupling.
Consequently, nucleonic shells can be seen and probed through
the measured properties of rapidly rotating nuclei.

The independent particle model is a first approximation
to the nuclear motion. Here, the nucleons are assumed
to move independently of each other in an average field
generated by other nucleons. Each nucleon occupies a s.p.
energy level, and levels with similar energies are bunched
together into shells. The wave function of a given many-body
configuration uniquely characterized by s.p. occupations is an
antisymmetrized product of one-particle orbitals (the Slater
determinant). In the next step, the residual interaction between
particles needs to be considered. This is the essence of
the configuration interaction method or the interacting shell
model. For heavier nuclei, where the number of s.p. orbits
becomes large, a customary approximation is to divide the
configuration space into the (inert) core states and the (active)
valence orbits and to perform configuration mixing in the
valence subspace.

The basic idea behind the additivity principle for one-body
operators is rooted in the independent particle model. The
principle states that the average value of a one-body operator
Ô in a given many-body configuration k,O(k), relative to
the average value in the core configuration, Ocore, is equal to
the sum of effective contributions of particle and hole states
by which the kth configuration differs from that of the core.
Such a property is trivially valid in the independent particle

model. However, the presence of residual interactions and
resulting configuration mixing could, in principle, spoil the
simple picture. In particular, in the interacting shell model,
polarization effects from the additions of particles or holes are
significant and they give rise to strong modifications of the
mean field. So the essence of the additivity principle lies in the
fact that these polarizations are, to a large extent, independent
of one another and thus can by treated additively.

The additivity principle for strongly deformed nuclear
systems emerged gradually in the 1990s. First, it was found in
Ref. [1] that effective (relative) angular momentum alignments
are additive to a good precision in the superdeformed (SD)
bands around 147Gd. However, the analysis was only restricted
to a few bands. Later, the statistical analysis of Ref. [2] in the
A ∼ 150 and 190 mass regions clearly demonstrated that the
so-called phenomenon of band twinning (or identical bands)
is more likely to occur in SD than in normal-deformed bands.
It was shown that a necessary condition for the occurrence
of identical bands is the presence of the same number of
high-N intruder orbitals (see also Ref. [3]). In addition,
it was concluded that the configuration-mixing interactions
such as pairing and the coupling to the low-lying collective
vibrational degrees of freedom act destructively on identical
bands by smearing out the individuality of each s.p. orbital.
Such individuality is an important ingredient for the additivity
principle: It is expected that this principle works only in the
systems with weak residual interaction, in particular, pairing
[2,4].

The principle of additivity at superdeformation was ex-
plicitly and thoroughly formulated for the case of the Q20

quadrupole moments in the nonrelativistic study of quadrupole
moments of SD bands in the A ∼ 150 mass region in Ref. [5]
within the cranked Hartree-Fock (CHF) approach based on
Skyrme forces. It was shown that the charge quadrupole
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moments calculated with respect to the doubly magic SD
core of 152Dy can be expressed very precisely in terms of
effective contributions from the individual hole and particle
orbitals, independently of the intrinsic configuration and of
the combination of proton and neutron numbers.

Following this work, it was shown that the principle of
additivity of quadrupole moments works also in the frame-
work of the microscopic+macroscopic method (in particu-
lar, the configuration-dependent cranked Nilsson+Strutinsky
approach) [6,7]. However, in contrast to self-consistent
approaches, the effective s.p. quadrupole moments of the
microscopic+macroscopic method are not uniquely defined
because of the lack of self-consistency between the micro-
scopic and macroscopic contributions.

The study of additivity of quadrupole moments and ef-
fective alignments was also performed in the framework of
the cranked relativistic mean-field (CRMF) approach, but it
was restricted to a few configurations in the vicinity of the
doubly magic SD core of 152Dy [8]. It was suggested in this
work that the additivity principle when applied to the angular
momentum operator (i.e., effective alignments) does not work
as well as for the quadrupole moment. In addition, the effective
alignments of high-N intruder orbitals seem to be less additive
than the effective alignments of nonintruder orbitals. The latter
can be attributed to a pronounced polarization of the nucleus
by high-N intruder orbitals at high spin.

For quadrupole moments, the additivity principle was
experimentally confirmed in the A ∼ 140–150 mass region of
superdeformation. It was shown that the quadrupole moments
of the SD bands in 142Sm [9] and 146Gd [10] could be well
explained in terms of the 152Dy SD core and effective s.p.
quadrupole moments of valence (particle and hole) orbits.
All of these studies, together with the previous results for
moments of inertia [11,12] and effective alignments [8,13],
strongly suggest that the SD bands in the A ∼ 140–150 mass
region are excellent examples of an almost undisturbed s.p.
motion. This is especially true at rotational frequencies above
h̄ ω = 0.5 MeV [8,12] where pairing is expected to be of
minor importance. (For other excellent examples of an almost
undisturbed s.p. motion at high spins, see Refs. [14–16].)

In the mass A ∼ 135 (Z = 58–62) light rare-earth re-
gion, large Z = 58 and N = 72 shell gaps (see Fig. 1 and
Refs. [17,18]) lead to the existence of rotational structures
with characteristics typical of highly deformed and SD bands.
These bands were observed up to high and very high spins (see
Refs. [19,20] and references quoted therein). For example, the
yrast SD band in 132Ce extends to ∼68h̄, which represents one
of the highest spin states ever observed in atomic nuclei [19].
At such high spins, pairing is expected to play a minor role
[11,18,21], which is a necessary condition for the additivity
principle to hold. In this mass region, experimental studies
of the additivity principle were performed in Refs. [20,21].
Differential lifetime measurements, free from common sys-
tematic errors, were performed for over 15 different nuclei
(various isotopes of Ce, Pr, Nd, Pm, and Sm) at high spin
within a single experiment [20,21].

There are several notable differences between the A ∼ 135
and A ∼ 140–150 regions of superdeformation. In particular,
the rotational bands in the A ∼ 135 region are calculated to
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FIG. 1. (Color online) Single-particle energies for neutrons (left)
and protons (right) in 128Ba as a function of the proton quadrupole
moment calculated in the HF+SLy4 model. Solid and dashed lines
mark positive- and negative-parity states, respectively. The orbitals
are labeled by the asymptotic (Nilsson) quantum numbers [Nnz�]�
of the dominant component of the s.p. wave function. The neutron
intruder orbitals originating from the N = 6 shell are additionally
labeled by the main oscillator quantum number and a subscript
denoting the position of the orbital within the N shell.

correspond to the local energy minima that are characterized by
much larger γ -softness than those in the A ∼ 140–150 mass
region [17,18]. Thus, one of the main goals of the present
manuscript is to find the impact of the γ -softness on the
additivity principle. The second goal is to provide a detailed
study of the additivity principle not only for quadrupole
moments but also for angular momentum alignments. The
present work is the first study where the additivity of relative
alignments has been tested within the CHF and CRMF
frameworks in a systematic way along with the additivity of
quadrupole moments. Some results of this study have been
reported in Refs. [20,21].

