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Spin measurements for 147Sm + n resonances: Further evidence for nonstatistical effects
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We have determined the spins J of resonances in the 147Sm(n, γ ) reaction by measuring multiplicities of γ -ray
cascades following neutron capture. Using this technique, we were able to determine J values for all but 14
of the 141 known resonances below En = 1 keV, including 41 firm J assignments for resonances whose spins
previously were either unknown or tentative. These new spin assignments, together with previously determined
resonance parameters, allowed us to extract level spacings (D0,3 = 11.76 ± 0.93 and D0,4 = 11.21 ± 0.85 eV)
and neutron strength functions (104S0,3 = 4.70 ± 0.91 and 104S0,4 = 4.93 ± 0.92) for J = 3 and 4 resonances,
respectively. Furthermore, cumulative numbers of resonances and cumulative reduced neutron widths as functions
of resonance energy indicate that very few resonances of either spin have been missed below En = 700 eV. This
conclusion is strengthened by the facts that, over this energy range, Wigner distributions calculated using these
D0 values agree with the measured nearest-neighbor level spacings to within the experimental uncertainties,
and that the �3 values calculated from the data also agree with the expected values. Because a nonstatistical
effect recently was reported near En = 350 eV from an analysis of 147Sm(n, α) data, we divided the data into
two regions; 0 < En < 350 eV and 350 < En < 700 eV. Using neutron widths from a previous measurement
(corrected for new unresolved doublets identified in this work) and published techniques for correcting for missed
resonances and for testing whether data are consistent with a Porter-Thomas distribution, we found that the �0

n

distribution for resonances below 350 eV is consistent with the expected Porter-Thomas distribution. However,
we found that �0

n data in the 350 < En < 700 eV region are inconsistent with a Porter-Thomas distribution,
but in good agreement with a χ 2 distribution having ν � 2 We discuss possible explanations for these observed
nonstatistical effects and their possible relation to similar effects previously observed in other nuclides.
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I. INTRODUCTION

It recently has been shown [1] that (n, α) cross-section
measurements can be very useful for improving calculated
astrophysical rates for reactions involving α particles. Fur-
thermore, it has been shown [2] that resonance analyses
of such data can be even more useful in improving these
rates. This is because a resonance analysis can eliminate
confounding uncertainties and therefore allow more direct
tests of parameters of nuclear models [3–5] used to calculate
these rates. However, to obtain the most useful information
from a resonance analysis, it is necessary to know the spins
of the resonances. This can be a problem because most of
the nuclides for which (n, α) cross sections are measurable at
resonance energies have nonzero ground-state spins; hence,
two spins are allowed even for low-energy s-wave resonances
and it can be difficult or impossible to determine resonance
spins using common techniques.

Information contained in the γ -ray cascades following
neutron capture reactions can, in principle, sometimes be
used to determine resonance spins. For example, in some
cases it is expected that the average number of γ rays in
the de-excitation cascades between the capturing states and
the ground state will be different for the two s-wave spins.
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Consider the case of 147Sm + n. Because the ground-state
spin of 147Sm is Iπ = 7

2
−

, s-wave neutrons lead to 3−

and 4− resonances in 148Sm. In a very simple model in
which only dipole transitions can occur, at least three γ -ray
transitions are required to reach the 0+ ground state from a
3− excited state, whereas a minimum of four transitions are
required in the case of a 4− state. Hence, in this very simple
model, 3− resonances will have an average multiplicity of 3
and 4− resonances an average multiplicity of 4. In reality,
the existence of other multipolarities will both broaden the
multiplicity distributions as well as decrease the difference
between average multiplicities for 3− and 4− resonances
[6,7]. Detector effects also can cause changes in the mea-
sured multiplicity distributions. However, as demonstrated in
Ref. [8] the remaining ≈10% difference in average multiplicity
for the two spins still is measurable and independent of
resonance energy and was used to determine spins of 91
147Sm + n resonances below 900 eV.

More recently [9], an algorithm that combined Monte Carlo
γ -ray cascades predicted by the nuclear statistical model with
a Monte Carlo particle transport code was used to demonstrate
that the predicted and measured multiplicity distributions for
a multielement NaI detector were in agreement for 3− and
4− resonances in 149Sm + n. A similar technique was used
to demonstrate good agreement between the measured and
predicted multiplicity spectra for a multielement BaF2 detector
[10].

