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Why is the equation of state for tin so soft?
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The distribution of isoscalar monopole strength in the neutron-even 112–124Sn isotopes has been computed using
a relativistic random-phase-approximation approach. The accurately-calibrated model used here (“FSUGold”)
has been successful in reproducing both ground-state observables as well as collective excitations—including the
giant monopole resonance (GMR) in 90Zr, 144Sm, and 208Pb. Yet this same model significantly overestimates the
GMR energies in the Sn isotopes. It is argued that the question of “Why is tin so soft?” becomes an important
challenge to the field and one that should be answered without sacrificing the success already achieved by several
theoretical models.
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The compression modulus of nuclear matter (also known as
the nuclear incompressibility) is a fundamental parameter of
the equation of state that controls small density fluctuations
around the saturation point. While existing ground-state
observables have accurately constrained the binding energy
per nucleon (B/A � −16 MeV) and the baryon density
(ρ � 0.15 fm−3) of symmetric nuclear matter at saturation, the
extraction of the compression modulus (K) requires to probe
the response of the nuclear system to small density fluctuations.
It is generally agreed that the nuclear compressional modes—
particularly the isoscalar giant monopole resonance (GMR)—
provide the optimal route to the determination of the nuclear
incompressibility [1]. Moreover, the field has attained a level
of maturity and sophistication that demands strict standards in
doing so. It is now demanded that the same microscopic model
that predicts a particular value for the compression modulus
of infinite nuclear matter (an experimentally inaccessible
quantity) be able to accurately reproduce the experimental
distribution of monopole strength.

Earlier attempts at extracting the compression modulus of
symmetric nuclear matter relied primarily on the distribution
of isoscalar monopole strength in 208Pb—a heavy nucleus
with a well developed giant resonance peak [2,3]. However,
as was pointed out recently in Refs. [4,5]—and confirmed
since then by several other groups [6–8]—the GMR in 208Pb
does not provide a clean determination of the compression
modulus of symmetric nuclear matter. Rather, it constraints
the nuclear incompressibility of neutron-rich matter at the
particular value of the neutron excess found in 208Pb, namely,
b ≡ (N − Z)/A = 0.21. As such, the GMR in 208Pb is
sensitive to the density dependence of the symmetry energy.
The symmetry energy represents a penalty levied on the system
as it departs from the symmetric limit of equal number of
neutrons and protons. As the infinite nuclear system becomes
neutron rich, the saturation density moves to lower densities,
the binding energy weakens, and the nuclear incompressibility
softens [9]. Thus, the compression modulus of a neutron rich
system having the same neutron excess as 208Pb is lower than
the compression modulus of symmetric nuclear matter. We
note in passing that the symmetry energy is to an excellent
approximation equal to the difference between the energy of

pure neutron matter (with b ≡ 1) and that of symmetric nuclear
matter (with b ≡ 0).

The alluded sensitivity of the distribution of isoscalar
monopole strength to the density dependence of the symmetry
energy proved instrumental in resolving a puzzle involving K:
how can accurately calibrated models that reproduce ground
state data as well as the distribution of monopole strength in
208Pb, predict values for K that differ by as much as 25%?
(Note that accurately-calibrated relativistic models used to
predict a compression modulus as high as K ≈ 270 MeV
while their nonrelativistic counterpart suggested values as low
as K ≈ 215 MeV.) This discrepancy is now attributed to the
poorly determined density dependence of the symmetry energy
[4]. Indeed, models that predict a stiffer symmetry energy (one
that increases faster with density) consistently predict higher
compression moduli than those with a softer symmetry energy.
Thus, the success of some models in reproducing the GMR in
208Pb was accidental, as it resulted from a combination of both
a stiff equation of state for symmetric nuclear matter and a stiff
symmetry energy [5]. Since then, the large differences in the
predicted value of K have been reconciled and a “consensus”
has been reached that places the value of the incompressibility
coefficient of symmetric nuclear matter at K = 230 ± 10 MeV
[7,8,10,11]. Note that while some Skyrme and relativistic
mean-field models do not display a clear correlation between
K and the density dependence of the symmetry energy [12],
we trust that once those models are further constrained to
reproduce the experimental distribution of isoscalar monopole
strength in 208Pb, the alluded correlation will reemerge
[4,5].