This paper is organized as follows. The principle of
additivity, definitions of physical observables, the way of
finding effective s.p. quantities, and details of theoretical
calculations are discussed in Sec. II. Analysis of the additivity
principle for quadrupole moments and relative alignments
and the discussion of associated theoretical uncertainties are
presented in Sec. III. Finally, Sec. IV contains the main
conclusions of our work.

II. THEORETICAL FRAMEWORK

A. Definition of observables

Since pairing is neglected in this work, the charge
quadrupole moments Q20 and Q22 are defined microscopically
as sums of expectation values of the s.p. quadrupole moment
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operators q̂20 and q̂22 of the occupied proton states, that is,

Q20 =
∑

µ

〈µ|q̂20|µ〉, (1)

Q22 =
∑

µ

〈µ|q̂22|µ〉, (2)

where q̂20 and q̂22 are defined in three-dimensional Cartesian
coordinates as [22]

q̂20 = 2z2 − x2 − y2, (3)

q̂22 =
√

3(x2 − y2) (4)

(where conserved signature symmetry is assumed). The factor
of

√
3 is included in the definition of q̂22 to have the following

expressions for the total quadrupole moment Q2 and the
associated Bohr angle γ :

Q2 =
√

Q2
20 + Q2

22, (5)

tan(γ ) = Q22/Q20. (6)

Note that the sums in Eqs. (1) and (2) run only over proton
states. The neutrons, having zero electric charge, do not appear
in the sums explicitly, but they influence the charge quadrupole
moments indirectly via the quadrupole polarization (deforma-
tion changes) induced by occupying/emptying single-neutron
states.

It should be noted that with the definitions (1)–(6), the
spherical components of the quadrupole tensor are Q20 and
Q22/

√
2. This fact is important for the definition of the

so-called transition quadrupole moment Qt [23,24]. This
moment gives the measure of the transition strength of
the �I = 2 (stretched) E2 radiation in the limit of large
deformation and angular momentum, and it is proportional
to the component Qω

22/
√

2 of the spherical quadrupole tensor
when the quantization axis coincides with the vector of
rotational velocity ω, that is,

Qω
20 = D2

0,0(ψω, θω, φω)Q20 + [
D2

0,2(ψω, θω, φω)

+D2
0,−2(ψω, θω, φω)

]Q22√
2

, (7)

Qω
22√
2

= D2
2,0(ψω, θω, φω)Q20 + [

D2
2,2(ψω, θω, φω)

+D2
2,−2(ψω, θω, φω)

]Q22√
2

. (8)

Here, symbols Dλ
µν denote the Wigner functions [25], with

their arguments ψω, θω, φω being the Euler angles that rotate
the z axis (the standard quantization axis for spherical tensors)
onto the direction of the angular velocity.

For the cranking axis coinciding with the y axis of the
intrinsic system, as is the case for the code HFODD [26,27] used
in the present study, the Euler angles are ψ = 0, θ = π/2, and
φ = π/2, which gives

Q
ω‖y
20 = −1

2
Q20 −

√
3

2

Q22√
2

, (9)

Q
ω‖y
22√
2

=
√

3

8
Q20 − 1

2

Q22√
2

. (10)

The second of these equations gives the definition of the
transition quadrupole moment used in this work:

Q
ω‖y
t =

√
8

3

Q
ω‖y
22√
2

= Q20 −
√

2

3

Q22√
2

. (11)

To provide a link to studies that employ the x-axis cranking,
such as, for example, Refs. [23,24] and our earlier papers [20,
21], we repeat derivations for the Euler angles ψ = π/2, θ =
π/2, φ = π , which rotate the z axis onto the x axis:

Q
ω‖x
20 = −1

2
Q20 +

√
3

2

Q22√
2

, (12)

Q
ω‖x
22√
2

= −
√

3

8
Q20 − 1

2

Q22√
2

, (13)

and hence

Q
ω‖x
t = −

√
8

3

Q
ω‖y
22√
2

= Q20 +
√

2

3

Q22√
2

. (14)

Although definitions (11) and (14) differ by signs of
the second terms, values of Q

ω‖y
t and Q

ω‖x
t obtained in

self-consistent calculations must be identical because they
cannot depend on the direction of the cranking axis. This
means that values of Q22 obtained in cranking calculations
along the y and x axes have opposite signs. In what follows,
we employ definition (11) of the transition moment and drop
the superscripts that denote the direction of the cranking axis,
and so

Qt = Q20 −
√

1
3Q22, (15)

q̂t = q̂20 −
√

1
3 q̂22. (16)

Finally, the expectation value of the total angular momen-
tum J (its projection on the cranking axis) is defined as a
sum of the expectation values of the s.p. angular momentum
operators ĵy of the occupied states:

J ≡ 〈Ĵy〉 =
∑

µ

〈µ|ĵy |µ〉. (17)

The value of J can be expressed in terms of the total spin I

via the cranking relation [28]

J =
√

I (I + 1) ≈ I + 1
2 . (18)

B. Additivity of effective s.p. observables

For each k-configuration defined by occupying a given set
of s.p. orbitals and represented by a product state |k〉, we
determine the average value O(k) = 〈k|Ô|k〉 of a s.p. operator
Ô. We may now designate one of these configurations as a
reference, or a core configuration, and determine the relative
change δO(k) ≡ O(k) − Qcore of the physical observable in
the kth configuration with respect to that in the core con-
figuration. The additivity principle stipulates that all these
differences can be expressed as sums of individual effective
contributions oeff

α coming from s.p. states (enumerated by
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index α); that is,

O(k) − Qcore ≡ δO(k) =
∑

α

cα(k)oeff
α . (19)

Coefficients cα in Eq. (19) define the s.p. content of the
configuration k with respect to the core configuration. Namely,

(i) cα(k) = 0 if the state α is not occupied in either of these
two configurations, or is occupied in both of them,

(ii) cα(k) = 1 if α has a particle character (it is occupied
in the kth configuration and is not occupied in the core
configuration), or

(iii) cα(k) = −1 if the state α has a hole character (it is not
occupied in the kth configuration and is occupied in the
core configuration).

In this way, one can label the kth configuration with the
set of coefficients c(k) = {cα(k), α = 1, . . . , m}, where m

denotes the size of s.p. space considered. The values of oeff
α

can be calculated by proceeding step by step from the core
configuration to the configurations differing by one particle or
one hole, then to the configurations differing by two particles,
two holes, or a particle and a hole, and so forth, until the data
set is generated that is statistically large enough to provide
appreciable precision for oeff

α . Had the additivity principle
been obeyed exactly, calculations limited to one-particle and
one-hole configurations would have sufficed. Since our goal is
not only to determine values of oeff

α but actually prove that the
additivity principle holds up to a given accuracy, we have to
consider a large set of configurations and determine the best
values of oeff

α together with their error bars.
In what follows, we consider relative changes in the

average quadrupole moments δQ20(k) and δQ22(k), transition
quadrupole moments δQt (k), and total angular momenta δJ (k)
(see Sec. II A), which are related to the effective one-body
expectation values via the additivity principle.