0556-2813/2007/76(2)/025804(15) 025804-1 ©2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.76.025804


P. E. KOEHLER et al. PHYSICAL REVIEW C 76, 025804 (2007)

The spin assignments from Ref. [8] were used in Ref. [2]
in an R-matrix analysis of the 147Sm(n, α) data of Ref. [1]
to determine α widths for 104 resonances below 700 eV.
The resulting �α values revealed some surprises with respect
to theoretical expectations. First, the α-width distributions
for both 3− and 4− resonances did not follow the expected
χ2 distributions. In particular, the α-width distributions were
broader than reduced-neutron-width distributions instead of
being intermediate to the distributions for neutrons and
γ rays. Second, the ratio of α strength functions for 3− to 4−
resonances was less than one-half of that predicted by theory.
Furthermore, exploratory calculations were not able to find
an α+ nucleus potential that could reproduce the observed
α strength functions as well as the strength function ratio.
Trying to reduce the α strength function ratio to the observed
value quickly led to strength functions that were orders of
magnitude larger than measured. Most surprisingly, the data
indicated that there is an abrupt decrease in the α strength
function ratio for energies above about 300 eV. Such an abrupt
change cannot be reproduced with any optical model of α

strength functions.
As pointed out in Ref. [2], the α-width distributions as

well as the striking decrease in the 3− − 4− ratio near 300 eV
depend on accurate spin assignments for the resonances, espe-
cially above 300 eV. Of the 104 resonances fitted in Ref. [2], 23
resonances (5 below 300 eV) had tentative spin assignments.
Therefore, we decided to make a new measurement of these
resonance spins. It was expected that the new Detector for
Advanced Neutron Capture Experiments (DANCE) at the
Los Alamos Neutron Science Center (LANSCE) would make
it possible to improve on the measurement of Ref. [8] for
several reasons. First, the flux at LANSCE is several orders
of magnitude higher, allowing higher-precision measurements
even using smaller samples. Second, the DANCE detector
has many more detector segments and a more sophisticated
data acquisition system, making more reliable multiplicity
measurements possible. Third, the DANCE detector is made
of BaF2 rather than NaI as used in Ref. [8]. This change should
lead to reduced backgrounds and improved timing.

II. EXPERIMENT AND DATA REDUCTION

The experiment was performed using DANCE on flight
path 14 at the Manuel Lujan, Jr. Neutron Scattering Center
(MLNSC) at LANSCE [11]. DANCE is a 4π array of 160 BaF2

crystals positioned 20 m from the neutron production target.
Details of the apparatus [12,13] and data acquisition [14] have
been published elsewhere, so only the salient features will be
given herein.

Neutrons are generated at LANSCE via spallation reactions
when an 800-MeV proton beam strikes a tungsten target.
The average proton current on target was 110–120 µA and
the width of the proton pulses was 125 ns. Flight path 14
views one of the ambient-temperature water moderators at the
MLNSC. The resulting neutron flux peaks near thermal energy
and is approximately proportional to 1/En over the range of
our measurements.

The samples were placed inside an evacuated flight tube
that was surrounded by a 6LiH neutron-scattering shield at

the center of the DANCE array. Three samples of metallic
samarium, which were enriched to 97.93% in 147Sm, 1 cm
in diameter, and weighed 1.444, 3.208, and 10.410 mg,
respectively, were used. The samples were held in the neutron
beam by attaching them to thin Al foils. Sample-out (blank Al
backing foil) and neutron-scattering (C sample) background
measurements also were made under the same conditions.

The neutron flux was monitored using three different
sample/detector combinations downstream of the main sample
position: (i) a BF3 detector, (ii) a fission chamber containing a
235U sample, and (iii) solid-state surface-barrier detectors that
recorded tritons and α particles from the 6Li(n, α)3H reaction
occurring in a 6LiF sample.

Data were acquired as waveforms, using separate Acqiris
transient digitizers for each detector, over a period of 200
to 250 µs, triggered by a timing signal from the accelerator
indicating the arrival of a proton pulse at the neutron
production target. Three sets of runs, each with a different
delay for this trigger, were required to cover the entire range
from 10 µs before each beam pulse from LANSCE to just
below the lowest energy resonance at 3.397 eV. The waveforms
were analyzed in real time to detect peaks. For each peak, a
summary of the peak shape, together with a high resolution
time stamp was written to a disk file. These data were sorted
by a replay routine which generated information such as
pulse-height (γ -ray energy), time-of-flight (neutron energy),
and cluster multiplicity (number of γ rays detected) for each
event. As explained in the references, cuts were applied to
the data to reduce background from radioactive impurities in
the BaF2 crystals. In addition, an overall pulse-height cut on the
total γ -ray energy, Eγ = 3–8 MeV, was used to restrict events
to those in the range expected from 147Sm(n, γ ) reactions.
This stage of the analysis resulted in a two-dimensional
spectrum, time-of-flight versus multiplicity, for each of the
runs. The average fluxes recorded by the flux monitors were
used to normalize sample-out runs for background subtraction.
Figure 1 shows representative sample-in, sample-out, and
subtracted two-dimensional spectra.

