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The knowledge of the nuclear symmetry energy of hot neutron-rich matter is important for understanding the
dynamical evolution of massive stars and the supernova explosion mechanisms. In particular, the electron capture
rate on nuclei and/or free protons in presupernova explosions is especially sensitive to the symmetry energy at
finite temperature. In view of the above, in the present work we calculate the symmetry energy as a function of the
temperature for various values of the baryon density by applying a momentum-dependent effective interaction. In
addition to a previous work, the thermal effects are studied separately both in the kinetic part and the interaction
part of the symmetry energy. We focus also on the calculations of the mean-field potential, employed extensively
in heavy-ion reaction research, both for nuclear and pure neutron matter. The proton fraction and the electron
chemical potential, which are crucial quantities for representing the thermal evolution of supernova and neutron
stars, are calculated for various values of the temperature. Finally, we construct a temperature dependent equation
of state of β-stable nuclear matter, the basic ingredient for the evaluation of the neutron star properties.
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I. INTRODUCTION

The determination of the nuclear symmetry energy (SE)
based on microscopic and/or phenomenological approaches
is of great interest in nuclear physics as well as in nuclear
astrophysics. For instance, it is important for the study of
the structure and reactions of neutron-rich nuclei, the Type II
supernova explosions, neutron-star mergers and the stability
of neutron stars. In addition, the SE is the basic ingredient for
the determination of the proton fraction and electron chemical
potential. The above quantities determine the cooling rate and
neutrino emission flux of protoneutron stars and the possibility
of kaon condensation in dense matter [1,2].

Heavy-ion reactions are a unique means to produce in
terrestrial laboratories hot neutron-rich matter similar to those
existing in many astrophysical situations [3]. Although the
behavior of the SE for densities below the saturation point still
remains unknown, significant progress has been made only
most recently in constraining the SE at subnormal densities
and around the normal density from the isospin diffusion data
in heavy-ion collisions [4,5]. This has led to a significantly
more refined constraint on neutron-skin thickness of heavy
nuclei [6,7] and the mass-radius correlation of neutron stars
[8]. For densities above the saturation point the trend of the SE
is model dependent and exhibits completely different behavior.

Up to now the main part of the calculations concerning the
density dependence of the SE is related with the cold nuclear
matter (T = 0). However, recently, there is an increasing
interest for the study of the SE and the properties of neutron
stars at finite temperature [3,9–15]. The motivation of the
present work is to clarify the effects of finite temperature on SE
and to find also the appropriate relations describing that effect.
Especially we focus on the interaction part of the SE, where
so far it has received little theoretical attention concerning its
dependence on the temperature.

To investigate the thermal properties of the SE, we apply a
momentum-dependent effective interaction model. In that way,

we are able to study simultaneously thermal effects not only on
the kinetic part of the symmetry energy but also on the inter-
action part. The present model was introduced by Gale et al.
[16–19] to examine the influence of momentum-dependent
interactions on the momentum flow of heavy-ion collisions.
Over the years the model has been extensively applied in the
study not only of heavy-ion collisions but also the properties
of nuclear matter by a proper modification [20–23]. A review
analysis of the present model is presented in Refs. [2,18].

In the present work we study the thermal properties
of the nuclear symmetry energy by applying the above
phenomenological model focusing mainly on the temperature
dependence of the kinetic and interaction part of the SE as well
as the total SE. Though it is well known how the temperature
affects the kinetic part of the symmetry energy [3,24,25] the
temperature dependence of the interaction part of the SE has
so far received little theoretical attention. In addition, we
determine the temperature dependence of the proton fraction
as well as of the electron chemical potential. Both of the
above quantities are related with the thermal evaluation of
the supernova and the proton-neutron stars. The single-particle
potential for the pure neutron matter and the symmetric nuclear
matter, extensively applied in heavy-ion collision research, is
also estimated for various values of the temperature. Finally,
we construct the equation of state (EOS) of β-stable matter
that is the basic ingredient for calculations of the neutron star
properties.

The article is organized as follows. In Sec. II the model and
the relative formulas are discussed and analyzed. Results are
reported and discussed in Sec. III, whereas the summary of the
work is given in Sec. IV.