The addition of particle or hole in a specific single-
particle orbital α gives rise to a polarization of the system,
so the effective s.p. values, oeff

α , not only depend on the
bare s.p. expectation values, obare

α = 〈ô〉α , but also contain
polarization contributions. For example, the effective s.p.
charge quadrupole moment qeff

20,α can be represented as the
sums of bare s.p. charge quadrupole moments qbare

20,α = 〈q̂20〉α
and polarization contributions q

pol
20,α:

qeff
20,α = qbare

20,α + q
pol
20,α. (20)

Therefore, for neutron orbitals, which have vanishing bare
charge quadrupole moments, qbare

20,αn
= 0, the effective charge

quadrupole moments are solely given by polarization terms:

qeff
20,αn

= q
pol
20,αn

. (21)

C. Determination of effective s.p. observables

Once the averages of physical observables O(k) for
the set of Nc calculated configurations (k = 1, . . . , Nc) are
determined, the effective s.p. contributions oeff

α (19) are
found by means of a multivariate least-square fit (see, e.g.,
Refs. [29,30]). This is done by minimizing the function of oeff

α

defined by

F
[
oeff

α

] =
Nc∑
k=1

(
δO(k) −

m∑
α=1

oeff
α cα(k)

)2

. (22)

Note that the problem is only meaningful when the number
of configurations is sufficiently large, Nc > m. Following
the general concept of the least-square method, the partial
differentiation with respect to the variables oeff

α yields

0 = 1

2

∂

∂oeff
α

F
[
oeff

α

]
=

∑
α′

∑
k

cα(k)cα′(k)oeff
α′ −

∑
k

δO(k)cα(k)

= (Boeff − a)α, (23)

where aα = ∑
k δO(k)cα(k) = cT δO and B = ||Bαα′ || =

|| ∑k cα(k)cα′ (k)|| = cT c. Solving this equation by inverting
the nonsingular matrix B gives the solution to the multivariate
regression problem:

õeff = B−1a = (cT c)−1cT δO. (24)

The fact that B is positive-definite guarantees that the solution
õeff corresponds to a minimum of F [oeff

α ].
To estimate the variance, we assume that the first statistical

moments of residuals,

εO(k) = δO(k) −
∑

α

cα(k)õeff
α , (25)

are zero for all k = 1, . . . , Nc. Consequently, õeff can be
considered an unbiased estimate of oeff . Furthermore, under
the assumption that

var[εO(k)] = σ 2 (26)

for all k = 1, . . . , Nc, and

cov[εO(k), εO(k′)] = 0 (27)

for all {k, k′ = 1, . . . , Nc|k 	= k′}, one can define the variance-
covariance matrix as σ 2B−1 = σ 2(cT c)−1, for which the
unbiased estimate for σ 2 is given by

σ̃ 2 = 1

Nc − m

Nc∑
k=1

εO(k)2. (28)

Finally, the unbiased estimate for the variance-covariance
matrix for õeff is given by B−1σ 2. In what follows we do
not distinguish notation for variables from that for their
estimates. The least-square procedure described in this sec-
tion was used to determine the effective s.p. quadrupole
moments {qeff

20,α, qeff
22,α, qeff

t,α, α = 1, . . . , m} and angular mo-
mentum alignments {j eff

α , α = 1, . . . , m}.

D. Method of calculations

The CHF calculations were performed by using the code
HFODD (v1.75) [26,27] with the interaction SLy4 [31]. The
accuracy of the harmonic oscillator (HO) expansion depends
on the frequencies (h̄ ωx, h̄ ωy , and h̄ ωz) of the oscillator wave
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functions and the number M of the HO states included in the
basis. The basis set includes the lowest M states with energies
given by

εnx,ny ,nz
= h̄ ωx

(
nx + 1

2

) + h̄ ωy

(
ny + 1

2

) + h̄ ωz

(
nz + 1

2

)
.

(29)

An axially symmetric basis (ωx = ωy) with the deformation
q = ωx/ωz = 1.81, oscillator frequency h̄ω0 = 41A−1/3 MeV,
and value of M = 296 was used in all the CHF calculations.
This basis provides sufficient numerical accuracy for the
physical observables of interest [32].

The CRMF calculations were performed by using the
computer code developed in Refs. [12,33,34]. An anisotropic
three-dimensional harmonic oscillator basis with deforma-
tion (β0 = 0.4, γ = 0◦) has been used in the CRMF cal-
culations. All fermionic states below the energy cutoff
Ecutoff

F � 11.5h̄ ωF
0 and all bosonic states below the energy

cutoff Ecutoff
B � 16.5h̄ ωB

0 were used in the diagonalization and
the matrix inversion. This basis provides sufficient numerical
accuracy. The NL1 parametrization of the RMF Lagrangian
[35] has been used in the CRMF calculations. As follows from
our previous studies, this parametrization provides reasonable
s.p. energies for nuclei around the valley of β stability
[8,36].

E. Selection of independent-particle configurations

In both CHF and CRMF calculations, the set of
independent-particle configurations in nuclei around 131Ce was
considered. The final sets used in additivity analysis consisted
of 183 and 105 configurations in the CHF and CRMF variants,
respectively. All ambiguous cases, resulting from crossings,
convergence difficulties, etc., were removed from those sets.
Since the CRMF calculations are more time consuming than
the CHF ones, the CRMF set is smaller. Nonetheless, the
adopted CRMF set is sufficiently large to provide reliable
results. To put things in perspective, in Ref. [5], where the CHF
analysis of additivity principle in the SD bands of the A ∼ 150
mass region was carried out, 74 calculated SD configurations
were considered.

Every calculated product-state configuration was labeled
using the standard notation in terms of parity-signature blocks
[N+,+i , N+,−i , N−,+i , N−,−i], where Nπ,r are the numbers of
occupied s.p. orbitals having parity π and signature r . In
addition, the s.p. states were labeled by the Nilsson quantum
numbers and signature [Nnz�]�r of the active orbitals
at zero frequency. The orbital identification is relatively
straightforward when the s.p. levels do not cross (or cross
with a small interaction matrix element), but it can become
ambiguous when the crossings with strong mixing occur. In
some cases, it was necessary to construct diabatic Routhians
by removing weak interaction at crossing points. Even with
these precautions, a reliable configuration assignment was not
always possible; the exceptional cases were excluded from the
additivity analysis. Clearly, the likelihood of the occurrence of
level crossings is reduced when the s.p. level density is small
(e.g., in the vicinity of large shell gaps).
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FIG. 2. (Color online) Neutron s.p. energies (Routhians) in the
self-consistent rotating potential (CHF+SLy4) as a function of
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asymptotic quantum numbers [Nnz�]� of the dominant harmonic
oscillator component of the wave function. The neutron intruder
orbitals originating from the N = 6 shell are additionally marked.
At intermediate rotational frequencies, the lowest intruder level 61

becomes occupied and this leads to the presence of the large gap in
the spectrum at N = 73.