Projections of the background subtracted spectrum onto the
multiplicity axis for two time-of-flight regions corresponding
to resonances having previous firm spin assignments are shown
in Fig. 2.

These projections verify that there is a measurable, sig-
nificant difference in the average multiplicity for the two
different s-wave resonance spins. In principle, such projections
at each time of flight (or over each resonance) could be used
to determine the average multiplicities and hence the spins of
the resonances as was done in Ref. [8]. This is demonstrated in
Fig. 3 where the average multiplicity as a function of neutron
energy is plotted for four energy regions. For this figure, the
average multiplicity is defined by:

〈M〉 =
∑9

i=2 iY
(t)
i∑9

i=2 Y
(t)
i

, (1)

where i and Y
(t)
i are the multiplicity and (background-

subtracted) total yield for that multiplicity, respectively, at
neutron energy E. Multiplicities one and greater than nine were
not used because the statistical precision was too poor for these
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FIG. 1. Spectra of counts (arbitrary units) versus multiplicity
versus time of flight for sample-in (top), sample-out (middle),
and sample-in minus sample-out (bottom). The sample-out was
normalized to the sample-in spectrum using the neutron monitor
counts. The scales of all three plots are the same. The neutron energy
range of the time-of-flight axes (25 ns/channel) is roughly 400 to
500 eV.
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FIG. 2. (Color online) Multiplicity spectra for two resonances
with firm spin assignments from previous work [8]. Open and filled
circles are data from our measurements (error bars are smaller
than symbol sizes) and dashed and solid curves are Gaussian fits
for the resonances at 39.7 and 40.7 eV, respectively. Fitted mean
multiplicities are 4.45 and 4.11 for the 39.7- and 40.7-eV resonances,
respectively.
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FIG. 3. (Color online) Yield (solid red curve, left y axes) and
average multiplicity (solid blue circles, right y axes) versus neutron
energy for four representative energy regions of our data. Dotted
vertical lines indicate positions of resonances identified in previous
work. When resonances are well resolved, they clearly separate into
two bands of average multiplicity. For example, in the top two
panels resonances at 163.6, 171.8, 206.03, 240.7, and 247.62 eV
have average multiplicities near 4.5 and hence are assigned J = 4. In
contrast, resonances at 179.7, 184.1, 221.65, and 225.28 eV have
significantly lower average multiplicities of about 4.2 and hence
J = 3. However, average multiplicities become less usefull when
resonances are not well resolved. For example, the resonances at
418.3, 625.3, and 651.9 are only partly resolved from resonances on
either side of them and have average multiplicities half way between
the expected values for the two spin states. As a result, it is not possible
to determine the spins of these resonances using only their average
multiplicities. This situation becomes worse at higher energies.

cases. As shown in the top two panels of Fig. 3, at low energies
where most of the resonances are well resolved, average multi-
plicities fall into two bands at 〈M〉 ≈ 4.2 and 4.5 for J = 3 and
4, respectively. However, worsening resolution with increasing
neutron energy limits the usefulness of this approach, and, as
shown in the bottom two panels of Fig. 3, once the resonances
are no longer adequately resolved from one another it becomes
difficult or impossible to assign spins using this technique.
The problem is that as instrumental resolution smears the
peaks together, the multiplicity distribution at each neutron
energy contains contributions from more than one resonance.
If these resonances have different J values, application of
Eq. (1) will result in an 〈M〉 value between the values for
the two different spins. For example, the resonances at [15]
418.3, 625.3, and 651.9 eV all have 〈M〉 values about midway
between the expected values for J = 3 and 4. In such cases, the
average multiplicity often will display a positive or negative
slope as a function of neutron energy and, if there is sufficient
statistical precision and there are no other partially resolved
resonances nearby, it may be possible to discern that the peak in
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the yield curve actually is due to two resonances with different
spins. For example, the peak near 65 eV was identified [8] as
a doublet, with the lower-energy resonance having J = 3 and
the upper one J = 4, using this technique. However, although
the 〈M〉 versus En curve displays a slope at the 418.3-, 625.3-,
and 651.9-eV resonances, it was not possible to assign firm
spins, or to determine if they were doublets, in any of these
cases due to partially resolved J = 3 and 4 resonances on
either side. Another problem with using 〈M〉 to assign spins is
that, because it involves division by the background-subtracted
counts, 〈M〉 is very noisy between resonances and near very
small resonances where there are few counts. For this reason,
〈M〉 is plotted only near the peaks of the resonances in
Fig. 3.