An example of how this consensus was reached is depicted
in Fig. 1 where the distribution of isoscalar monopole strength
in 90Zr, 116Sn, 144Sm, and 208Pb at the small momentum
transfer of q = 45.5 MeV (or q = 0.23 fm−1) is displayed
for the relativistic FSUGold model of Ref. [10]—a model that
predicts an incompressibility coefficient for symmetric nuclear
matter of K = 230 MeV. Note that the distribution of strength
was obtained from a relativistic random-phase-approximation
(RPA) approach as described in detail in Ref. [13]. Further,
the inset on Fig. 1 shows a comparison of the theoretical
predictions against the experimental centroid energies reported
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FIG. 1. (Color online) Distribution of isoscalar monopole
strength predicted by the FSUGold model of Ref. [10]. The inset
includes a comparison against the experimental centroid energies
reported in Ref. [14], with the solid line providing the best fit to the
theoretical predictions.

in Ref. [14]. Finally, the solid line in the inset provides a fit to
the mass dependence of the theoretical predictions that yields
EGMR(A) ≈ [69/A0.3] MeV.

The isoscalar monopole strength displayed in Fig. 1 is
extracted from the low momentum transfer behavior of the
longitudinal response defined as follows:

SL(q, ω) =
∑

n

|〈�n|ρ̂(q)|�0〉|2δ(ω − ωn) . (1)

Here �0 is the exact nuclear ground state, �n is an excited state
with excitation energy ωn, and ρ̂(q) is the Fourier transform
of the isoscalar baryon density. That is,

ρ̂(q) =
∫

d3r e−iq·rψ̄(r)γ 0τ0ψ(r), (2)

where ψ(r) is an isodoublet nucleon field, γ 0 is the
timelike (or zeroth) component of the Dirac gamma
matrices, and τ0 ≡ 1 is the identity matrix in isospin
space.

The important realization that the distribution of monopole
strength in heavy nuclei is sensitive to the density dependence
of the symmetry energy has motivated a recent experimental
study of the GMR along the isotopic chain in tin. Indeed,
the distribution of isoscalar monopole strength in the neutron-
even 112–124Sn isotopes has been measured at the Research
Center for Nuclear Physics (RCNP) in Osaka, Japan [11,15].
This important experiment probes the incompressibility of
asymmetric nuclear matter by measuring the distribution of
isoscalar strength in a chain of isotopes with a neutron excess
ranging from b = 0.11 (in 112Sn) to b = 0.19 (in 124Sn). The
experiment represents a hadronic complement to the purely
electroweak parity radius experiment (PREX) at the Jefferson
Laboratory that aims to measure the neutron radius of 208Pb
accurately and model independently via parity-violating elec-
tron scattering [16,17]. Such an accurate determination will
have far-reaching implications in areas as diverse as nuclear
structure [18], heavy-ion collisions [19–24], atomic parity vio-
lation [18,25,26], and nuclear astrophysics [27–30]. While this
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FIG. 2. (Color online) Comparison between the distribution of
isoscalar monopole strength in all neutron-even 112Sn-124Sn isotopes
extracted from experiment (black solid squares) and the theoretical
predictions of the FSUGold (blue solid line) and NL3 (green dashed
line) models.

important experiment gets off the ground, a significant effort
has been devoted to constrain the neutron radius of a heavy
nucleus by alternative (hadronic) means. One such effort uses
nuclear giant and pygmy resonances in neutron-rich nuclei
to constrain the density dependence of the symmetry energy
[4–8]. Another promising approach is the use of the spin dipole
sum rule—a quantity that is highly sensitive to the difference
between neutron and proton mean square radii [31]. Indeed,
Yako, Sagawa, and Sakai recently used the spin dipole sum rule
to extract the neutron skin of 90Zr and obtained a result that
is consistent with that obtained through significantly different
means [32].

In Fig. 2 the experimental distribution of isoscalar
monopole strength measured at the RCNP [11,15] is compared
against the predictions of the highly successful NL3 [33,34]
and FSUGold [10] models. Note that for completeness, we
have listed in Table I the most important bulk parameters of
neutron-rich matter (for a precise definitions of each term see,
for example, Ref. [12]). As one is only interested in comparing
the shape of the distribution and a particular ratio of its
moments, the maximum of the theoretical curves—computed

TABLE I. Binding energy per nucleon and compression modulus
of symmetric nuclear matter for the two mean-field models employed
in this work. Also shown are values for the symmetry energy, its slope,
and its curvature at saturation density. All quantities are in MeV. For
the precise definition of these terms see Ref. [12].