Large deformed energy gaps develop at high rotational
velocity for Z = 58 and N = 73 (see Figs. 2 and 3). Therefore,
the lowest SD band (νi13/2 band) in 131Ce is a natural choice
for the highly deformed core configuration in the A ∼ 130
mass region. The additivity analysis was performed at a large
rotational frequency of h̄ ω = 0.65 MeV. This choice was
dictated by the fact that (i) at this frequency the pairing
is already considerably quenched and (ii) no level cross-
ings appear in the core configuration around this frequency
(cf. Figs. 2 and 3). Moreover, at this frequency, the lowest
neutron i13/2 intruder orbital already appears below the
N = 73 neutron gap (see Fig. 2). The choice of an odd-
even core, strongly motivated by its doubly closed character
at large deformations/spins, does not impact the additivity
scheme, which is insensitive to the selection of the reference
system.

The highly deformed core configuration in 131Ce
([18, 19, 18, 18]n ⊗ [14, 14, 15, 15]p) has the following
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FIG. 3. (Color online) Similar to Fig. 2 except for proton s.p.
states. The large proton Z = 58 gap in the s.p. spectrum is present at
all frequencies considered.

orbital structure:

|core〉 = |core〉ν ⊗ |core〉π(
ν(1i13/2)6−i

1

)
(ν(1h11/2)[523]7/2±i)2

(ν(1s1/2)[411]1/2±i)2

(ν(1g7/2)[413]5/2±i)2

≡ (ν(2f7/2)[541]1/2±i)2

(ν(2d5/2)[411]3/2±i)2

(ν(1h11/2)[532]5/2±i)2

(ν(1g9/2)[404]9/2±i)2

(· · ·)|0〉ν

⊗

(π (1g9/2)[404]9/2±i)2

(π (1h11/2)[541]3/2±i)2

(π (1g7/2)[420]1/2±i)2

(π (2d5/2)[422]3/2±i)2

(π (1h11/2)[550]1/2±i)2

(π (2p1/2)[301]1/2±i)2

(· · ·)|0〉π ,

where dots denote the deeply bound states and |0〉ν and |0〉π
are the neutron and proton vacua, respectively. The spherical
subshells from which the deformed s.p. orbitals emerge
(cf. Fig. 1) are indicated in the front of the Nilsson labels.

The Nilsson orbital content of an excited configuration is
given in terms of particle and hole excitations with respect
to the core configuration through the action of particle/hole
operators with quantum labels corresponding to the occupied
or emptied Nilsson orbitals. The character of the orbital
(particle or hole) is defined by the position of the orbital with
respect to the Fermi level of the core configuration. It is clear
from Fig. 2 that the neutron states ν[523]7/2±i , ν[411]1/2±i ,
ν[413]5/2±i , ν[541]1/2±i , ν[532]5/2±i , and ν6−i

1 have hole
character, whereas ν6+i

2 , ν6−i
3 , ν[530]1/2±i , ν[402]5/2±i ,

ν[532]3/2±i , and ν[514]9/2±i have particle character. In a
similar way, the proton orbitals π [541]3/2±i , π [422]3/2±i ,
π [301]1/2±i , π [420]1/2±i , and π [404]9/2±i can be viewed
as holes, whereas π [532]5/2±i , π [411]3/2±i , π [541]1/2±i ,
and π [413]5/2± have particle character (see Fig. 3).

III. RESULTS OF THE ADDITIVITY ANALYSIS

A. Effective charge quadrupole moments qeff
20,α

Table I lists the values of CHF and CRMF effective s.p.
charge quadrupole moments qeff

20,α for a number of s.p. orbitals
in the vicinity of the deformed shell gaps at Z = 58 and N =
73 (see Figs. 2 and 3). There is an overall excellent agreement
between qeff

20,α values for the two mean-field approaches
employed. In the majority of cases, the uncertainties are small
enough to allow determination of effective moments to two
significant digits.

The two lowest neutron intruder orbitals 6−i
1 and 6+i

2
show significant signature splitting, and their effective charge
quadrupole moment values differ by more than 5%. The
extracted values confirm the general expectations for the
polarization effects exerted by the intruder and extruder states
[37,38]. The lowest neutron N = 6 orbitals, 6−i

1 and 6+i
2 ,

have qeff
20,α � 0.37 e b, which indicates that their occupation

drives the nucleus toward larger prolate deformation. The third
intruder orbital, 6−i

3 , although calculated with relatively poor
statistics, confirms this trend.

The proton π [404]9/2±i extruder high-� orbitals are
oblate-driving; they have large negative values of qeff

20,α .
Emptying them polarizes the nucleus toward more prolate-
deformed shapes. Interestingly, their qeff

20,α values of around
−0.31 e b are close in magnitude to those of theN = 6 neutron
intruders, in line with the findings of Ref. [18] that the holes
in the proton g9/2 orbitals are as important as the particles
in the neutron i13/2 orbitals in stabilizing the shape at large
deformation. Owing to their high-� content, the signature
splitting of π [404]9/2±i Routhians is extremely small and
their qeff

20,α values are practically indistinguishable within error
bars.

Our study indicates that proton h11/2 states, such as
π [541]3/2±i and π [532]5/2±i active below and above the
Z = 58 shell gap, respectively, play a significant role in the
existence of this island of high deformation. Indeed, Table I
attributes them to effective charge quadrupole moments in
excess of 0.45 e b, which are very significant values compared
with other states listed.

The downsloping orbital π [541]1/2−i , originating from
mixed πf7/2 ⊕ h9/2 subshells, carries a large effective charge
quadrupole moment of more than 0.5 e b. Although one
could expect it to play a role in the formation of large
prolate deformation, this state appears too high in energy
(above the Z = 58 shell gap) and would therefore always stay
unoccupied in most of the configurations of interest [19–21].
In contrast, the strongly prolate-driving π [550]1/2−i orbital
carrying qeff

20,α ≈ 0.47 e b is always occupied in the bands of
interest.

Table I compares the values of qeff
20,α obtained in the present

study with those from the additivity analysis of the SD bands
in the A ∼ 150 region [5] based on the Skyrme SkP and SkM∗
energy density functionals. Note that some of the states, which
are of particle character in the A ∼ 130 region, appear as hole
states in the heavier region. For these states, conforming to our
definitions of coefficients cα (Sec. II B), we inverted signs of
values shown in Table 1 of Ref. [5]. With few exceptions, qeff

20,α

values are similar in both studies: Only for the π [301]1/2+i
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TABLE I. Effective s.p. charge quadrupole moments qeff
20,α (in e b) for the s.p. orbitals active in

the A ∼ 130 mass region of high deformation and superdeformation. Calculations were carried out
with CHF+SLy4 and CRMF+NL1 approaches. The bare quadrupole moments qbare

20,α are also shown for
CHF+SLy4. Theoretical errors resulting from the multivariate least-square fit are indicated. The results
of previous calculations [5] pertaining to the A ∼ 150 mass region are displayed for comparison.