II. THE MODEL

The schematic potential model, used in the present work,
is designed to reproduce the results of the more microscopic
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calculations of both nuclear and neutron-rich matter at zero
temperature and can be extended to finite temperature [2]. The
energy density of the asymmetric nuclear matter (ANM) is
given by the relation

ε(nn, np, T ) = εn
kin(nn, T ) + ε

p

kin(np, T ) + Vint(nn, np, T ),

(1)

where nn (np) is the neutron (proton) density and the total
baryon density is n = nn + np. The contribution of the kinetic
parts are

εn
kin(nn, T ) + ε

p

kin(np, T ) = 2
∫

d3k

(2π )3

h̄2k2

2m
[fn(nn, k, T )

+ fp(np, k, T )], (2)

where fτ , (for τ = n, p) is the Fermi-Dirac distribution
function with the form

fτ (nτ , k, T ) =
{

1 + exp

[
eτ (n, k, T ) − µτ (n, T )

T

]}−1

. (3)

The nucleon density nτ is evaluated from the following integral

nτ = 2
∫

d3k

(2π )3
fτ (nτ , k, T )

= 2
∫

d3k

(2π )3

{
1 + exp

[
eτ (n, k, T ) − µτ (n, T )

T

]}−1

. (4)

In Eq. (3), eτ (n, k, T ) is the single-particle energy (SPE) and
µτ (n, T ) stands for the chemical potential of each species. The
SPE has the form

eτ (n, k, T ) = h̄2k2

2m
+ Uτ (n, k, T ), (5)

where the single-particle potential Uτ (n, k, T ) is obtained by
differentiating Vint, i.e., Uτ = ∂Vint(nn, np, T )/∂nτ . Including
the effect of finite-range forces between nucleons, to avoid
acausal behavior at high densities, the potential contribution is
parameterized as follows [2]

Vint(nn, np, T )

= 1

3
An0

[
3

2
−

(
1

2
+ x0

)
(1 − 2x)2

]
u2

+
2
3Bn0

[
3
2 − (

1
2 + x3

)
(1 − 2x)2

]
uσ+1

1 + 2
3B ′ [ 3

2 − (
1
2 + x3

)
(1 − 2x)2

]
uσ−1

+ 2

5
u

∑
i=1,2

[
(2Ci + 4Zi)2

∫
d3k

(2π )3
g(k,�i)(fn + fp)

+ (Ci − 8Zi)2
∫

d3k

(2π )3
g(k,�i)(fn(1 − x) + fpx)

]
,

(6)

where x = np/n is the proton fraction and u = n/n0, with
n0 denoting the equilibrium symmetric nuclear matter density
n0 = 0.16 fm−3. The constants A,B, σ,C1, C2, and B ′, which
enter in the description of symmetric nuclear matter and the
additional parameters x0, x3, Z1, and Z2, used to determine
the properties of asymmetric nuclear matter, are treated as
parameters constrained by empirical knowledge [2]. The

function g(k,�i) suitably chosen to simulate finite range
effects is of the following form

g(k,�i) =
[

1 +
(

k

�i

)2
]−1

, (7)

where the finite-range parameters are �1 = 1.5k0
F and �2 =

3k0
F and k0

F is the Fermi momentum at the saturation point n0.
The entropy density sτ (n, T ) required for the calculations

of the total pressure and for the EOS, has the same functional
form as that of a noninteracting gas system, that is

sτ (n, T ) = −2
∫

d3k

(2π )3
[fτ ln fτ + (1 − fτ ) ln(1 − fτ )] .

(8)

The ratio entropy/baryon is given by Sτ (n, T ) = sτ (n, T )/n.
The baryon pressure Pb(n, T ), needed to construct the EOS,
is given by

Pb(n, T ) = T
∑

τ=p,n

sτ (n, T ) +
∑

τ=p,n

nτµτ (n, T ) − εanm(n, T ).

(9)

Finally, the total energy density and pressure of charge neutral
and chemically equilibrium nuclear matter are

εtot(n, T ) = εb(n, T ) +
∑

l=e−,µ−
εl(n, T ), (10)

Ptot(n, T ) = Pb(n, T ) +
∑

l=e−,µ−
Pl(n, T ). (11)

The leptons (electrons and muons) originating from the con-
dition of the β-stable matter are considered as noninteracting
Fermi gases.

The above analysis holds in general for the asymmetric
nuclear matter. Below, to calculate the thermal effect on the
SE, we will focus our study on two cases, i.e., the symmetric
nuclear matter (SNM) and the pure neutron matter (PNM).

A. Symmetric nuclear matter

The energy density of SNM is given by Eqs. (1) and (6) by
setting x = 1/2, that is [2]

εsnm(n, T ) = 2
∫

d3k

(2π )3

h̄2k2

2m
fn + 2

∫
d3k

(2π )3

h̄2k2

2m
fp

+ 1

2
An0u

2 + Bn0u
σ+1

1 + B ′uσ−1

+u
∑
i=1,2

Ci2
∫

d3k

(2π )3
g(k,�i)fn

+u
∑
i=1,2

Ci2
∫

d3k

(2π )3
g(k,�i)fp. (12)

In addition, the single-particle potential Uτ
snm(n, k, T ) in the

case of SNM, defined from the relation Uτ
snm = ∂Vsnm/∂nτ , is

025805-2



THERMAL EFFECTS ON NUCLEAR SYMMETRY ENERGY . . . PHYSICAL REVIEW C 76, 025805 (2007)

easily calculated and given by

Uτ
snm(n, k, T ) = Ũ τ

snm(n, T ) + u
∑
i=1,2

Ci

[
1 +

(
k

�i

)2
]−1

.

