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We derive coupled-cluster equations for three-body Hamiltonians. The equations for the one- and two-body
cluster amplitudes are presented in a factorized form that leads to an efficient numerical implementation. We
employ low-momentum two- and three-nucleon interactions and calculate the binding energy of 4He. The results
show that the main contribution of the three-nucleon interaction stems from its density-dependent zero-, one-, and
two-body terms that result from the normal ordering of the Hamiltonian in coupled-cluster theory. The residual
three-body terms that remain after normal ordering can be neglected.
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I. INTRODUCTION

One of the central challenges in nuclear theory is to
understand and predict the structure of nucleonic matter based
on microscopic nucleon-nucleon (NN ) and many-nucleon
interactions. In recent years, there has been significant progress
in exact calculations of ground and excited states of light nuclei
based on various high-precision interactions fitted to NN

data [1–7]. These results clearly show that three-nucleon forces
(3NFs) contribute significantly: Without 3NFs, the binding
energies depend strongly on the NN potential used, which
can be traced to scheme and model dependences in any theory
restricted to NN interactions. The existence of 3NFs is not
surprising, because nucleons are not point particles. There
are always virtual excitations (high-momentum nucleons and
�-isobars) or internal degrees of freedom (quarks and gluons)
that have been “integrated out.” This directly leads to three-
and many-nucleon interactions. The modern understanding is
that nuclear interactions are effective interactions and depend
on the resolution scale given by a cutoff � of the effective
theory (see, for example, Ref. [8]). Exact calculations are
cutoff independent up to the effects of omitted higher-order
interactions, and therefore varying the resolution scale is a
powerful tool to analyze the predictive power of theoretical
calculations.

The study of 3NFs in systems beyond the lightest nuclei is
an important goal. This requires a flexible technique to solve
the many-body problem, including NN and 3N interactions.
Coupled-cluster theory is a promising tool for this endeavor.
This method originated in nuclear physics [9,10] and is today
mostly propelled through its importance in quantum chemistry
[11,12]. For reviews, we refer the reader to Refs. [13–17].
After the seminal work by the Bochum group [13], Heisenberg
and Mihaila employed coupled-cluster theory for structure
calculations of 16O based on realistic NN potentials [18].
For their calculation of the charge form factor of 16O, they
also included selected contributions from 3NFs that could be

cast into the form of density-dependent NN interactions [19].
Another recent approach employed ab initio coupled-cluster
theory for structure calculations in closed-shell nuclei 4He and
16O [20–22], in open-shell nuclei as the neighbors of 16O [23],
and weakly bound and unbound helium isotopes [24]. These
calculations were limited to NN interactions. It is the purpose
of this article to develop coupled-cluster theory for three-body
Hamiltonians. This extension of the coupled-cluster method
might also find applications in condensed-matter theory and
quantum chemistry [25–27].

A current frontier in nuclear structure theory is to de-
termine consistent 3NFs corresponding to the different NN

interactions and with predictive power when extrapolated to
the extremes of isospin and to moderate densities. Several
theoretical approaches are currently being used. The Tucson-
Melbourne 3NF already employed symmetries of quantum
chromodynamics (QCD) in its construction [28,29]. Existing
phenomenological 3NFs include the Fujita-Miyazawa force
based on 2π exchange with an intermediate �-isobar [30] and
also various shorter-ranged 3NFs [31–34]. This approach has
led to a very successful description of light nuclei (for a review
see Ref. [2]).

Another approach is to systematically construct NN and
higher-order interactions within the framework of chiral
effective field theory (EFT) [35–38]. Chiral interactions are
expanded in powers of a typical momentum of nucleons in
nuclei and in powers of the pion mass, both generically called
Q, over the EFT breakdown scale �χ ∼ 1 GeV (≈ 5 fm−1).
The EFT power counting naturally explains the hierarchy of
NN , 3N, and higher-body interactions [39], which enter only
in subleading orders and make calculations for complex nuclei
based on NN and 3N interactions meaningful. At this point,
the leading 3NF has been implemented [40–42].

Nuclear interactions require regularization and renormal-
izaton to be meaningful, and with EFT, usually a momentum
cutoff scheme is used [37,38,43,44]. The description of the
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NN data is not completely independent of the cutoff, but
the cutoff variation decreases with increasing order, because
the cutoff dependences can be absorbed by higher-order
contact interactions. In this way, chiral EFT implements the
renormalization group (RG) running of the interactions up to
higher-order terms. This is reflected in the leading chiral 3NF,
which includes a 3N contact term to be fitted to 3N data.
In principle, nuclear structure calculations based directly on
chiral interactions are feasible [7,45–47]. However, the typical
cutoffs (� ≈ 2.5–3 fm−1) are somewhat too large to use chiral
interactions without resummations or prediagonalizations in
many-body calculations.