To overcome these difficulties, we employed a technique
that effectively uses not only the average multiplicity but also
the shapes of the distributions and does not require division
by the yield. This technique involves effectively subtracting
the prototypical multiplicity distribution for J = 3 (J = 4)
resonances from the multiplicity distribution at each neutron
energy, thereby generating a curve as a function of neutron
energy that peaks only at J = 4 (J = 3) resonances.

To understand how this technique works, consider that the
total yield Y

(t)
i (E) for a given multiplicity i at neutron energy

E has, in general, contributions due to both J = 3 and 4
resonances;

Y
(t)
i (E) = Y

(3)
i (E) + Y

(4)
i (E). (2)

Assuming that the average multiplicities as well as the shapes
of the multiplicity distributions both remain constant for
each of the two spins (which we have verified for isolated
resonances in our data), it is possible to find a residual yield
Z

(3)
1 (E) that will be zero for all J = 3 resonances,

Z
(3)
1 (E) =

b∑
i=a

Y
(3)
i (E) − N1

d∑
i=c

Y
(3)
i (E) = 0, (3)

where a, b, c, and d are integers and N1 is a normalization
constant. For example, if 〈M〉 = 4.5 and the distribution is
symmetric, then Eq. (3) is satisfied for a, b, c, d = 5, 8, 1, 4,

respectively, and N1 = 1. However, application of Eq. (3) to a
J = 4 resonance will yield a positive residual because 〈M〉 is
greater for J = 4 resonances than it is for J = 3. These facts
are graphically illustrated in Fig. 4. Furthermore, application
of Eq. (3) to the data at energies where the yields contain
contributions from both spins [i.e., Eq. (2)] will recover the
J = 4 component:

Z
(t)
1 (E) =

b∑
i=a

Y
(t)
i (E) − N1

d∑
i=c

Y
(t)
i (E)

=
b∑

i=a

[
Y

(3)
i (E) + Y

(4)
i (E)

]

−N1

d∑
i=c

[
Y

(3)
i (E) + Y

(4)
i (E)

]
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FIG. 4. Graphical illustration of Eq. (3). For the purposes of this
illustration, it is assumed that multiplicity is a continuous variable and
that multiplicity distributions are symmetric about their means. Two
multiplicity distributions with mean values of 〈M〉 = 4.0 and 4.5,
respectively, are shown. The left and right hatched areas in each panel
represent the two terms in Eq. (3) for the two different multiplicity
distributions. Integration limits have been chosen so that they extend
for equal ranges of multiplicity on either side of M = 4. Under these
conditions, the vertically hatched and diagonally hatched areas in the
top panel are equal and hence their difference is zero. However, as
shown in the bottom panel, when these same integration limits are
applied to the 〈M〉 = 4.5 distribution, the horizontally hatched area
is larger than the cross-hatched area. Hence, subtraction of the latter
from the former yields a net positive result.

=
b∑

i=a

Y
(3)
i (E) − N1

d∑
i=c

Y
(3)
i (E)

+
b∑

i=a

Y
(4)
i (E) − N1

d∑
i=c

Y
(4)
i (E)

=
b∑

i=a

Y
(4)
i (E) − N1

d∑
i=c

Y
(4)
i (E), (4)

where, in the last step, Eq. (3) was used to eliminate the first
two terms in the third line. Similarly, a second residual yield
Z2(E) can be found that will be zero for all J = 4 resonances,

Z
(4)
2 (E) =

f∑
i=e

Y
(4)
i (E) − N2

h∑
i=g

Y
(4)
i (E) = 0. (5)

Because 〈M〉 was between 4 and 5 for both spins, the
summation limits in Eqs. (3) and (5) were chosen so that
one sum ended at i = 4, whereas the second began at i = 5.
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FIG. 5. (Color online) Two different linear combinations of mul-
tiplicities versus neutron energy. The red solid curves were calculated
using Eq. (6), which accentuates J = 3 resonances. Similarly, the blue
dashed curves were calculated using Eq. (7), which accentuates J = 4
resonances. Dotted vertical lines indicate positions of resonances
identified in previous work. The data have been smoothed over three
to five channels to reduce statistical fluctuations.