(13)

It is obvious from Eq. (13) that Uτ
snm(n, k, T ) is separated

in two terms. The first one corresponds to the momentum-
independent part, whereas the second one corresponds to
the momentum-dependent one. The term Ũ τ

snm(n, T ) has the
following form

Ũ τ
snm(n, T ) = Au + Buσ (σ + 1 + 2B ′uσ−1)

(1 + B ′uσ−1)2

+ 2

n0

∑
i=1,2

Ci2
∫

d3k

(2π )3

[
1 +

(
k

�i

)2
]−1

fτ ,

τ = p, n. (14)

At zero temperature (T = 0), where fτ = θ (kFτ
− k), the

integrals in Eqs. (12) and (14) are calculated analytically (see
Appendix A for more details).

B. Pure neutron matter

The energy density of PNM is given by Eqs. (1) and (6) by
setting x = 0 and fp = 0, that is [2]

εpnm(n, T ) = 2
∫

d3k

(2π )3

h̄2k2

2m
fn + 1

3
An0(1 − x0)u2

+
2
3Bn0(1 − x3)uσ+1

1 + 2
3B ′(1 − x3)uσ−1

+ 2

5
u

∑
i=1,2

(3Ci − 4Zi)2

×
∫

d3k

(2π )3
g(k,�i)fn. (15)

The single-particle potential Un
pnm(n, k, T ) in the case of PNM

is defined from the relation Un
pnm = ∂Vpnm/∂nn is written as

Un
pnm(n, k, T ) = Ũn

pnm(n, T ) + 2

5
u

∑
i=1,2

(3Ci − 4Zi)

×
[

1 +
(

k

�i

)2
]−1

. (16)

The momentum-independent part is

Ũn
pnm(n, T ) = 2

3
A(1 − x0)u +

2
3B(1 − x3)uσ[

1 + 2
3B ′(1 − x3)uσ−1

]2

×
[

(σ + 1) + 4

3
B ′(1 − x3)uσ−1

]

+ 2

5n0

∑
i=1,2

(3Ci − 4Zi)2

×
∫

d3k

(2π )3

[
1 +

(
k

�i

)2
]−1

fn. (17)

The integrals in Eqs. (15) and (17), similarly to the case of
SNM, at T = 0 are calculated analytically (see Appendix A
for more details).

C. Asymmetric nuclear matter-nuclear symmetry energy

The energy density of ANM at density n and temperature
T , in a good approximation, is expressed as

εanm(n, T , x) = εsnm(n, T , x = 1/2) + εsym(n, T , x), (18)

where

εsym(n, T , x) = n(1 − 2x)2Etot
sym(n, T ) = n(1 − 2x)2

× [
Ekin

sym(n, T ) + Eint
sym(n, T )

]
. (19)

In Eq. (19) the nuclear symmetry energy Etot
sym(n, T ) is

separated in two parts corresponding to the kinetic contribution
Ekin

sym(n, T ) and the interaction contribution Eint
sym(n, T ). In the

present work we will concentrate on the systematic study of
the thermal properties of the above two quantities.

From Eqs. (18) and (19) and setting x = 0 we obtain that
the nuclear symmetry energy Etot

sym(n, T ) is given by

Etot
sym(n, T ) = 1

n
[εpnm(n, T ) − εsnm(n, T )]. (20)

Thus, from Eqs. (12) and (15) and by a suitable choice of
the parameters x0, x3, Z1, and Z2, we can obtain different
forms for the density dependence of the symmetry energy
Etot

sym(n, T ). It is well known that the need to explore different
forms for Etot

sym(n, T ) stems from the uncertain behavior at high
density [2]. In the present work, because we are interested
mainly in the study of thermal effects on the SE, we choose
a specific form of the SE enabling us to reproduce accurately
the results of many other theoretical studies [26]. According
to this choice the SE, at T = 0, is expressed as

Etot
sym(n, T = 0) = 13u2/3︸ ︷︷ ︸

Kinetic

+ 17F (u)︸ ︷︷ ︸
Interaction

= 13u2/3︸ ︷︷ ︸
Kinetic

+ 17u︸︷︷︸
Interaction

,

(21)

where the contributions of the kinetic and the interaction term
are separated clearly. The parameters x0, x3, Z1, and Z2 are
chosen in order that Eq. (20), for T = 0, to reproduce the
results of Eq. (21). In addition, the parameters A,B, σ,C1, C2,
and B ′ are determined in order that E(n = n0) − mc2 =
−16 (MeV), n0 = 0.16 fm−3, and the incompressibility to be
K0 = 240 MeV.