State p/h CHF+SkP CHF+SkM∗ p/h CHF+SLy4 CRMF+NL1
[Nnz�]�r qeff

20,α qeff
20,α qbare

20,α qeff
20,α

qeff
20,α

ν [402] 5
2

+i
p −0.44 −0.38 p 0.0 −0.35 ± 0.01 −0.26 ± 0.01

ν [402] 5
2

−i
p −0.44 −0.38 p 0.0 −0.34 ± 0.02 −0.26 ± 0.02

ν [411] 1
2

+i
h −0.18 h 0.0 −0.15 ± 0.02 −0.11 ± 0.02

ν [411] 1
2

−i
h −0.15 h 0.0 −0.12 ± 0.01 −0.06 ± 0.02

ν [411] 3
2

+i
h h 0.0 −0.15 ± 0.04 −0.13 ± 0.03

ν [411] 3
2

−i
h h 0.0 −0.11 ± 0.05 −0.12 ± 0.03

ν [413] 5
2

+i
h −0.16 h 0.0 −0.13 ± 0.02 −0.13 ± 0.03

ν [413] 5
2

−i
h −0.13 h 0.0 −0.12 ± 0.03 −0.11 ± 0.02

ν [523] 7
2

+i
h 0.0 0.03 ± 0.01 0.05 ± 0.01

ν [523] 7
2

−i
h 0.0 0.04 ± 0.01 0.01 ± 0.02

ν [530] 1
2

+i
p 0.0 0.22 ± 0.01 0.17 ± 0.01

ν [530] 1
2

−i
p 0.0 0.17 ± 0.01 0.19 ± 0.01

ν [532] 3
2

+i
p 0.0 0.21 ± 0.03 –

ν [532] 3
2

−i
p 0.0 0.17 ± 0.03 –

ν [532] 5
2

+i
h 0.0 0.19 ± 0.03 0.17 ± 0.03

ν [532] 5
2

−i
h 0.0 0.24 ± 0.03 0.38 ± 0.03

ν [541] 1
2

+i
h 0.0 0.35 ± 0.03 0.35 ± 0.02

ν [541] 1
2

−i
h 0.0 0.37 ± 0.03 0.33 ± 0.03

ν 6−i
1 h 0.0 0.38 ± 0.01 0.40 ± 0.01

ν 6+i
2 p 0.0 0.36 ± 0.01 0.36 ± 0.01

ν 6−i
3 h 0.43 0.30 p 0.0 0.35 ± 0.05 –

π [301] 1
2

+i
h −0.15 −0.13 h −0.08 0.51 ± 0.05 –

π [404] 9
2

+i
p −0.30 −0.28 p −0.13 −0.32 ± 0.01 −0.37 ± 0.01

π [404] 9
2

−i
p −0.30 −0.28 p −0.13 −0.32 ± 0.01 −0.37 ± 0.01

π [411] 3
2

+i
p 0.11 0.10 p 0.06 −0.05 ± 0.02 –

π [411] 3
2

−i
p 0.11 0.10 p 0.06 0.00 ± 0.01 –

π [413] 5
2

−i
p 0.06 0.28 ± 0.05 –

π [422] 3
2

+i
h 0.20 0.33 ± 0.02 0.33 ± 0.03

π [422] 3
2

−i
h 0.22 0.34 ± 0.02 0.28 ± 0.02

π [532] 5
2

+i
p 0.28 0.43 ± 0.01 0.41 ± 0.02

π [532] 5
2

−i
p 0.36 0.56 ± 0.03 0.54 ± 0.03

π [541] 1
2

−i
p 0.40 0.58 ± 0.02 –

π [541] 3
2

+i
h 0.34 0.50 ± 0.01 0.48 ± 0.01

π [541] 3
2

−i
h 0.39 0.57 ± 0.01 0.50 ± 0.01

π [550] 1
2

−i
h 0.30 0.49 ± 0.05 0.47 ± 0.04

orbital does the difference between A ∼ 130 and A ∼ 150
results exceed 0.1 e b. This result strongly suggests that the
polarization effects caused by occupying/emptying specific
orbitals are mainly due to the general geometric properties of

s.p. orbitals and weakly depend on the actual parametrization
of the Skyrme energy density functional; minor differences are
likely related to interactions between close-lying s.p. states.
These observations give strong reasons for combining the two
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regions into one, and interpreting the entire area of highly
deformed and SD rotational states in the mass range A ∼
128–160 within the united theoretical framework.

The results for qeff
20,α obtained in CHF+SLy4 and

CRMF+NL1 models are indeed very similar (see Table I).
Only for the ν[402]5/2±i and ν[532]5/2−i orbitals do the
differences between qeff

20,α values come close to 0.1 e b.
Table I compares the bare and effective s.p. charge

quadrupole moments obtained in CHF+SLy4. In the majority
of cases, these quantities differ drastically, underlying the
importance of shape polarization effects. Large differences
between bare and effective s.p. quadrupole moments have also
been found in the CHF+SkP and CHF+SkM∗ calculations in
the A ∼ 150 region of superdeformation [5].

B. Effective quadrupole moments qeff
t,α and qeff

22,α

Table II displays the calculated effective s.p. transition
quadrupole moments qeff

t,α [cf. definitions (15) and (16)]. Based
on the additivity principle, these values can be used to predict
the total charge transition moments Qt (k) in highly deformed
and SD bands of A ∼ 130 nuclei:

Qt (k) = Qcore
t +

∑
α

cα(k)qeff
t,α, (30)

where the calculated CHF+SLy4 value for the core configu-
ration in 131Cs is

Qcore
t = 7.64 e b. (31)

Since the total calculated values are less precise than the
relative ones that define the effective s.p. transition quadrupole
moments qeff

t,α , one may alternatively use in Eq. (30) the
measured value [39],

Q
core,exp
t = 7.4(3) e b. (32)

Theoretical estimates of the total charge transition moments
Qt (k) allow for predictions of B(E2) values,

B(E2)(I → I − 2, k) = 5

16π
e2〈I0 20|I − 2 0〉Q2

t (k), (33)

and lifetimes [40].

In CHF+SLy4, the uncertainties of qeff
22,α appear to be larger

than those for qeff
20,α . In CRMF+NL1, however, those uncer-

tainties are similar. This can be traced back to the different
γ -softness of potential energy surfaces in CHF+SLy4 and
CRMF+NL1 (see Ref. [18] and references quoted therein
for the results obtained in different approaches); current
analysis revealing large uncertainties for qeff

22,α suggests that the
potential energy surfaces are softer (and thus less localized) in
the CHF+SLy4 approach.

Although the values of qeff
22,α are generally much smaller

than qeff
20,α , large uncertainties in the determination of certain

moments qeff
22,α (especially for ν[411]3/2±i , ν[532]5/2±i ,

ν6−i
3 , π [301]1/2+i , and π [550]1/2−i orbitals, for which

the errors exceed 0.1 e b in the CHF+SLy4 approach)
can lead to the deterioration of predicted qeff

t,α . However,
in many cases the uncertainties in qeff

22,α are smaller than
the experimental error bars; hence, they are less relevant
when comparison with experiment is carried out. Currently
available experimental data on relative transition quadrupole
moments agree reasonably well with the CHF+SLy4 results
[20,21].