Renormalization group methods can be used to evolve nu-
clear interactions to lower momenta, which leads to improved
convergence in few- and many-body calculations [48–51]. The
resulting low-momentum interactions, known generically as
Vlow k , have variable momentum cutoffs and are approximately
independent of the starting NN interaction for cutoffs � <∼
2 fm−1 [48,49]. The RG evolution preserves the long-range
parts and, starting from chiral EFT interactions, generates
all higher-order contact operators needed to reproduce low-
energy NN observables. Moreover, with increasing orders
in EFT, the resulting Vlow k interactions are very similar
to low-momentum interactions obtained from conventional
potentials [49,52]. Because chiral EFT represents the most
general low-momentum expansion of nuclear forces, the above
observations motivate combining low-momentum interactions
with 3NFs from chiral EFT [50]. We will follow this approach
and employ Vlow k with the corresponding low-momentum 3NF
adjusted to the binding energies of 3H and 4He [50]. In this way,
we can expect to define approximately consistent NN and 3N
interactions. In this first study, we focus on the development of
the coupled-cluster method to include 3NFs and will present
results for only one cutoff. A study of the cutoff variation
and associated uncertainties due to higher-order many-body
interactions will be left to future work.

This article is organized as follows. In Sec. II we present
coupled-cluster theory and its extension to three-body Hamil-
tonians. In Sec. III, we solve the resulting coupled-cluster
amplitude equations at the singles and doubles (CCSD) level
for 4He based on low-momentum NN and 3N interactions.
Our findings are especially promising as they show that the
binding energy of 4He can be calculated based on those
parts of the 3NF that can be viewed as density-dependent
zero-, one-, and two-body forces. We summarize our results in
Sec. IV.

II. COUPLED-CLUSTER EQUATIONS FOR
THREE-NUCLEON FORCES

This is the main technical section of this article. In
the first subsection, we briefly recapitulate coupled-cluster
theory and the reformulation of the three-body Hamiltonian
in normal-ordered form. The second subsection deals with
the diagrammatic derivation and the factorization of the
coupled-cluster equations due to the residual three-body force
that remains after normal ordering of the Hamiltonian.

A. Coupled-cluster theory

We consider a pure three-body Hamiltonian. Coupled-
cluster theory for one- and two-body Hamiltonians is a mature
field, and we refer the reader to the reviews [13–17]. The
three-body Hamiltonian is written as

Ĥ3 = 1

36

∑
pqrstu

〈pqr||stu〉â†
pâ†

q â
†
r âuât âs . (1)

Here, 〈pqr||stu〉 denotes the antisymmetrized three-body
matrix elements, whereas â

†
p and âp create and annihilate a

fermion in the single-particle orbital p, respectively.
In coupled-cluster theory, the Fermi vacuum is a single-

particle product state |φ〉 = ∏A
i=1 â

†
i |0〉, where the A lowest-

energy orbitals are occupied. In a first step, we cast the
three-body interaction into a normal-ordered form with respect
to this vacuum. In what follows it is assumed that the
indices i, j, k, l,m label the occupied orbitals of |φ〉, whereas
a, b, c, d, e refer to the unoccupied orbitals of |φ〉. The former
indices run over the number no ≡ A of occupied orbitals,
whereas the latter run over the remaining number nu of
unoccupied orbitals. Typically, one has nu � no. Indices
referring to all orbitals are denoted as p, q, r, s, t, u; see, for
example, Eq. (1). The normal-ordered Hamiltonian is thus

Ĥ3 = 1

6

∑
ijk

〈ijk||ijk〉 + 1

2

∑
ijpq

〈ijp||ijq〉{â†
pâq}

+ 1

4

∑
ipqrs

〈ipq||irs〉{â†
pâ†

q âs âr} + ĥ3, (2)

where ĥ3 denotes the residual three-body Hamiltonian

ĥ3 ≡ 1

36

∑
pqrstu

〈pqr||stu〉{â†
pâ†

q â
†
r âuât âs}. (3)

Here, we used the {. . .} to denote normal ordering. Writing
the three-body Hamiltonian in normal-ordered form, it is clear
that the Hamiltonian separates into a zero-, one-, two-, and
a three-body term. The first three sums in Eq. (2) are the
vacuum expectation value, and the “density-dependent” one-
and two-body terms, respectively. Their treatment is standard
in coupled-cluster theory, as they simply modify the normal-
ordered two-body Hamiltonian from the NN interaction. In
this section, we focus on the residual three-body operator of
Eq. (3).

In coupled-cluster theory, the correlated state |ψ〉 is given
by a correlation operator exp (T̂ ) that acts onto a single-particle
product state |φ〉 = ∏A

i=1 â
†
i |0〉 of the A-body system by

|ψ〉 = eT̂ |φ〉. (4)

The cluster operator,

T̂ = T̂1 + T̂2 + . . . + T̂A, (5)

consists of a one-body cluster operator

T̂1 =
∑
ia

tai â†
aâi , (6)
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a two-body cluster operator