Normalizations N1 and N2 were determined empirically to
yield zero net counts in the vicinity of J = 3 and 4 resonances,
respectively, while yielding net positive counts for resonances
of the other spin. The actual equations used are given in
Eqs. (6) and (7). Curves resulting from these equations are
shown over the same energy regions as in Fig. 3 and in Fig. 5,
where the curve labeled J = 3 was calculated according to:

Z
(t)
2 =

[
0.88 ×

4∑
i=2

Y
(t)
i (E) −

9∑
i=5

Y
(t)
i (E)

] /
1.3. (6)

Similarly, the curve labeled J = 4 was calculated using the
formula:

Z
(t)
1 =

9∑
i=5

Y
(t)
i (E) − 0.63 ×

4∑
i=2

Y
(t)
i (E). (7)

The overall normalization constant in Eq. (6) was chosen
to yield peaks of approximately the same height from both
equations so that the results could more easily be compared to
one another on the same graph. Multiplicities one and greater
than nine were not used because the statistical precision was
too poor for these cases. The fact that the spin assignments
for isolated resonances from this technique agree with those
from using just the average multiplicities (both from this work
as well as from Ref. [8]) indicates that the multiplicity distri-
butions do remain reasonably constant. The main advantage

of this technique is that it makes spin assignments possible
for several un- and partially-resolved resonances for which
using 〈M〉 failed. For example, as discussed above, it was not
possible to make firm spin assignments for the 418.3-, 625.3-,
and 651.9-eV resonances using 〈M〉. However, as shown in
Fig. 5, the peak in the yield curve at 418.3 eV, which previously
had been given a tentative J = (4) assignment, is clearly due
to two resonances with the lower-energy one having J = 3
and the other J = 4. Figure 6 depicts simulations based on this
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Using Multiplicity to Improve Resolution

FIG. 6. (Color online) Simulations, based on the newly identified
doublet at 418.3 eV, of our new technique for using multiplicity
information to assign resonance spins. The top panel depicts the
simulated measured yield (black, solid curve) summed over all
multiplicities. Using only this information, it appears that there is
a single resonance at this energy. The other curves in the top panel
depict the J = 3 (short-dashed, red curve) and J = 4 (dashed, blue
curve) that were added together to obtain the “Measured Yield” curve.
These two components are of course undetected in the total yield.
Vertical dashed lines in both the top and bottom panels indicate the
position of the previously identified resonance position. The bottom
panel shows the results of using measured multiplicity information.
The fitted multiplicity distributions from Fig. 2 were used together
with the individual J = 3 and 4 yields in the top panel to calculate
the curves and points in the bottom panel. The solid black circles
represent average multiplicities 〈M〉 (right y axis) calculated using
Eq. (1). The average multiplicity is about midway between values
expected for the two spins and displays a slight positive slope. These
facts hint that this resonance might be a doublet. However, as shown
in Figs. 3 and 5, in the actual data this slope may be due to the fact
that there is a partially resolved J = 3 resonance just below and a
J = 4 resonance just above this energy. Hence, it is not possible to
draw any firm conclusions based on 〈M〉. The solid red and dashed
blue curves in the bottom panel depict the residual yields (left y axis)
calculated using Eqs. (6) and (7), which reveal both the spins and
energies of the individual components of the doublet.
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doublet in an attempt to further illustrate this new technique. In
addition, Fig. 5 shows that the 625.3- and 651.9-eV resonances
have J = 3. There were many other similar cases. Overall, of
the 140 resonances below En = 1 keV, we were able to make
firm J assignments for 33 resonances with no previous J

assignments and eight firm J assignments where previously
there were only tentative assignments [15].

Curves calculated using Eqs. (6) and (7) were used to assign
the resonance J values up to En = 1 keV listed in Table I. We
stopped at this energy because statistical analysis indicated
that a significant fraction of resonances were beginning to
be missed because of worsening resolution and statistical
precision. Spins from previous measurements also are given
in Table I. Only 14 resonances below En = 1 keV (nine
below 700 eV) remain without firm J assignments. Only
six of our J assignments disagree with those given in the
compilation of Ref. [15]. Of these, our J assignments for the
partially-resolved doublet near 65 eV agree with those of the
primary references [8,16,17] (indicating that perhaps an error
was made in Ref. [15] while compiling the data), another two
involve other partially resolved doublets, and the final two
previously were only tentative assignments. Finally, our data
indicate that six previously known resonances (at En = 140.0,
290.1, 418.3, 513.5, 546.0, and 765 eV) actually are doublets.
For all but the one at 140.0 eV, our data indicate that the two
spin states are about equally strong, so we split the previously
determined 2g�n values equally between the two members of
the doublet. Our data indicate that the J = 3 component of the
doublet at 140.0 eV is about twice as strong as the J = 4 one,
so we split the previous 2g�n value by a ratio of 2:1.

III. RESONANCE PARAMETER ANALYSIS AND
DISCUSSION

As a result of our new data, almost all the resonances below
700 eV have firm spin assignments. Therefore, it should be
possible to perform a much better analysis of the resonance
parameters than previously was possible.