Table II compares qeff
t,α values obtained in CHF+SLy4

and CRMF+NL1 models. The results for proton orbitals are
similar in both approaches: the differences between respective
qeff

t,α values do not exceed 0.1 e b. Larger differences are
seen for the neutrons: For about 50% of calculated or-
bitals (ν[402]5/2±i , ν[411]1/2±i , ν[411]3/2+i , ν[413]5/2−i ,
ν[530]1/2+i , and ν[532]5/2+i), the difference between qeff

t,α

values in CHF+SLy4 and CRMF+NL1 exceeds 0.1 e b.
Interaction (mixing) between those close-lying states (see
Fig. 2), predicted differently in the two approaches, is the
most likely reason for the deviations seen.

The results of CHF+SLy4 were compared with experi-
mental transition moments in Refs. [20,21]. Here, we show in
Fig. 4 a comparison between CRMF+NL1 and experiment
for the relative transition quadrupole moments δQt (k) in
different highly deformed and SD bands in nuclei with Z =
57–62 involving i13/2 neutrons and/or g9/2 proton holes. The

0.0
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Q
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eb
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FIG. 4. Experimental (closed symbols with
error bars) and calculated (CRMF+NL1, open
symbols) differential transition quadrupole mo-
ments for highly deformed bands in Ce, Pr, Nd,
Pm, and Sm isotopes. The experimental data
were taken from Refs. [20,21] and references
quoted therein. The values of δQt for the SD
band in 142Sm are shown in the inset. Dashed
lines are drawn to guide the eye.
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TABLE II. Effective s.p. charge quadrupole moments qeff
20,α and qeff

22,α as well as the transition quadrupole moments qeff
t,α

(all in e b) calculated in CHF+SLy4 and CRMF+NL1.

State CSHF+SLy4 CRMF+NL1
[Nnz�]�r

qeff
20,α qeff

22,α qeff
t,α qeff

20,α qeff
22,α qeff

t,α

ν [402] 5
2

+i −0.35 ± 0.01 0.14 ± 0.06 −0.04 ± 0.04 −0.26 ± 0.02 −0.02 ± 0.01 −0.25 ± 0.02

ν [402] 5
2

−i −0.34 ± 0.02 0.08 ± 0.08 −0.38 ± 0.05 −0.26 ± 0.02 −0.07 ± 0.02 −0.22 ± 0.03

ν [411] 1
2

+i −0.15 ± 0.02 −0.24 ± 0.10 −0.01 ± 0.06 −0.11 ± 0.02 0.09 ± 0.02 −0.16 ± 0.02

ν [411] 1
2

−i −0.12 ± 0.01 0.06 ± 0.06 −0.16 ± 0.04 −0.06 ± 0.02 −0.17 ± 0.02 0.04 ± 0.02

ν [411] 3
2

+i −0.15 ± 0.04 0.20 ± 0.20 −0.26 ± 0.12 −0.13 ± 0.03 −0.02 ± 0.03 −0.11 ± 0.03

ν [411] 3
2

−i −0.11 ± 0.05 −0.05 ± 0.24 −0.08 ± 0.15 −0.12 ± 0.03 0.02 ± 0.03 −0.12 ± 0.03

ν [413] 5
2

+i −0.13 ± 0.02 −0.05 ± 0.10 −0.10 ± 0.06 −0.13 ± 0.03 −0.04 ± 0.03 −0.10 ± 0.03

ν [413] 5
2

−i −0.12 ± 0.03 −0.12 ± 0.13 −0.05 ± 0.08 −0.11 ± 0.02 0.15 ± 0.03 −0.20 ± 0.03

ν [523] 7
2

+i
0.03 ± 0.01 −0.00 ± 0.05 0.03 ± 0.03 0.05 ± 0.01 0.00 ± 0.01 0.04 ± 0.01

ν [523] 7
2

−i
0.04 ± 0.01 −0.01 ± 0.05 0.05 ± 0.03 0.01 ± 0.02 −0.00 ± 0.02 0.01 ± 0.02

ν [530] 1
2

+i
0.22 ± 0.01 −0.21 ± 0.05 0.34 ± 0.03 0.17 ± 0.01 −0.09 ± 0.01 0.22 ± 0.01

ν [530] 1
2

−i
0.17 ± 0.01 −0.01 ± 0.05 0.18 ± 0.03 0.19 ± 0.01 0.10 ± 0.01 0.13 ± 0.01

ν [532] 3
2

+i
0.21 ± 0.03 0.21 ± 0.13 0.09 ± 0.08 – – –

ν [532] 3
2

−i
0.17 ± 0.03 0.03 ± 0.13 0.15 ± 0.08 – – –

ν [532] 5
2

+i
0.19 ± 0.03 −0.08 ± 0.20 0.24 ± 0.12 0.17 ± 0.03 −0.02 ± 0.03 0.18 ± 0.03

ν [532] 5
2

−i
0.24 ± 0.03 −0.01 ± 0.20 0.25 ± 0.12 0.38 ± 0.03 0.00 ± 0.03 0.38 ± 0.03

ν [541] 1
2

+i
0.35 ± 0.03 −0.04 ± 0.13 0.38 ± 0.08 0.35 ± 0.02 −0.00 ± 0.02 0.35 ± 0.03

ν [541] 1
2

−i
0.37 ± 0.03 0.01 ± 0.14 0.36 ± 0.08 0.33 ± 0.03 0.04 ± 0.03 0.30 ± 0.03

ν 6−i
1 0.38 ± 0.01 0.21 ± 0.03 0.26 ± 0.02 0.40 ± 0.01 0.12 ± 0.01 0.33 ± 0.01

ν 6+i
2 0.36 ± 0.01 −0.01 ± 0.04 0.37 ± 0.03 0.36 ± 0.01 −0.01 ± 0.01 0.37 ± 0.01