T̂2 = 1

4

∑
ijab

tab
ij â†

aâ
†
bâj âi , (7)

and so forth. Note that the two-body cluster amplitudes
tab
ij = −tba

ij = −tab
ji = tba

ji are fully antisymmetric. Clearly, T̂1

and T̂2 induce 1p-1h and 2p-2h excitations, respectively. In
what follows, we will limit the expansion, Eq. (5), of the
cluster operator to the one-body cluster, Eq. (6), and the
two-body cluster, Eq. (7), respectively. This approximation
is referred to as CCSD (“coupled-cluster theory with single
and double excitations”). CCSD is a powerful approximation
and a compromise between accuracy on the one hand and
computational effort on the other hand. One inserts the
ansatz Eq. (4) into the Schrödinger equation, multiplies with
exp (−T̂ ) from the left, and obtains the following set of
equations:

E = 〈φ|H |φ〉, (8)

0 = 〈φa
i |H |φ〉, (9)

0 = 〈φab
ij |H |φ〉. (10)

Here |φa1...an

i1...in
〉 = â

†
an

. . . â
†
a1 âi1 . . . âin |φ〉 is a np-nh excitation

of the product state |φ〉, and

H = exp (−T̂ )Ĥ exp (T̂ ) (11)

is the similarity-transformed Hamiltonian. This Hamiltonian
is a sum of one-, two-, and three-body Hamiltonians, i.e.,
Ĥ = Ĥ1 + Ĥ2 + Ĥ3. The treatment of this Hamiltonian within
coupled-cluster theory is well known, except for the residual
three-body term, Eq. (3), of the normal-ordered three-body
Hamiltonian Ĥ3.

The CCSD Eqs. (9) and (10) determine the one-particle
and two-particle cluster amplitudes tai and tab

ij , respectively.
These amplitudes can then be inserted into the first of the
CCSD equations, Eq. (8), to determine the ground-state
energy. Note that the similarity-transformed Hamiltonian of
Eq. (11) is not Hermitian, and CCSD is not a variational
approach. However, the similarity-transformed Hamiltonian
can be evaluated exactly for any truncation of the cluster
operator. In what follows, we will compute the corrections
to the energy, Eq. (8), and to the CCSD Eqs. (9) and (10) that
arise due to the residual three-body Hamiltonian.

B. Derivation of coupled-cluster equations

In this subsection, we derive the contribution of the residual
three-body term ĥ3 from Eq. (3) to the energy, Eq. (8), and the
cluster amplitudes, Eqs. (9) and (10). The final results are
given in Eq. (12) for the energy and in Eqs. (15) and (16) for
the cluster amplitudes, respectively. The contributions to the
energy and the coupled-cluster amplitudes can be derived, for
instance, by following the approach of Ref. [16]. The resulting
expressions contain 2, 15, and 51 terms for the energy and
the cluster amplitudes. Many of the individual terms consist
of subterms of similar structure. The theoretical derivation
presented in this subsection exploits this structure and leads to
an efficient numerical implementation.

FIG. 1. (Color online) Energy contributions of the residual three-
body Hamiltonian, Eq. (3), in the CCSD approximation.

It is most convenient to evaluate the matrix elements in
Eq. (8) of the similarity-transformed Hamiltonian, Eq. (11),
in a diagrammatic form (see, for example, Refs. [16,53]).
Diagrams are a useful book keeping device to keep track of
the (considerable) number of possible Wick contractions. We
refer the reader to the literature for a more detailed description.

In a first step, we determine the correction to the CCSD en-
ergy, Eq. (8), that is due to the residual three-body Hamiltonian
(3). The matrix element 〈φ|h3|φ〉 is a sum of all topologically
different diagrams, where the Hamiltonian, Eq. (3), is fully
contracted by the cluster operators. The two diagrams that
enter this expression are presented in Fig. 1. In these diagrams,
the thick horizontal bar represents the residual three-body
Hamiltonian, Eq. (3); the thin horizontal bars denote the
one-body and two-body cluster operators, respectively. Particle
and hole lines are also shown. If uncontracted, the former have
an arrow that points upward, whereas the latter have an arrow
that points downward. The corresponding algebraic expression
for the energy correction is

e3 = 〈φ|(Ĥ T̂1T̂2)c|φ〉 + 〈φ|
(

1

6
Ĥ T̂ 3

1

)
c

|φ〉,

= 1

4

∑
klmcde

〈klm||cde〉t ck tde
lm + 1

6

∑
klmcde

〈klm||cde〉t ck tdl t em.

(12)

This is the energy correction due to the residual three-body
Hamiltonian. Note that the computational effort of the energy,
Eq. (12), scales as O(n3

un
3
o). Note also that the summation over∑

kc tck is common to both diagrams and might therefore be
factored out. This is the basic idea behind the factorization [53]
and will be presented in detail below.

Let us consider the matrix element 〈φa
i |H |φ〉 appearing in

the CCSD Eq. (9). It is given by the sum over all topologically
different diagrams where one particle line and one hole line
are not contracted. Figure 2 shows the 15 diagrams that enter
this matrix element.

FIG. 2. (Color online) Contributions of the three-body Hamilto-
nian, Eq. (3), to the T̂1 cluster equation in the CCSD approximation.
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TABLE I. Memory multiplication factor m and computational cost factor c for forming intermediates through
contraction with the k-body cluster operator Tk(pnhm) via n particle lines and m hole lines.