A. Level spacings and neutron strength functions

Plots of the cumulative number of resonances as a function
of resonance energy are shown in the top part of Fig. 7.
Average level spacings can be calculated from the reciprocals
of the slopes of these plots [18]. These data indicate that a
significant fraction of resonances are beginning to be missed
for energies in excess of 700 eV. Therefore, only the data below
this energy were used to determine the average level spacings.
Dashed lines depict the results of linear fits to the data for En <

700 eV from which average level spacings of D0,3 = 12.99 ±
0.93 eV and D0,4 = 12.38 ± 0.85 eV for J = 3 and 4
resonances, respectively, were determined. Uncertainties were
calculated according to Ref. [18]. The nearly equal level
spacings for the two spin groups is in agreement with Fermi
gas-model predictions (see, for example, Ref. [19]).

Plotted in the bottom part of Fig. 7 are cumulative reduced
neutron widths as functions of resonance energy. Neutron
strength functions can be determined from the slopes of

TABLE I. 147Sm resonance energies and spins.

N En (eV)a J

This
Work

Ref.
[15]

Ref.
[8]

Ref.
[16]

Ref.
[17]

1 3.397 3 3 3 3
2 18.36 4 4 4 4
3 27.16 3 3 3 3 3
4 29.76 3 3 3 3 3
5 32.14 4 4 4 4
6 39.70 4 4 4 4
7 40.72 3 3 3 3 3
8 49.36 4 4 4 (4)
9 58.09 3 3 3 3

10 64.96 3b (4) 3b 3c

11 65.13 4b (3) 4b 4c

12 76.15 4 4 4 4
13 79.89 4 4 4 (4)
14 83.60 3 3 3 3 3
15 94.90 3
16 99.54 4 4 4 (4)
17 102.69 3 3 3 3 (3)
18 106.93 4 4 4 (4)
19 108.58 4 4 4
20 123.71 3 3 3 3 3
21 140.00 (3)b 3 3 3
22 140.10 (4)b

23 143.27 4 4 4
24 151.54 3 3 3 3
25 161.03 3 3 3 3c

26 161.88 4 4 4 3c

27 163.62 4 4 4 (4)
28 171.80 4 4 4 (4)
29 179.68 3 3 3
30 184.14 3 3 3 3 3
31 191.07 3 3 3
32 193.61 4 4 4
33 198.03 3 3 3
34 206.03 4 4 4 (4)
35 221.65 3 3 3 3c

36 225.28 3 3 3 3c

37 227.9 (4) 4c

38 228.53 4 4 4c

39 240.76 4 4 4
40 247.62 4 4 4
41 257.13 3b 3 3c

42 258.00 4b 4 4c

43 263.57 3 3 3
44 266.26 4 4 4
45 270.72 3 3 3
46 274.40 3 3 3
47 283.28 4 4 4
48 290.10 (4)b (4) (4)
49 290.30 (3)b

50 308.30 3 3 3
51 312.06 4 4 4
52 321.13 3 3 3
53 330.10 3 3 3
54 332.1 4 4 4
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TABLE I. (Continued).

N En (eV)a J

This
Work

Ref.
[15]

Ref.
[8]

Ref.
[16]

Ref.
[17]

55 340.4 4 4 4
56 349.86 3 3 3
57 359.32 4 4 4
58 362.15 4 4 4
59 379.2 4 4 4
60 382.4 3 3 3
61 390.5 4 4 4
62 396.5 4 (4) (4)
63 398.6 3 3 3
64 405.1 3 3 3
65 412.0 3 3 3
66 417.6 3b (4) (4)
67 419.2 4b

68 421.8 4 4 4
69 433.1 4 3c

70 435.7 3 3 3c

71 440.2 4 4 4
72 446.9 3 3 3
73 458.6 4 4 4
74 462.9 3 3 3
75 476.0 4 4 4
76 479.8 3 3 3
77 486.4 3 3 3
78 496.2 4 4 4
79 498.6 3 (3) (3)
80 513.5 (3)b 4 4
81 515.4 (4)b

82 528.9 4 4 4
83 532.5 3 3 3
84 538.1 4 4 4
85 546.0 (3)b (3) (3)
86 546.2 (4)b

87 553.2 3 3 3
88 554.5 4 4 4
89 559.7 3 3 3
90 563.4 4 4 4
91 567.6 3
92 574.3 4 4 4
93 580.2 3 3 3
94 587.8 3 3 3
95 597.4 4 4 4
96 606.0 4 4 4
97 612.6 3
98 617.2 4 (3)
99 622.6 4

100 625.3 3
101 634.0 3 3 3
102 644.7 4
103 648.5 4
104 651.9 3
105 659.5 3 (4) (4)
106 668.8 4 4 4
107 677.5 3
108 683.1 4

TABLE I. (Continued).