Model ε0 K J L Ksym

NL3 −16.2 271 37.3 118.2 337.3
FSUGold −16.3 230 32.6 60.5 69.7
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FIG. 3. (Color online) Comparison between the GMR centroid
energies (m1/m0) in all neutron-even 112Sn-124Sn isotopes extracted
from experiment (black solid squares) and the theoretical predic-
tions of the FSUGold (blue up-triangles) and NL3 (green down-
triangles) models. Also shown (filled red circles) are results from
the Texas A&M group [14,35,36] for the cases of 112Sn, 116Sn, and
124Sn.

from the longitudinal response as described in the text—has
been normalized to the experimental data. The A-dependence
of the corresponding centroid energies is also displayed in
Fig. 3 and compiled in Table II. Note that the centroid energy
is computed from the ratio of the m1 moment to that of the m0

moment. That is,

EGMR ≡ m1

m0
=

∫ ω2

ω1
ωSL(q0, ω)dω∫ ω2

ω1
SL(q0, ω)dω

, (3)

where, consistent with the experimental analysis [11,15],
the limits of integration have been chosen to be ω1 =
10 MeV and ω2 = 20 MeV. Further, to mimic the forward-
angle experiment, the longitudinal response was evaluated at
the “small” momentum transfer of q0 = 0.23 fm−1.

A subtle telltale problem with tin barely discernible in the
inset on Fig. 1, becomes magnified in Fig. 2 as one com-
pares the experimentally extracted distribution of monopole
strength against the theoretical predictions. While mean-field

TABLE II. Giant monopole resonance centroid energies (in
MeV) computed from the ratio of moments (m1/m0) as described
in the text. All moments were obtained from integrating the
distribution of strength over the 10 � ω � 20 MeV interval.

Nucleus NL3 FSUGold Experiment

112Sn 16.98 16.45 16.2 ± 0.1
114Sn 16.92 16.38 16.1 ± 0.1
116Sn 16.81 16.27 15.8 ± 0.1
118Sn 16.70 16.15 15.8 ± 0.1
120Sn 16.66 16.14 15.7 ± 0.1
122Sn 16.54 16.07 15.4 ± 0.1
124Sn 16.43 15.97 15.3 ± 0.1

plus RPA calculations are typically unable to describe the
experimental width—which is in general composed of both
an escape (particle-hole) and a spreading (multiparticle-
multihole) width—such is not the case for the description of
the centroid energies. Indeed, accurately calibrated models,
both nonrelativistic [8] and relativistic (see Fig. 1), provide
an adequate description of the GMR centroid energies in
both 90Zr (with b = 0.11) and 208Pb (with b = 0.21)—nuclei
with a neutron excess similar to those at the two extremes
of the isotopic chain considered here. Why is then that both
nonrelativistic [11,15,37] and relativistic models consistently
overestimate the centroid energies in the Sn isotopes? Or
more colloquially, why is tin so soft? And why is that the
discrepancy between theory and experiment continues to grow
as the neutron excess increases? A stiff symmetry energy leads
to a rapid softening of the nuclear incompressibility [9]. This
is the main reason behind the slightly larger (negative) slope
displayed by NL3 relative to FSUGold in Fig. 3. The even
larger (by more than 50%) slope displayed by the experimental
data is unlikely to be solely related to the stiffness of the
symmetry energy, as NL3 already predicts a neutron skin
thickness in 208Pb that appears overly large [10]. Note that
in a recent paper, Sagawa and collaborators seem to reach
similar conclusions to ours, namely, a theoretical distribution
of isoscalar monopole strength in the tin isotopes that is
significantly stiffer than experiment [38].

So why is tin so soft and why does it become even softer with
an increase in the neutron excess? Could there be a systematic
error in the experimental extraction? While possible, this is
unlikely as an earlier independent measurement on 116Sn [14]
appears to confirm the present (RCNP) result (see Fig. 3).
Although note that recent data by the Texas A&M group on
112Sn and 124Sn [36] deviates significantly from the RCNP
data. Could the GMR in tin probe physics that has not
been already constrained by nuclear observables? This also
appears unlikely as existing density functionals are successful
at describing a host of ground-state observables as well as
collective excitations—including the GMR in 90Zr, 144Sm, and
208Pb (see Fig. 1 and Ref. [10]). Could tin be sensitive to pairing
correlations and more complicated multiparticle-multihole
excitations? The answer at present is not clear, but if it turns
out to be positive, why should tin be sensitive to these effects
but not Zr, Sm, and Pb? Clearly, the distribution of isoscalar
monopole strength in the Sn isotopes poses a serious theoreti-
cal challenge, perhaps suitable for the new Universal Nuclear
Energy Density Functional (UNEDF) initiative. Whatever the
theoretical approach, however, one must remember that the
challenge is not solely to describe the distribution of monopole
strength along the isotopic chain in tin, but rather, to do so
without sacrificing the enormous success already achieved in
reproducing a host of ground-state observables and collective
modes.
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