T2(p2h2) T1(ph) T2(p2h) T1(p) T2(p2) T2(ph2) T2(ph) T2(p) T2(h2) T1(h) T2(h)

m (nuno)−2 (nuno)−1 n−2
u no/nu (no/nu)2 n−2

o 1 n2
o (nu/no)2 nu/no n2

uc

1 1 no no n2
o nu nuno nun

2
o n2

u nu n2
uno

The translation of these diagrams into algebraic expressions
is straightforward, but there are two reasons to not present them
here. First, the naive numerical implementation of the resulting
expressions would be inefficient. To see this, consider, for
instance, the third diagram in Fig. 2. The corresponding
algebraic expression is

− 1

2

∑
ckdlm

〈klm||cdi〉t ck tda
lm , (13)

and its naive evaluation costs O(n3
un

4
o) operations. However,

performing the summations involving the T̂1 cluster operator
first yields the intermediate

I lm
di ≡ 1

2

∑
ck

〈klm||cdi〉t ck , (14)

which only costs O(n2
un

4
o) operations and requires O(nun

3
o)

in memory. The subsequent contraction of this intermediate
with the remaining T̂2 cluster operator costs only O(n2

un
3
o)

operations. Clearly, the memory cost of the intermediate is
overcompensated by the reduction of computational cycles.
Note also that the intermediate Eq. (14) enters in the
evaluation of the seventh diagram depicted in Fig. 2. The
second reason is that the complexity of the involved diagrams
increases rapidly. The number of diagrams increases from
2 to 15 to 51, when going from Eq. (8) to Eq. (9) to
Eq. (10), respectively. The construction of each individual
diagram and its inspection regarding the construction and
use of intermediates then becomes cumbersome, and a more
systematic approach is called for. Similar comments apply
when improving the coupled-cluster wave function through
the inclusion of three-body or four-body cluster amplitudes.
One therefore considers a factorization of the coupled-cluster
equations [53]. This approach yields a very compact form
of the coupled-cluster equations and is particularly useful
for the numerical implementation [54–56]. So far, factorized
coupled-cluster equations have been derived in a two-step
procedure. The first step consists of constructing all topo-
logically different coupled-cluster diagrams. In a second step,
these diagrams are analyzed and repeatedly decomposed into
simpler intermediates that undergo single contractions. Here,
we proceed differently and present a direct diagrammatic
derivation of the factorized coupled-cluster equations. Our
derivation avoids the explicit construction of all individual
coupled-cluster diagrams.

We have to decide in which order multiple contractions
of the Hamiltonian with the cluster operators should be
performed. Let Tk(pnhm) denote the contraction of the Hamil-
tonian with the k-body cluster operator T̂k via n particle lines
and m hole lines. The contraction of Tk(pnhm) with an object

of i particle lines and j hole lines costs cni
un

j
o computational

operations and results in an object of size mni
un

j
o . Here, c

and m denote the computational cost and memory multiplier,
respectively, and one finds

c = nk−n
u nk−m

o ,

m = nk−2n
u nk−2m

o .

Based on this analysis, we find that the cost of two subsequent
contractions labeled TA and TB , respectively, is proportional
to c(TA) + m(TA)c(TB) when contraction TA is first and
proportional to c(TB) + m(TB)c(TA) when contraction TB is
first. Table I shows (from left to right) the optimal order in
which subsequent contractions should be performed, under
the condition that 1 � no � nu and n2

o < nu. We also listed
the relative computational cost c, and the memory multiplier
m. For the first seven entries, the order is easily understood.
These contractions do not yield an increase of the size of the
contracted object (because m � 1), and the order is therefore
determined by the computational cost. The remaining four
contractions increase the size of the contracted object (because
m > 1), and it is usually most efficient to perform the compu-
tationally more expensive contraction before performing the
second contraction on an object with increased size.

Let us now turn to the diagrammatic factorization of the
coupled-cluster equations. Considering Eq. (9) and Fig. 2,
we have to construct all coupled-cluster diagrams with one
incoming hole line and one outgoing particle line. These
diagrams should be constructed from simpler diagrams, adding
one contraction at each step. For the residual three-body
Hamiltonian, the root is clearly given by the diagram 1 in
Fig. 3. This diagram is the only one that has three incoming
particle lines and three outgoing hole lines. Diagrams 2 and
3 have one outgoing particle line and one incoming hole line,
respectively, and also have a total of six outgoing and incoming
lines. They are sums of two diagrams. The first is the residual
three-body Hamiltonian with this appropriate particle and hole
lines, whereas the second diagram is a contraction of diagram
1 with a T̂1 cluster operator.