N En (eV)a J

This
Work

Ref.
[15]

Ref.
[8]

Ref.
[16]

Ref.
[17]

109 687.4 4
110 697.0 4 (4)
111 702 3
112 714.0 3 3 3
113 724 3
114 729 4
115 734 3
116 744.3 4 4 4
117 754 4
118 758 3
119 764 4b

120 766 3b

121 796.2 3 3 3
122 808.0 4 4 4
123 821.0 4 4 4
124 836.1 (4) 4 4
125 847 4
126 850 (3)
127 854 (4)
128 858 4
129 864 3
130 875.2 3 4 4
131 880 4
132 896.1 (4) 4 4
133 911 3
134 922 4
135 930 3
136 935 4
137 943 4
138 953 (3)
139 962 3
140 984 3
141 991 4

aEnergies from Ref. [15] except for some unresolved doublets.
bPartially resolved doublet.
cUnresolved doublet.

these plots [18]. Neutron widths (except as noted above)
were taken from Ref. [15], which is based on Ref. [20].
Because the measurement technique of Ref. [20] is expected
to miss only resonances having very small neutron widths,
and because such resonances contribute very little to the
cumulative reduced neutron widths, the data over the entire
region to 1 keV were used to determine the neutron strength
functions. Dashed lines indicate the results of straight-line fits
to the data from which strength functions 104S0,3 = 4.70 ±
0.91 and 104S0,4 = 4.93 ± 0.92 for J = 3 and 4 resonances,
respectively, were determined. Uncertainties were calculated
according to Ref. [18].

Further evidence that very few resonances have been missed
below 700 eV is provided by the resonance spacing distri-
butions. The integral nearest-neighbor spacing distributions
for resonances below this energy are plotted in Fig. 8. We
plotted integral rather than differential distributions for these

025804-7



P. E. KOEHLER et al. PHYSICAL REVIEW C 76, 025804 (2007)

0

20

40

60

80

ΣN

Data
D0=13.0 eV
D0=11.76 eV

J=3

Data
D0=12.4 eV
D0=11.21 eV

J=4

0 500 1000

En (eV)

0

200

400

600

ΣΓ
n

0  (
m

eV
)

J=3
Data
104S0=4.70

0 500 1000

J=4
Data
104S0=4.93

FIG. 7. (Color online) Cumulative number of resonances (top)
and reduced neutron widths (bottom) versus resonance energy for
J = 3 (left) and 4 (right) resonances. Data from measurements are
represented by staircase plots. Short-dashed blue lines in the top
panels are linear fits to the data below 700 eV from which the indicated
level spacing values were obtained. These same level spacing values
were used to calculate the Wigner distributions depicted by dashed
curves in Fig. 8. Long-dashed red lines in the top panels depict level
spacings after a correction for missed resonances was applied. See
text for details. Long-dashed red lines in the bottom panels are fits to
the data over the entire range shown from which the indicated neutron
strength functions were determined.

data, as well as for the width distributions shown below, to
avoid possible systematic effects due to the choice of binning
widths. From these plots it can be seen that the measured
spacings are in good agreement with the expected Wigner
distributions [21]. Furthermore, �3 values [22] (which are
sensitive measures of the expected longer range correlations in
the level spacings) calculated from the data (0.40 for both spin
states for resonances below 700 eV) are in excellent agreement
with the expected values (0.40 ± 0.11 for both spin states).
All these results indicate that there are very few missing or
misassigned resonances for En < 700 eV.

B. Neutron width distributions

Reduced neutron widths for a single J value are expected
to follow a χ2 distribution with one degree of freedom (ν =
1)—the so-called Porter-Thomas (PT) distribution [23]. A χ2

distribution with ν degrees of freedom of widths � has the
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J=4

FIG. 8. (Color online) Cumulative nearest-neighboor level spac-
ing distributions for J = 3 (left) and 4 (right) resonances. Plotted are
the cumulative number of spacings up to a given value versus that
value. The spacings, D, have been normalized to the indicated average
spacings D0. Data from measurements are represented by staircase
plots. Dashed blue curves indicate the expected Wigner distributions.

form:

P (x, ν) = ν

2G(ν/2)