The single-particle potential Uτ
anm(n, k, T ), in the case of

ANM defined from the relation Uτ
anm = ∂Vanm/∂nτ , is written

as

Uτ
anm(n, k, T ) = Uτ

snm(n, k, T ) + ∂Vsym

∂nτ

= Uτ
snm(n, k, T ) + Uτ

sym(n, T , x), (22)

where

Vsym(n, T , x) = (1 − 2x)2nEint
sym(n, T ). (23)
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It is easy to find that the term Uτ
sym(n, T ), in the case of T = 0

and by applying expression (21), is given by (see also Ref. [27])

Uτ
sym(n, T , x) = ±34u(1 − 2x), (24)

where + and − stand for neutrons and protons, respectively.
In the general case where thermal effects are included in our
calculations, the Eint

sym(n, T ) takes the form

Eint
sym(n, T ) = aub, (25)

where a and b are temperature-dependent constants [see
Eq. (41) on Sec. III]. Thus, after some algebra, we get in a
good approximation, the relation

Uτ
sym(n, T , x) � ±2aub(1 − 2x). (26)

The above relation is needed for the calculation of the
single-particle energy eτ (n, k, T ) in the β-stable matter and
afterwards for the calculation of the Fermi-Dirac function
fτ (n, T ) which is the basic ingredient for the determination of
the entropy density sτ (n, T ).

D. Proton fraction-electron chemical potential

The key quantity for the determination of the equation of
state in β-stable matter is the proton fraction x, which is a basic
ingredient of Eq. (19). In β-stable matter the processes [28]

n −→ p + e− + ν̄e, p + e− −→ n + νe, (27)

take place simultaneously. We assume that neutrinos generated
in these reactions have left the system. This implies that

µ̂ = µn − µp = µe, (28)

where µn,µp, and µe are the chemical potentials of the
neutron, proton, and electron respectively. Given the total
energy density ε ≡ ε(nn, np), the neutron and proton chemical
potentials can be defined as

µn = ∂ε

∂nn

∣∣∣∣
np

, µp = ∂ε

∂np

∣∣∣∣
nn

. (29)

Hence we can show that

µ̂ = µn − µp = − ∂ε/n

∂x

∣∣∣∣
n

= − ∂E

∂x

∣∣∣∣
n

. (30)

In β equilibrium one has

∂E

∂x
= ∂

∂x
[Eb(n, x) + Ee(x)] = 0, (31)

where Eb(n, x) the energy per baryon and Ee(x) the electron
energy. The charge condition implies that ne = np = nx or
kFe

= kFp
. Combining relations (18), (19), and (30) we get

µe(n, T ) = µ̂(n, T ) = 4(1 − 2x)Etot
sym(n, T ). (32)

From Eq. (32) it is obvious that the proton fraction x is not only
a function of the baryon density n but, in addition, depends on
the temperature T , i.e., x = x(n, T ).

For relativistic nondegenerate free electrons we have

ne = xn = 2

(2π3)

∫
d3k

1 + exp

[√
h̄2k2c2+m2

ec
4−µe(n,T )

T

] . (33)

Or, using Eq. (32) and performing the angular integration we
get

ne = xn = 1

π2

∫ ∞

0

k2dk

1 + exp

[√
h̄2k2c2+m2

ec
4−4(1−2x)Etot

sym(n,T )
T

] .

(34)

Equation (34) determines the equilibrium electron (pro-
ton) fraction x(n, T ) because the density and momentum-
dependent symmetry energy Etot

sym(n, T ) is known.

E. Calculations recipe

We focus our attention on the calculation of the Etot
sym(n, T )

with the help of Eq. (20). Thus, one has to calculate first
the energy densities in pure and in symmetric nuclear matter
as a function of the density n and for fixed values of
temperature T . As an example of the calculations procedure
at finite temperature (the results for T = 0 are included in the
Appendix A), we consider the case of pure neutron matter. The
procedure is similar in the case of symmetric nuclear matter
(see Ref. [2]).

The outline of our approach is the following: For a fixed
neutron density nn and temperature T , Eq. (4) may be solved
iteratively to calculate the variable

η(n; T ) = µτ (n; T ) − Ũ (n; T )

T
. (35)

The knowledge of η(n, T ) allows the last term in Eq. (17)
to be evaluated, yielding Ũ (n; T ), which may then be used to
infer the chemical potential from

µτ (n; T ) = T η(n; T ) + Ũ (n; T ), (36)

required as an input to the calculation of the single-particle
spectrum eτ (n, k, T ) in Eq. (5). Using eτ (n, k; T ), the energy
density in Eq. (15) is evaluated.