In what follows, we adopt the following convention. For a
diagram that is the sum of diagrams, we label the first, second,
third, etc., term of the sum by a, b, and c, respectively. For
example, diagram 2 is the sum of diagram 2a and diagram 2b.
These labels are not printed in Fig. 3. Diagram 4 is the sum of
four diagrams, namely the corresponding residual three-body
Hamiltonian and three contractions of previously generated
diagrams. Note that of the two diagrams of diagram 2, only
diagram 2a enters. This is due to the order specified in Table I.
Diagram 2b is a contraction of diagram 1 with T1(p), and this
contraction cannot be followed by the contraction T1(p). It is
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1
2

1
2

1
2

1
2

1

2

3

1

1

1 2a 34

5

6

7

1

1 2a 5

1 3a 5

8 2a 3 4a 5

6b 7

9

10

1 5

2a 5 6b

11 3a 5 7b 9

9

12 4a 6b 7 8c

9 10ac 11

FIG. 3. (Color online) Matrix elements of
the residual three-body part of the similarity-
transformed Hamiltonian, Eq. (11), that enter
the amplitude Eq. (9).

now clear how to proceed. Diagrams 5 to 8 have a total of four
incoming and outgoing lines, whereas diagrams 9 to 12 have
a total of two incoming and outgoing lines, respectively. Note
the peculiar factor 1/2 in front of diagram 9b. This diagram
is a T1(ph) contraction of diagram 5b, which itself is also
a T1(ph) contraction. The factor 1/2 will be needed for the
translation into algebraic expressions. Similar comments apply
to diagrams 10c, 11c, and 12d. Note that diagram 12 consists
of all diagrams with one incoming hole line and one outgoing

particle line. The recursive expansion of the corresponding
right-hand side yields indeed all diagrams depicted in Fig. 2,
and therefore factors the CCSD Eq. (9).

Let us translate Fig. 2 into algebraic expressions. We use
the convention that the intermediate I

q1,q2,...
p1,p2,... has incoming lines

p1, p2, . . . and outgoing lines q1, q2, . . ., respectively. In what
follows, the intermediate I (ν) corresponds to diagram ν of
Fig. 3. We restrict ourselves to those intermediates that
are needed for the construction of diagram 12 and denote
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the diagrams 1, 2a, 3a, and 4a directly in terms of the
corresponding three-body matrix elements. The result is

I (5)km
ce = 1

4

∑
dl

〈klm||cde〉tdl ,

I (6b)ka
ce = 1

2

∑
dl

〈kla||cde〉tdl ,

I (7b)km
ci = 1

2

∑
dl

〈klm||cdi〉tdl ,

I (7)km
ci = 1

4

∑
lde

〈klm||cde〉tde
li + I (7b)km

ci

+ 2
∑

e

I (5)km
ce tei ,

I (8c)ka
ci =

∑
dl

〈kla||cdi〉tdl ,

I (9)kc = 1

4

∑
delm

〈klm||cde〉tde
lm + 2

∑
em

I (5)km
ce tem,

and

I (10ac)ae = 1

4

∑
ckdl

〈kla||cde〉t cdkl +
∑
kc

I (6b)ka
ce t

c
k ,

I (11)mi = 1

4

∑
ckdl

〈klm||cdi〉t cdkl + 2
∑
kce

I (5)km
ce tceki

+
∑
kc

I (7b)km
ci t ck +

∑
c

I (9)mc tci .

In terms of these intermediates, the correction to the right-hand
side of the CCSD Eq. (9) reads

1

4

∑
ckdl

〈kla||cdi〉t cdkl +
∑
cke

I (6b)ka
ce t

ce
ki −

∑
ckm

I (7)km
ci t cakm

+ 1

2

∑
kc

I (8c)ka
ci t

c
k +

∑
ck

I (9)kc t
ca
ki +

∑
e

I (10ac)ae t
e
i

−
∑
m

I (11)mi tam. (15)

These terms have to be added to the well-known CCSD
equation for the T1-cluster amplitudes based on two-body
Hamiltonians.

For the factorization of the CCSD Eq. (10), one has to
construct all diagrams with two incoming hole lines and two
outgoing particle lines. Their number is 51, and we directly
derive them in a factorized form. Figure 4 shows the factorized
diagrams that are needed for the recursive construction of the
CCSD Eq. (10). The corresponding algebraic expressions for
the intermediates are