ν 6−i
3 0.35 ± 0.05 −0.06 ± 0.22 0.38 ± 0.13 – – –

π [301] 1
2

+i
0.51 ± 0.05 −0.10 ± 0.24 0.57 ± 0.14 – – –

π [404] 9
2

+i −0.32 ± 0.01 0.10 ± 0.04 −0.38 ± 0.02 −0.37 ± 0.01 0.02 ± 0.01 −0.38 ± 0.01

π [404] 9
2

−i −0.32 ± 0.01 0.09 ± 0.04 −0.37 ± 0.02 −0.37 ± 0.01 0.02 ± 0.01 −0.38 ± 0.01

π [411] 3
2

+i −0.05 ± 0.02 0.10 ± 0.07 −0.10 ± 0.05 – – –

π [411] 3
2

−i
0.00 ± 0.01 −0.22 ± 0.07 0.12 ± 0.04 – – –

π [422] 3
2

+i
0.33 ± 0.02 −0.27 ± 0.10 0.48 ± 0.06 0.33 ± 0.03 −0.13 ± 0.02 0.40 ± 0.03

π [422] 3
2

−i
0.34 ± 0.02 0.14 ± 0.10 0.25 ± 0.06 0.28 ± 0.02 0.16 ± 0.02 0.19 ± 0.02

π [532] 5
2

+i
0.43 ± 0.01 −0.05 ± 0.05 −0.46 ± 0.03 0.41 ± 0.02 −0.04 ± 0.01 0.43 ± 0.02

π [532] 5
2

−i
0.56 ± 0.03 −0.07 ± 0.09 0.60 ± 0.05 0.54 ± 0.03 0.05 ± 0.03 0.51 ± 0.04

π [541] 1
2

−i
0.58 ± 0.02 −0.01 ± 0.10 0.59 ± 0.06 – – –

π [541] 3
2

+i
0.50 ± 0.01 −0.05 ± 0.06 0.52 ± 0.04 0.48 ± 0.01 −0.10 ± 0.01 0.54 ± 0.01

π [541] 3
2

−i
0.57 ± 0.01 −0.12 ± 0.04 0.63 ± 0.03 0.50 ± 0.01 −0.10 ± 0.01 0.56 ± 0.01

π [550] 1
2

−i
0.49 ± 0.05 −0.06 ± 0.22 0.52 ± 0.14 0.47 ± 0.04 −0.02 ± 0.04 0.48 ± 0.04

agreement between experiment and theory is quite remarkable
with all the experimental trends discussed in Refs. [20,21] well
reproduced by calculations. One should note that the CRMF
and CHF results are close to each other. The general pattern
of decreasing Qt with increasing Z and N is consistent with
the general expectation that as one adds particles above a
deformed shell gap, the deformation-stabilizing effect of the

gap is diminished. This trend continues until a new “magic”
deformed number is reached. Such a situation occurs when
going from 132Ce toward Z = 62 and N = 80 (142Sm), where
a large jump in transition quadrupole moment takes place,
marking the point at which it becomes energetically favorable
to fill the high-j πi13/2 and νj15/2 orbitals responsible for the
existence of the A ∼ 142 SD island.
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It is gratifying to see that CRMF+NL1 reproduces the
value of Qt in 142Sm based on the 131Ce core (see inset in
Fig. 4). Earlier on, it was demonstrated in Refs. [9,20,21] that
this Qt value can be also reproduced within CHF by using
either a 131Ce or a 152Dy core.

C. Effective angular momenta j eff
α (s.p. alignments)

In this section, we evaluate and interpret the effective s.p.
contributions to the total angular momentum. Table III displays
effective s.p. angular momenta j eff

α for the s.p. orbitals of
interest. The relative uncertainties in calculated j eff

α values
are on average larger than those for effective s.p. quadrupole
moments. This is because, on the mean-field level, polarization
effects pertaining to the angular momentum are more complex
than those for quadrupole moments: They involve not only
shape changes but also the variations of time-odd mean fields
[41–43]. For eight proton states calculated in both approaches,
the mean uncertainties are 0.19h̄ and 0.18h̄ in CHF+SLy4 and
CRMF+NL1, respectively. The same holds also for the set of
18 neutron states, where the average uncertainties are 0.25h̄
and 0.20h̄ in CHF+SLy4 and CRMF+NL1, respectively.

Table III also compares CHF+SLy4 expectation values of
the s.p. angular momentum j bare

α = 〈ĵ 〉α with their effective
counterparts, j eff

α . It is seen that these two quantities differ
considerably. As discussed in Ref. [42], this is due to both
shape polarization and time-odd mean-field effects. It is
also important to remember that, unlike the cranked Nilsson
scheme, in self-consistent models the expectation value of the
projection of the s.p. angular momentum on the rotation axis,
j bare
α , cannot be extracted from the slope of its s.p. Routhian

versus rotation frequency [44].
Our results indicate that the additivity principle for

angular momentum alignment does not work as precisely
as it does for quadrupole moments. This conclusion is
in line with a similar analysis in the A ∼ 60 region of
superdeformation [45,46]. A configuration assignment based
on relative alignments depends on how accurately these
alignments can be predicted. For example, the application of
effective (relative) alignment method in the A ∼ 140–150
region of superdeformation requires an accuracy in the
prediction of relative angular momenta on the level of
∼ 0.3h̄ and ∼0.5h̄ for nonintruder and intruder orbitals,
respectively [8,13,47]. In the highly deformed and SD nuclei
from the A ∼ 60–80 mass region, these requirements for
accuracy are somewhat relaxed (see Refs. [48,49]). We
expect that in the A ∼ 130 region, the relative alignments
should be predicted with a precision similar to that in the
A ∼ 140–150 region. However, for a number of orbitals (e.g.,
ν[411]3/2±i , ν[532]5/2±i , ν6−i

3 , π [301]1/2+i , π [413]5/2−i ,
and π [550]1/2−i), the calculated uncertainties in j eff

α are close
to 0.5h̄, and this probably prevents reliable assignments based
on the additivity principle for the configurations involving
these orbitals. The situation becomes even more uncertain if
several orbitals with high uncertainties in j eff

α are occupied.
Let us also remark that although theory provides effective

alignments at a fixed rotational frequency, relative alignments
extracted from experimental data may show appreciable

TABLE III. Effective s.p. angular momentum alignments j eff
α (in

h̄) of the active orbitals calculated in CHF+SLy4 and CRMF+NL1.
In the second column, the bare s.p. angular momenta j bare

α , calculated
with CHF+SLy4, are also shown.