III. RESULTS AND DISCUSSION

According to our calculation recipe, given in the previous
subsection, we calculate the energy densities of PNM and
SNM as functions of the density, for various values of the
temperature T . As a second step, we calculate the Etot

sym(n, T )
from Eq. (20). The knowledge of Etot

sym(n, T ) is required for
the evaluation of the proton fraction x from Eq. (34) as well
as for the electron chemical potential µe = µ̂ from Eq. (32).
Finally from Eqs. (9), (10), and (11) we construct the EOS of
β-stable matter for various values of the temperature T . It is
worth pointing out that in the present work we do not include
the muon case, since we restrict ourselves mainly on the
temperature dependent behavior of the SE. According to our
plan, in future work we will extend the treatment to include also
the muon case in order to study the detailed composition and
the thermal properties of neutron-rich matter with applications
in neutron star structure and thermal evaluation.

In Fig. 1 we check the validity of approximation (18).
We plot the difference E(n, T , x) − E(n, T , x = 1/2) as a
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FIG. 1. The difference E(n, T , x) − E(n, T , x = 1/2) as a function of (1 − 2x)2 at temperature T = 0, T = 20, and T = 50 MeV for three
baryon number fractions u = 1, u = 2, and u = 3.

function of (1 − 2x)2 at temperature T = 0, T = 20, and T =
50 MeV for three baryon number fractions, i.e., u = 1, u = 2,
and u = 3. It is seen that an almost linear relation holds
between E(n, T , x) − E(n, T , x = 1/2) and (1 − 2x)2, even

closer to the case of pure neutron matter (x = 0), indicating
the validity of approximation (18).

In Fig. 2 we indicate the behavior of the SE as a function
of the temperature T for various fixed values of the baryon
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FIG. 2. Temperature dependence of the total nuclear symmetry energy and its interaction and kinetic energy part for various values of the
baryon density n.
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TABLE I. The values of the density dependent parameters A, B, T0, and c, for
Etot

sym(u; T ), Ekin
sym(u; T ) and Eint

sym(u; T ) for n = 0.1, 0.3, 0.5 fm−3. For more details see text.

Parameters n = 0.1 fm−3 n = 0.3 fm−3 n = 0.5 fm−3

Etot
sym Ekin

sym Eint
sym Etot

sym Ekin
sym Eint

sym Etot
sym Ekin

sym Eint
sym

A 10.105 7.864 2.559 17.079 15.230 10.832 44.164 20.548 19.442
B 9.969 1.679 7.969 19.328 4.504 21.240 36.895 7.162 33.887
T0 25.692 30.549 19.027 41.004 73.143 47.772 57.011 109.193 73.551
c 1.610 1.518 1.866 1.856 1.904 1.992 1.982 2.156 2.026

density n. More precisely, in any case, we plot Etot
sym(T ; n), as

well as Ekin
sym(T ; n) and Eint

sym(T ; n) as a function of T for n =
0.1, 0.2, 0.3, 0.5 fm−3. The most striking feature of the above
analysis is a decrease of the SE (total, kinetic, and interaction
part) by increasing the temperature. This is consistent with the
predictions of microscopic and/or phenomenological theories
[3,13,14].

To illustrate further the dependence of the symmetry energy
on the temperature and to find the quantitative characteristic
on this dependence, the values of Esym(T ; n) for various values
of the density n are derived with the least-squares fit method
and found to take the general form

Esym(T ; n) = A

1 + (T/T0)c
+ B. (37)

The values of the density-dependent parameters A,B, T0,
and c, for Etot

sym(T ; n), Ekin
sym(T ; n) and Eint

sym(T ; n) for n =
0.1, 0.3, 0.5 fm−3 are presented in Table I. It is easy to find
that in the case of low temperature limit (T/T0 � 1) all kinds
of the symmetry energy decrease approximately according
to Esym(T ; n) ∝ C1 − C2T

2 (where C1 and C2 are density-
dependent constants). In the high-density limit (T/T0 	 1)
the symmetry energy decreases approximately according to
Esym(T ; n) ∝ C3T

−2 + C4 (where also C3 and C4 are density-
dependent constants). It is noted that the same behavior holds
for Etot

sym(T ; n) as well as for Ekin
sym(T ; n) and Eint

sym(T ; n). This
behavior is well expected for the kinetic part of the symmetry
energy (see also Ref. [3,25]), where analytical calculations are
possible (see the proof in Appendix B). From the above study,
it is concluded that there is a similar temperature dependence
both for the kinetic and the interaction part of the symmetry
energy and consequently for the total symmetry energy, in
the case of momentum-dependent interaction. Recently, the
temperature dependence of the kinetic and interaction part of
the SE has been studied and illustrated in Ref. [14]. The results
of the present work agree with those of Ref. [14] although
different models have been employed to evaluate SE.