I (3b)klm
cdi = 1

12

∑
e

〈klm||cde〉t ei ,

I (3)klm
cdi = 1

12
〈klm||cdi〉 + I (3b)klm

cdi ,

I (4c)kla
cdi = 1

4

∑
e

〈kla||cde〉t ei ,

I (7c)km
ci = 2

∑
e

I (5)km
ce tei ,

I (7ab)km
ci = I (7)km

ci − I (7c)km
ci ,

I (8ac)ka
ci = 1

2

∑
lde

〈kla||cde〉tde
li + I (8c)ka

ci ,

I (8b)ka
ci = −6

∑
lmd

I (3)klm
cdi t

da
lm ,

I (8d)ka
ci = 4

∑
me

I (5)km
ce teami,

I (8e)ka
ci = 2

∑
e

I (6b)ka
ce t

e
i ,

I (8abce)ka
ci = I (8ac)ka

ci + I (8b)ka
ci + I (8e)ka

ci ,

I (10abc)ae = I (10ac)ae − 2
∑
kmc

I (5)km
ce tcakm,

I (14)klm
idj = 1

12
〈klm||idj 〉 + 1

24

∑
ce

〈klm||cde〉t ceij

+
∑

c

[
1

6
〈klm||cdj 〉 + I (3b)klm

cdj

]
t ci ,

and

I (15)ab
ce = 1

2

∑
ld

〈alb||cde〉tdl ,

I (16)km
ij = 1

4

∑
cdl

〈klm||cdj 〉tdc
li + 1

2

∑
ce

I (5)km
ce tceij

+
∑

c

[
I (7ab)km

cj + 1

2
I (7c)km

cj

]
t ci

+ 1

4

∑
ld

〈klm||idj 〉tdl ,

I (18)klb
idj = 1

4
〈klb||idj 〉 + 1

8

∑
ce

〈klb||cde〉t ceij

+
∑

c

[
1

2
〈klb||cdj 〉 + I (4c)klb

cdj

]
t ci ,

I (19ac)ab
cj = 1

2

∑
lde

〈alb||cde〉tde
lj +

∑
ld

〈alb||cdj 〉tdl ,

I (19b)ab
cj = 2

∑
e

I (15)ab
ce t

e
j ,

I (20a − g, i)kb
ij = 1

2

∑
cld

〈klb||cdj 〉t cdil + 1

2

∑
ec

I (6b)kb
ce t

ce
ij

+ 2
∑
mc

I (7)mk
ci t cbmj + 1

2

∑
ld

〈klb||idj 〉tdl

+
∑

c

[
I (8ac)kb

cj + I (8e)kb
cj

]
t ci

+ 1

2

∑
c

I (9)kc t
cb
ij − 3

∑
ldm

I (14)klm
idj tdb

lm ,

I (20h)kb
ij = −2

∑
m

I (16)km
ij tbm.
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19b19ac 20a–g,i 20h
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FIG. 4. (Color online) Additional diagrams
needed for the contributions of the residual
three-body Hamiltonian, Eq. (3), to the CCSD
Eq. (10).
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The residual three-body Hamiltonian, Eq. (3), thus leads to
the following correction, to be added to the right-hand side of
the CCSD Eq. (10),

∑
ld

〈alb||idj 〉tdl + 1

2
P (ij )

∑
lcd

〈alb||cdj 〉tdc
li

+P (ab)P (ij )
∑
kc

[
I (8abce)ka

ci + 1

2
I (8d)ka

ci

]
t cbkj

+P (ab)
∑

e

I (10abc)ae t
eb
ij − P (ij )

∑
m

I (11)mi tab
mj

+
∑
ce

I (15)ab
ce t

ce
ij + P (ij )

∑
km

I (16)km
ij tab

km

−P (ab)P (ij )
∑
kld

I (18)klb
idj t

da
lk + P (ij )

×
∑

c

[
I (19ac)ab

cj + 1

2
I (19b)ab

cj

]
t ci − P (ab)P (ij )

×
∑

k

[
I (20a − g, i)kb

ij + 1

2
I (20h)kb

ij

]
tak . (16)

Here the permutation P (ab) implies P (ab)Iab = Iab − Iba .
Again, these have to be added to the right-hand side of the
CCSD Eq. (10). Equation (12) for the energy correction, and
the expressions of Eqs. (15) and (16) for the cluster amplitudes
are the main technical results of this article. On expansion of
diagram 22 in Fig. 4, one gets indeed all 51 diagrams that enter
the coupled-cluster Eq. (10). The numerical implementation
of the terms in Eqs. (15) and (16) is straightforward. It is
interesting to analyze the resulting computational costs. The
most expensive intermediates I (18) and I (19ac) cost n4

un
4
o and

n5
un

2
o computational cycles, respectively. The most memory-

expensive object is the interaction 〈alb||cde〉, which enters the
construction of intermediates I (15) and I (19ac) and requires
the storage of n5

uno real numbers. In our largest calculations
for 4He, we have no = 4 and nu = 220.

III. APPLICATION TO 4He

We present the first ab initio coupled-cluster calculations
including 3NFs. Our results are based on low-momentum NN

[49] and 3N [50] interactions,

H = T + Vlow k(�) + V3N(�). (17)

In this exploratory study we use a sharp cutoff � = 1.9 fm−1,
and Vlow k is derived from the Argonne v18 potential [57].
The corresponding 3N interaction is based on the leading
chiral 3NF and has been fitted to the 3H and 4He binding
energies in Ref. [50]. This 3NF consists of a long-range
2π -exchange part, determined by the low-energy coefficients
c1, c3, and c4, an intermediate-range 1π -exchange (“D-term”)
and a short-range contact interaction (“E-term”) [40,42].
The 3NF operators are multiplied by regulating functions
of the incoming and outgoing Jacobi momenta, fR(p, q) =
exp{−[(p2 + 3q2

4 )/�2]4}, with the same cutoff value � as in
Vlow k . For additional details on the 3NF, we refer the reader

to Refs. [50,51]. These low-momentum interactions can be
directly employed within coupled-cluster theory.