State CHF+SLy4 CRMF+NL1
[Nnz�]�r

j bare
α j eff

α

j eff
α

ν[402] 5
2

+i −0.528 0.58 ± 0.14 0.47 ± 0.15

ν [402] 5
2

−i −0.493 0.51 ± 0.20 0.38 ± 0.26

ν [411] 1
2

+i
0.411 0.67 ± 0.24 0.64 ± 0.17

ν [411] 1
2

−i
0.380 0.40 ± 0.15 0.09 ± 0.16

ν [411] 3
2

+i −0.092 1.72 ± 0.46 1.35 ± 0.29

ν [411] 3
2

−i
0.077 0.56 ± 0.57 1.08 ± 0.29

ν [413] 5
2

+i −0.316 −0.10 ± 0.23 0.44 ± 0.27

ν [413] 5
2

−i −0.428 0.12 ± 0.30 0.14 ± 0.26

ν [523] 7
2

+i −0.908 −1.10 ± 0.10 −1.24 ± 0.12

ν [523] 7
2

−i −0.974 −1.19 ± 0.12 −0.92 ± 0.18

ν [530] 1
2

+i
1.548 1.19 ± 0.11 1.86 ± 0.09

ν [530] 1
2

−i
0.564 0.88 ± 0.11 0.93 ± 0.10

ν [532] 3
2

+i
0.171 −0.34 ± 0.30 –

ν [532] 3
2

−i
0.835 0.44 ± 0.31 –

ν [532] 5
2

+i −0.331 −0.89 ± 0.46 −0.95 ± 0.29

ν [532] 5
2

−i
0.417 −1.06 ± 0.46 −1.29 ± 0.30

ν [541] 1
2

+i
1.793 0.92 ± 0.31 0.95 ± 0.25

ν [541] 1
2

−i
0.466 0.89 ± 0.32 −0.34 ± 0.28

ν 6−i
1 4.840 4.78 ± 0.08 4.59 ± 0.08

ν 6+i
2 4.031 3.42 ± 0.11 3.15 ± 0.10

ν 6−i
3 2.662 0.77 ± 0.50 –

π [301] 1
2

+i −0.432 1.23 ± 0.55 –

π [404] 9
2

+i −0.719 −0.00 ± 0.09 0.09 ± 0.09

π [404] 9
2

−i −0.719 −0.00 ± 0.09 0.11 ± 0.09

π [411] 3
2

+i −0.249 0.81 ± 0.18 –

π [411] 3
2

−i −0.062 0.65 ± 0.16 –

π [413] 5
2

−i −0.539 −1.52 ± 0.53 –

π [422] 3
2

+i −0.315 −0.19 ± 0.25 −0.21 ± 0.27

π [422] 3
2

−i
0.510 −0.84 ± 0.23 −0.38 ± 0.24

π [532] 5
2

+i −0.253 −0.90 ± 0.13 −1.11 ± 0.16

π [532] 5
2

−i −0.022 −0.67 ± 0.20 –

π [541] 1
2

−i
0.944 1.75 ± 0.23 –

π [541] 3
2

+i
1.743 1.57 ± 0.13 1.18 ± 0.11

π [541] 3
2

−i −0.057 −0.54 ± 0.10 −0.48 ± 0.11

π [550] 1
2

−i
2.819 2.99 ± 0.52 2.86 ± 0.40

frequency dependence (see for instance Ref. [45]). Therefore,
for reliable configuration assignments, measured relative
alignments should be compared with calculated ones over a
wide frequency range.
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FIG. 5. Histogram of differences between self-consistent values
obtained in CHF and CRMF and those given by the additivity formula
[see, e.g., Eq. (34)]. The results for Q20 are shown in the two upper
panels and those for the total angular momentum are displayed in the
two lower panels.

D. Variance and distribution of residuals

One of the main outcomes of this study is the set of effective
s.p. moments qeff

20,α, qeff
22,α, qeff

t,α , and alignments j eff
α . The quality

of the additivity principle can be assessed by studying the
distribution of first moments of residuals (25) (i.e., differences
between the self-consistently calculated values of physical
observables and those obtained from the additivity principle).
For instance, for the quadrupole moment Q20, the quantity of
interest is

�Q20 =
∑

α

cα(k)qeff
20,α − δQ20(k). (34)

Deviations �Q22,�Qt , and �J are given by similar expres-
sions. Figures 5 and 6 show distributions of these deviations.
The quality of the additivity principle for Q20 is shown in
the top two panels of Fig. 5. In the CHF model, the majority
of �Q20 values (more than 97.8% of the total number) fall
comfortably within the interval of ±0.1 e b. This corresponds
to a relative distribution width of about 1.3%. In CRMF, the
distribution is even narrower, with more than 90% of �Q20

values falling within the ±0.05 e b interval, or less than 0.7%
of the total value.

The results for the total angular momentum are shown in
the bottom panels of Fig. 5. In CRMF, the distribution of
deviations is very narrow, with only 10% of the cases differing
by more than ±h̄/2. The CHF histogram is somewhat wider,
but more than 90% of deviations fall within the ±h̄/2 interval.

FIG. 6. Similar to Fig. 5 except for Q22.

Taking into consideration that the experimental spins of highly
deformed and SD bands are often assigned with uncertainties
that are multiples of h̄, our results give considerable encour-
agement for theoretical interpretations based on the method of
relative (effective) alignments [8,13,47].

In CHF and CRMF, the distributions of deviations of charge
quadrupole moments Q22 (Fig. 6) are relatively narrow. Again,
for CRMF, nearly 95% of deviations fall within ±0.025 e b,
and 98% fall within ±0.1 e b. For CHF, the distribution
of deviations is somewhat wider, with more than 90% of
deviations falling within the ±0.2 e b interval.

We interpret these results as a strong indication that the
additivity principle works fairly well in self-consistent cranked
theories. Whereas distributions of deviations in Q20 and
Q22 are rather similar in the CHF+SLy4 and CRMF+NL1
models (see top of Figs. 5 and 6), deviations in angular
momentum differ between these two approaches. Considering
that (i) the uncertainties in j eff

α are similar in both methods
(Sec. III C) and (ii) shape polarization effects are not that
different (Sec. III B), one can conclude that the observed
difference is due to the polarization of time-odd mean fields.
However, the detailed investigation of this effect is beyond the
scope of this study.

IV. CONCLUSIONS

The additivity principle in highly deformed and SD rota-
tional bands of the A ∼ 130 mass region has been studied
within the cranked Hartree-Fock theory based on the SLy4
energy density functional and the cranked relativistic mean-
field theory with the NL1 Lagrangian. The main results can be
summarized as follows:

(i) The two sets of effective s.p. charge quadrupole moments
qeff

20 and qeff
22 , transition quadrupole moments qeff

t , and
effective angular momenta j eff have been produced. This
rich output allows for an easy and simple determination
of transition quadrupole moments Qt in highly deformed
and SD bands in the A ∼ 130 mass region. In some
cases, configuration assignments based on the relative
(effective) alignment method can be done based on the
calculated values of effective angular momenta j eff (see,
however, Sec. III C).

(ii) Our statistical analysis of distributions of residuals
confirms that the additivity principle is well fulfilled
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in the self-consistent approaches that properly take into
account polarization effects.

(iii) The contribution from the triaxial degree of freedom to
the transition quadrupole moment is usually small, but it
cannot be ignored when aiming at a quantitative repro-
duction of experimental data. The average magnitude of
qeff

22 values is greater in the CHF+SLy4 model than in
CRHF+NL1, thus suggesting that the potential energy
surfaces produced in the former model are more γ -soft.

(iv) For the majority of s.p. orbitals, there is a considerable
difference between the effective and bare expectation
values of one-body operators. This indicates the im-
portance of polarization effects (shape polarization for
quadrupole moments and the shape and time-odd-mean-
field polarization for angular momentum alignment).

(v) With very few exceptions, there is a great deal of
consistency between CHF and CRMF results for the
effective s.p. moments and alignments.

So far, the additivity principle has been investigated only
for highly deformed or SD bands in the A ∼ 130–150 mass
region. It would be interesting to extend such studies to
other high-spin structures. The most promising candidates are

(i) terminating bands in the A ∼ 110 mass region characterized
by very weak pairing and appreciable γ -softness [14] and
(ii) SD rotational bands in the A ∼ 60 and A ∼ 80 mass
regions of superdeformation [46]. Work along these lines is
in progress.
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