In Fig. 3, we plot Etot
sym(T ; n) as a function of temperature

for various low values of the baryon density. In the same
figure we also include experimental data of the measured
temperature-dependent symmetry energy from Texas A&M
University (TAMU) [29] and the INDRA-ALADIN Collabo-
ration at GSI [30]. The comparison then allows to estimate the
required density of the fragment-emitting of the experiments.
As pointed out by Li et al. [3] the experimentally observed

evolution of the SE is mainly due to the change in density
rather than temperature.

Figure 4 illustrates the behavior of the Etot
sym(n; T ) (a),

Ekin
sym(n; T ) (b), Eint

sym(n; T ) (c), as a function of the baryon
density n for various fixed values of the temperature T . The
case T = 0 corresponds to the fundamental expression of the
present work, i.e.,

Etot
sym(u; T = 0) = 13u2/3 + 17u. (38)

In any case, the trends of the various parts of the symmetry
energy are similar. An increase in the temperature leads just
to a shift to lower values for the symmetry energy. It is worth
pointing out that the maximum decrease of Etot

sym(n; T ), in the
area under study (for T = 0 MeV up to T = 50 MeV), is
between 40% (for n = 0.1 fm−3) and 4% (for n = 1 fm−3).
Correspondingly, the decrease of Ekin

sym(n; T ) is between 57%
(for n = 0.1 fm−3) and 5% (for n = 1 fm−3) and of the
Eint

sym(n; T ) is between 22% (for n = 0.1 fm−3) and 5% (for
n = 1 fm−3). It is obvious that the thermal effects are more
pronounced on the kinetic part than in the interaction part of
the symmetry energy and, in addition, more pronounced in
lower values of the baryon density.

The total symmetry energy Etot
sym(u; T ), for various values

of the temperature T , was derived with the least-squares fit on
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25
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) 
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eV

)

FIG. 3. Temperature dependence of the symmetry energy for low
values of the baryon density (n = 0.06, 0.08, 0.10, 0.12, 0.14 fm−3).
The experimental data are from Ref. [29] (solid squares) and Ref. [30]
(open squares) are included for comparison.
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FIG. 4. Density dependence of the total nuclear symmetry energy Etot
sym(n, T ) as well its kinetic Ekin

sym(n, T ) and interaction Eint
sym(n, T ) part

for various values of the temperature T .

the numerical results taken from Eq. (20) and has the form

Etot
sym(u; T = 5) = 1.676 + 29.711u − 2.110u2

+ 0.275u3 − 0.015u4,

Etot
sym(u; T = 10) = −0.118 + 30.863u − 2.455u2

+ 0.325u3 − 0.017u4,
(39)

Etot
sym(u; T = 20) = −1.910 + 29.470u − 1.466u2

+ 0.120u3 − 0.004u4,

Etot
sym(u; T = 50) = 0.099 + 18.172u + 2.9u2

− 0.548u3 + 0.033u4.

It is also useful to record some relations for Etot
sym(u; T )

derived by least-squares fit on the numerical results, in the case
where SE is parametrized in a way similar to that one holding
for T = 0. In that case, the parametrization is the following
[the case Etot

sym(u; T = 0) is included also for comparison].

Etot
sym(u; T = 0) = 13u2/3 + 17u,

Etot
sym(u; T = 5) = Etot

sym(u; T = 0) − 0.374u−0.956,

Etot
sym(u; T = 10) = Etot

sym(u; T = 0) − 1.235u−0.804,

Etot
sym(u; T = 20) = Etot

sym(u; T = 0) − 3.420 u−0.520,

Etot
sym(u; T = 50) = Etot

sym(u; T = 0) − 9.300 u−0.097. (40)

From Eq. (40), the decrease of the SE as a result of increasing
T , is evident.

The interaction part of the symmetry energy Eint
sym(u; T )

for various values of the temperature T was derived by a
least-squares fit on the numerical results taken from Eqs. (19)
and (20) and has the form

Eint
sym(u; T = 5) = 17.041u0.997,

Eint
sym(u; T = 10) = 16.782u1.005,

(41)
Eint

sym(u; T = 20) = 16.022u1.028,

Eint
sym(u; T = 50) = 13.404u1.104.

Similarly, for the kinetic part of the symmetry energy
Ekin

sym(u; T ) we obtain

Ekin
sym(u; T = 5) = 12.856u0.674,

Ekin
sym(u; T = 10) = 12.504u0.691,
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FIG. 5. (a) The energy per particle of pure neutron matter as a function of the baryon density for various values of the temperature T .
(b) The energy per particle of symmetric nuclear matter as a function of the baryon density for various values of the temperature T .
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FIG. 6. The single-particle potential of the pure neutron matter as a function of the momentum k for various values of the temperature T

and for n = 0.1, 0.3, and 0.5 fm−3, respectively.