In this application of coupled-cluster theory we restrict
ourselves to a proof-of-principle calculation. For simplicity,
we have therefore considered only the 3NF channel with total
isospin T = 1/2, total angular momentum J = 1/2, and posi-
tive parity. This partial wave is the dominant contribution to the
binding energies of light nuclei: For 4He, the corresponding
Faddeev-Yakubovsky result is E = −28.20(5) MeV, which
differs only by 100 keV from the exact energy including all
partial waves, E = −28.30(5) MeV [50].

The coupled-cluster calculations are performed in a har-
monic oscillator (HO) basis, with basis parameters given by
the oscillator spacing h̄ω and the number N of oscillator shells.
We will present our results as a function of these parameters.
The matrix elements of the 3NF are calculated first in relative
HO states given by the expansion in 3N partial waves. For the
transformation from relative HO states to the single-particle
(“m-scheme”) basis, we essentially follow the Appendix of
Ref. [7]. However, we can also start from a 3NF in the non-anti-
symmetrized HO basis, which simplifies the transformations
given in Eqs. (B.9), (B.11), and (B.12) of Ref. [7], and
explicitly antisymmetrize the m-scheme matrix elements in the
last step of our transformation. This approach does not require
coefficients of fractional parentage. We verified that our matrix
elements agree with those obtained from a transformation
based on antisymmetrized relative HO matrix elements. We
further have checked that the transformation preserves the unit
matrix and that it yields identical matrix elements for σ 1 · σ 2

and σ 2 · σ 3 in antisymmetrized states.
In Fig. 5, our CCSD results for the binding energy of

4He are shown with and without 3NFs as a function of the
oscillator spacing and with increasing model space size. The
3NF contribution is repulsive, in agreement with the Faddeev-
Yakubovsky calculation [50], and correspondingly, the minima
in h̄ω are shifted to smaller oscillator spacings. We observe
a slow convergence at the last few 100-keV level, which is

10 15 20 25 30 35
hω (MeV)

-28

-27

-26

-25

-24

-23

-22

E
C

C
S

D
 (

M
eV

)

N=5

N=4

N=3

N=6

FIG. 5. (Color online) CCSD results for the binding energy of 4He
as a function of the oscillator spacing and for model spaces consisting
of N = 3 to N = 6 oscillator shells. The CCSD calculations are
based on low-momentum NN and 3N interactions, where the full
and dashed lines, respectively, denote the energy obtained with and
without 3NFs.
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 (
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)

FIG. 6. (Color online) (Data points) CCSD results (taken at the
h̄ω minima) for the binding energy of 4He with 3NFs as a function of
the number of oscillator shells. (Dashed lines) Exponential fit to the
data and asymptote of the fit. (Full line) Exact result.

due to the sharp cutoff in Vlow k . This might be improved by
using low-momentum interactions with smooth cutoffs [58].
Using the minima of the CCSD results with 3NFs, we make
an exponential fit of the form E(N ) = E∞ + a exp (−bN ) to
the data points. The result is shown in Fig. 6. The extrapolated
infinite model space value is E∞ = −28.09 MeV, which is
very close to the exact result E = −28.20(5) MeV.

It is interesting to analyze the different contributions �E

to the binding energy E. The individual contributions are
given in Fig. 7 for a model space of N = 4 oscillator shells
and h̄ω = 20 MeV. The main contribution stems from the
low-momentum NN interaction. The contributions from 3NFs
account only for about 10% of the total binding energy. This

(1) (2) (3) (4) (5)10
-4

10
-3

10
-2

10
-1

10
0

| ∆
E

 / 
E

C
C

S
D

 |

2-body only

0-body 3NF

1-body 3NF

2-body 3NF

residual 3NF

estimated triples corrections

FIG. 7. (Color online) Relative contributions |�E/E| to the
binding energy of 4He at the CCSD level. The different points denote
the contributions from (1) low-momentum NN interactions, (2) the
vacuum expectation value of the 3NF, (3) the normal-ordered one-
body Hamiltonian due to the 3NF, (4) the normal-ordered two-body
Hamiltonian due to the 3NF, and (5) the residual 3NFs. The dotted
line estimates the corrections due to omitted three-particle/three-hole
clusters.

is consistent with the chiral EFT power-counting estimate
〈V3N〉 ∼ (Q/�χ )3〈Vlow k〉 ≈ 0.1〈Vlow k〉 [50] (see also Table I
in Ref. [52]). The second, third, and fourth largest contribution
are due to the first, second, and third term on the right-hand
side of Eq. (2). These are the density-dependent zero-, one-,
and two-body terms, which resulted from the normal ordering
of the three-body Hamiltonian in coupled-cluster theory.
The contributions from the residual three-body Hamiltonian,
Eq. (3), are very small and are represented by the last point
in Fig. 7. Recall that the residual 3NF contributes to the
energy directly through Eq. (12) and indirectly through a
modification of the cluster amplitudes via Eqs. (15) and (16).
Apparently, both contributions are very small. In addition and
independent of the result that low-momentum 3N interactions
are perturbative for cutoffs � <∼ 2 fm−1 [50], we find here that
the contributions of 3NFs decrease rapidly with increasing
rank of the normal-ordered terms.