Ekin
sym(u; T = 20) = 11.518u0.736,

Ekin
sym(u; T = 50) = 8.577u0.891. (42)

In Fig. 5 we plot the total energy per particle of the PNM
(a) and of the SNM as a function of the density for various
values of the temperature. In both cases it is concluded that the
thermal effects become more pronounced when T > 10 MeV
and for baryon densities n < 0.5 fm−3.

Figure 6 displays the single-particle potential Upnm(n, T , k)
of the PNM as a function of the momentum k for various values
of the density n and temperature T . An increase of T leads
to corresponding increase of the values of the Upnm(n, T , k),
an effect, expected to be more pronounced for lower values of
the baryon density (n = 0.1 fm−3) compared to highest (n =
0.5 fm−3). The same trend holds also for the single particle
potential Usnm(n, T , k) of the SNM plotted in Fig. 7. Observing
Figs. 6 and 7 one might expect that the change of T will affect
slightly the nucleons with high momentum k. This could be
seen by plotting the single-particle energy eτ (n, k, T ) [see
Eq. (5)] as a function of k. However, the above effect cannot be
seen in the present work, where we plot just the single-particle
potential Uτ (n, k, T ) as a function of k.

In Fig. 8 we display the single particle potential of neutron
Un(n, T , k) [Figs. 8(a) and 8(b)] and proton Up(n, T , k)
[Figs. 8(c) and 8(d)], in β-stable matter, as a function of

the momentum k for various values of the temperature T

for n = 0.1 and n = 0.5 fm−3. The potential Uτ (n, T , k) is
evaluated according to Eq. (22). The most striking feature of
Fig. 8 is the reduced thermal effect for high values of the baryon
density, especially in the case of the neutron single-particle
potential. In the case of the proton, thermal effects are more
pronounced.

In Fig. 9(a) the proton fraction x is displayed, calculated
from Eq. (34) as a function of n for various values of T .
Thermal effects increase the value of x between 57% (for
n = 0.1 fm−3) and 2% (for n = 1 fm−3). This effect is
directly related with the dependence of x on the symmetry
energy. As discussed previously, the temperature influences
slightly the symmetry energy at high values of the density
and consequently this is reflected in the values of x. It is
stressed that x depends on T in two ways, as one can see from
Eq. (34). That is, it depends directly on T due the Dirac-Fermi
distribution and also depends on the symmetry energy that is
also temperature dependent.

In Fig. 9(b) we present the electron chemical potential µe

as a function of the density n for various T . An increase of
T decreases µe. The effect is more pronounced when T >

20 MeV. We mention that the rate of electron capture on both
free and bound protons depends in a very sensitive way on the
difference µ̂ = µn − µp = µe between neutron and proton
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FIG. 7. The single-particle potential of the symmetric nuclear matter as a function of the momentum k for various values of the temperature
T and for n = 0.1, 0.3, and 0.5 fm−3, respectively.
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FIG. 8. The single-particle potential of β-stable matter for neutron [(a) and (b)] and for proton [(c) and (d)] as a function of the momentum
k for various values of the temperature T for n = 0.1 and 0.5 fm−3.

chemical potentials [9]. Larger values of µ̂ = µe inhibit the
neutronization process, because it becomes more difficult to
transform a proton into a neutron.

Finally, in Fig. 10 we present the equation of state of
β-stable matter constructed by applying the present
momentum-dependent interaction model for various values

of the temperature T . It is obvious that the thermal effects
are enhanced when T > 20 MeV. The above EOS is very
important for the calculation of the neutron stars properties
and also in combination with the calculated proton fraction
and electron chemical potentials for the thermal evaluation of
the neutron stars.
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n for various values of the temperature T .
The straight line corresponds to the case
x = 11%. (b) The electron chemical po-
tential µe = µ̂ = µn − µp as a function
of the density n for various values of the
temperature T .
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FIG. 10. The equation of state P = P (ε) of β-stable matter cor-
responding to the present momentum-dependent effective interaction
model for various values of the temperature T .

IV. SUMMARY

The knowledge of the nuclear symmetry energy of hot
neutron-rich matter is important for understanding the dynam-
ical evolution of massive stars and the supernova explosion
mechanisms. In view of the above statement, we investigate, in
the present work, the thermal effects on the nuclear symmetry
energy. To perform the above investigation we apply a model
with a momentum-dependent effective interaction. In that way,
we are able to study the thermal effect not only on the kinetic
part of the symmetry energy but also on the interaction part
which, in turn, due to a momentum dependence, is affected
by the variation of the temperature. It is concluded that, in
general, by increasing T we obtain a decreasing SE. Our
finding that both kinetic and interaction parts exhibit the same
trend both for low and high values of the temperature is an
interesting result. Analytical relations, derived by the method
of least-squares fit are given also for the above quantities.
Temperature effects on the pure neutron matter and also on
symmetric nuclear matter are also investigated and presented.
The single-particle potential of proton and neutron is of interest
in heavy-ion collision experiments, is calculated also for pure
neutron matter, symmetric nuclear matter and β-stable matter
for various values of the baryon density and fixed values of T . It
is concluded that thermal effects are more pronounced for low
values of the density n, where for high values of n the effects
are almost negligible. Quantities, which are of great interest
for the thermal evaluation of supernova and neutron stars,
i.e., the proton fraction x = x(n, T ) and the electron chemical
potential µe = µe(n, T ), are calculated and their temperature
and density dependence is investigated. Thermal effects are
larger for low values of the density and high values of T.
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APPENDIX A

The energy density of the SNM as well as of the PNM, at
zero temperature are easily calculated from Eqs. (12) and (15),
respectively, by setting fτ = θ (kFτ

− k) [where θ (kFτ
− k) is

the theta function and kFτ
is the Fermi momentum of the

nucleon τ ] and takes the following forms

εsnm(n, k; T = 0)

= 3

5
E0

F n0u
5/3 + 1

2
An0u

2 + Bn0u
σ+1

1 + B ′uσ−1

+ 3n0u
∑
i=1,2

Ci

(
�i

k0
F

)3

u1/3

�i

k0
F

− tan−1 u1/3

�i

k0
F


 , (A1)

εpnm(n, k; T = 0)

= 22/3 3

5
E0

F n0u
5/3 + 1

3
An0(1 − x0)u2

+
2
3Bn0(1 − x3)uσ+1

1 + 2
3B ′(1 − x3)uσ−1

+ 3

5
n0u

∑
i=1,2

(3Ci − 4Zi)

×
(

�i

k0
F

)3

 (2u)1/3

�i

k0
F

− tan−1 (2u)1/3

�i

k0
F


 , (A2)

where E0
F = h̄2k0

F

2
/2m is the Fermi energy of nuclear matter

at the equilibrium density.

APPENDIX B

To compare the numerical results obtained from the kinetic
part of the symmetry energy Ekin

sym(n, T ) with those predicted
from analytical calculations, we calculate Etot

sym(n, T ) in the
low and in the hight temperature limit as follows

1. Low temperature limit

The kinetic energy per nucleon Eτ
kin(n, T ) at low tempera-

ture (T � EF ) has the form [31–33]

Eτ
kin(n, T ) = 3

5
Eτ

F

[
1 + 5

12
π2

(
T

Eτ
F

)2
]

, (B1)

where Eτ
F = (h̄kτ

F )2/2m = h̄2(3π2nτ )2/3/2m. Considering
that δ = 1 − 2x = (nn − np)/(nn + np) after some algebra we
found that the Ekin(n, T , δ) of a two-component Fermi gas has
the form

Ekin(n, δ, T ) = 〈EF 〉
2

[(1 + δ)5/3 + (1 − δ)5/3] + 3

10

1

〈EF 〉
×

(π

2
T

)2
[(1 + δ)1/3 + (1 − δ)1/3], (B2)

where 〈EF 〉 = 3/5E0
F . Expanding expression (B2) around the

symmetric point δ = 0 or x = 1/2 the kinetic energy takes the
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approximated form

Ekin(n, T ) = 〈EF 〉 + 3

20

π2

〈EF 〉T
2

+ (1 − 2x)2

(
5

9
〈EF 〉 − 1

60

π2

〈EF 〉T
2

)
︸ ︷︷ ︸

Ekin
sym(n,T )

, (B3)

with the contribution of the symmetry energy written explic-
itly. It is obvious that in the low-temperature limit Ekin

sym(n, T )
behaves as Ekin

sym(n, T ) ∝ C1 − C2T
2.

2. High temperature limit

The kinetic energy per nucleon Ekin(n, T , δ) of a two-
component Fermi gas at high temperature (T 	 EF ) is
replaced by a virial expansion in nλ3, where λ =

√
2πh̄2/mT

is the quantum wavelength. Ekin(n, T ) is given by the

relation [25,32]

Ekin(n, δ, T ) = 3

2
T + 3

4
T

∑
ν

Cν

(
λ3n

4

)ν

× [(1 − δ)ν+1 + (1 + δ)ν+1]. (B4)

Expanding expression (B4) around the symmetric point δ = 0
or x = 1/2 the kinetic energy takes the approximated form

Ekin(n, T , δ) = 3

2
T

[
1 +

∑
ν

Cν

(
λ3n

4

)ν
]

+ (1 − 2x)2 3

2
T

∑
ν

Cν

(
λ3n

4

)ν
ν(ν + 1)

2︸ ︷︷ ︸
Ekin

sym(n,T )

.

(B5)

It is seen that in the high-temperature limit Ekin
sym(n, T ) behaves

as Ekin
sym(n, T ) ∝ C1T

−1/2 + C2T
−2 + · · ·.
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