The small contribution from the residual three-body Hamil-
tonian is the most important result of our study. It suggests that
one can neglect the residual terms of the 3NF when computing
binding energies of light nuclei. This is not unexpected
and has been anticipated in several earlier studies. Mihaila
and Heisenberg [19] computed the charge form factor for
16O within coupled-cluster theory and found a very good
agreement with experimental data by considering only the
density-dependent one- and two-body parts of 3NFs. Similarly,
Navrátil and Ormand [59] observed in no-core shell-model
calculations that density-dependent two-body terms are the
most significant contributions of effective three-body forces.
Our finding also support Zuker’s [60] idea that monopole
corrections to valence-shell interactions are due to the density-
dependent terms of 3NFs. Note finally that the modeling of
three-body interactions in terms of density-dependent two-
body Hamiltonians has a long history, see, e.g., Ref. [61].
Note that all these examples and the present study employ
sufficiently “soft” or “effective” interactions. We expect
that the smallness of residual 3NFs is a property of such
interactions. We will study the cutoff dependence of this
finding in future work. Finally, the smallness of residual
3NFs is also encouraging for future improved nuclear matter
calculations, which currently include low-momentum 3NFs
through density-dependent NN interactions [51].

The smallness of the residual three-body terms is also for
coupled-cluster calculations a most welcome result. This is
attractive for two reasons. First, the inclusion of the residual
three-nucleon Hamiltonian, as described in subsection II B,
is computationally expensive. It exceeds the cost of a CCSD
calculation for two-body Hamiltonians by a factor of order
O(nu) + O(n2

o) and is therefore significant for a large number
of unoccupied orbitals and/or large number of nucleons.
Second, the omission of the residual three-body Hamiltonian
will allow us to treat 3NFs within the standard coupled-cluster
theory developed for two-body Hamiltonians (after normal
ordering). As a result, we can take the CCSD calculations
one step further and include perturbative corrections of three-
particle/three-hole clusters [62].

Let us neglect the residual 3NF terms of Eq. (3) and
perform CCSD(T) calculations for the binding energy of 4He.
The approximate inclusion of three-particle/three-hole clusters
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FIG. 8. (Color online) CCSD(T) results for the binding energy
of 4He as a function of the oscillator spacing and for model
spaces consisting of N = 3 to N = 6 oscillator shells. The con-
tributions from 3NFs are limited to the density-dependent zero-,
one-, and two-body terms and exclude its residual three-body
terms.

improves the accuracy of our calculations. Our results are
shown in Fig. 8. The comparison with the CCSD full lines in
Fig. 5 shows that the triples corrections add about 100–200 keV
of additional binding energy (at the minimum) for fixed
number N of oscillator shells and somewhat weaken the h̄ω

dependence.
An exponential extrapolation of the (approximate)

CCSD(T) minima to an infinite model space is shown in
Fig. 9 and yields E∞ = −28.24 MeV. This is in excellent
agreement with the exact Faddeev-Yakubovsky result E =
−28.20(5) MeV. In our largest model space at the minimum
h̄ω = 17 MeV, the ground-state expectation values for the
center-of-mass Hamiltonian is 〈Hcm〉 ≈ 20 keV, whereas the
expectaion value for the angular momentum is zero for a
closed-shell nucleus by construction. These results are very
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eV
)

FIG. 9. (Color online) (Data points) CCSD(T) results (taken at the
h̄ω minima) for the binding energy of 4He with 3NFs as a function of
the number of oscillator shells. (Dashed lines) Exponential fit to the
data and asymptote of the fit. (Full line) Exact result.

good, and it remains to be seen whether a more sophisticated
treatment of triples excitations [63] would lead to further
improvements. We expect that the expectation value of the
center-of-mass Hamiltonian decreases with increasing size of
the model space.

Finally, we also show the size of the CCSD(T) corrections in
Fig. 7 as the horizontal dotted line. Clearly, these contributions
are more important than the contributions from the residual
3NF terms, and this observation fully justifies the omission of
the latter.

IV. SUMMARY

We have developed coupled-cluster theory for three-body
Hamiltonians in the two-particle/two-hole cluster approxima-
tion (CCSD). We derived the corresponding coupled-cluster
equations directly in a factorized form and thereby avoided the
explicit construction and analysis of a considerable number of
diagrams that enter these equations. The resulting formulas
were used for a very efficient numerical implementation.

We have performed ab initio coupled-cluster calculations
based on low-momentum NN and 3N interactions for the
binding energy of 4He and compared to the exact Faddeev-
Yakubovsky result. The 3NF contributions to the zero-, one-,
and two-body terms of the normal-ordered Hamiltonian are
dominant. The contributions from residual 3NFs are smaller
than the corrections due to three-particle/three-hole cluster
excitations and can therefore be safely neglected. Future
work will include all 3N partial waves and studies of the
cutoff dependence and of the convergence properties using
low-momentum interactions with smooth cutoffs. Our findings
tremendously simplify the computational cost of coupled-
cluster theory with 3NFs. This opens the avenue to explore
3NFs in medium-mass nuclei and to investigate questions
related to modern nuclear interactions.
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