(νx

2

)ν/2−1
exp

(
−νx

2

)
, (8)

where P (x, ν) is the probability, x = �
〈�〉 , 〈�〉 is the average

width, and G(ν/2) is the gamma function for ν/2.
The PT distribution has been compared to reduced-neutron-

width data in several instances (e.g., Refs. [23–25]) and
now is considered to be a well-established fact. However,
there are three main problems with such comparisons. First,
the relatively small number of available resonances limits
the statistical precision. Hence, these tests usually employ a
statistical technique such as the maximum likelihood method
to determine the ν value of the distribution from the data.
Also, the formalism of error propagation was used in Ref. [26]
to derive the standard deviation in the ν value determined
from the data given the number of resonances used. Second,
it is an unfortunate fact that the PT distribution is weighted
toward small widths that are the most difficult to observe
in experiments. Furthermore, the region of small widths is
where the PT distribution differs most from the next closest
χ2 distribution having ν = 2. Therefore, tests of the PT dis-
tribution must include a consideration of missed resonances.
For example, in Fig. 2 of Ref. [23] several curves are given for
different experimental sensitivities, to be used in determining
the ν value from a set of measured reduced neutron widths.
Third, care must be taken to avoid contamination from p-wave
resonances. Because neutron widths for p-wave resonances
are, on average, much smaller than for s-wave ones, inclusion
of only a small number of p-wave resonances can lead
to an erroneously small ν value being extracted from the
distribution.

As a test case for the PT distribution, 147Sm has the
advantages that a relatively large number of resonances
are available and that the data should be free of p-wave
contamination. A minimum of 54 resonances were used in
the tests described below, which is more than used in 8 of
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the 14 cases studied in Refs. [24,25]. Furthermore, 147Sm is
near both the maximum of the s-wave as well as the minimum
of the p-wave neutron strength functions (S0/S1 ≈ 10). In
addition, due to its relatively small average level spacing,
a sufficient number of s-wave resonances can be observed
at relatively low energies, before the largest p-wave neutron
widths become comparable to the smallest s-wave ones. In
contrast, many of the nuclides studied in Ref. [25] are near the
peak of the p-wave strength function, having S0/S1 ≈ 0.4–3,
and have level spacings 2.6 to 16 larger than 147Sm. Therefore,
for these nuclides it was necessary to include resonances to
much higher energies to obtain adequate sample sizes and
to use relatively high threshold �0

n values to avoid p-wave
contamination. Because theoretical distributions for different
ν values differ most at small �0

n, using a higher threshold limits
the sensitivity of the test.

Given the measured level spacing and strength function
(which determine 〈�〉 and the overall normalization) there are,
in principle, no free parameters when comparing the measured
reduced neutron widths to the expected PT distribution.
Because we have determined level spacings and strength
functions for both s-wave spin states, we can compare the
�0

n distributions for each to the expected PT distributions as
shown in Fig. 9. As can be seen in this figure, there appears to
be substantial disagreement between the data and the expected
distributions. To quantify these differences, we used the �0

n

values together with Eq. (2) and Fig. 2 of Ref. [23] (which
are based on the maximum likelihood method) to estimate
ν values. For J = 3 and 4, the first term on the left-hand
side of Eq. (2) ( 1

N

∑
ln(�0

n,i/〈�0
n〉), where the sum runs from

i = 1 to N , the number of resonances) in Ref. [23] equals
−0.50 and −0.68, respectively. To use these values with
Fig. 2 of this reference, it is necessary to choose a threshold

0 2 4 6
0

20

40

60

N
u

m
b

er
 o

f 
R

es
o

n
an

ce
s Data

PT Dist.

J = 3

0 2 4 6

[Γn
0 (meV)]1/2

Data
PT Dist.

J = 4

FIG. 9. Cumulative distributions of reduced neutron widths for
J = 3 (left) and 4 (right) resonances below 700 eV. Plotted are
the number of resonances having a reduced neutron width greater
than a given value versus the square root of that value. Data
from measurements are represented by staircase plots. Dashed
curves represent the expected Porter-Thomas distributions and were
calculated using the level spacings and neutron strength functions
determined from the data in Fig. 7.

value for the experiment, x 1
2
, which is the antilog of the value of

�0
n/〈�0

n〉 at which the overall efficiency of detecting a reduced
neutron width this small is 1

2 . According to Ref. [23], the most
probable value is x 1

2
= 0.01, so we used the curve for this

value to obtain ν = 2.0 ± 0.22 and 1.5 ± 0.22 for J = 3 and
4, respectively. The uncertainties were calculated according
to Eq. 2.14 in Ref. [26] from which it can be concluded that
the �0

n distributions for J = 3 and 4 are 4.5 and 2.3 standard
deviations different from the expected value of ν = 1 for a PT
distribution.

Other methods have been devised to correct for missed
resonances, and other statistical tests may be used to ascertain
if the data are consistent with a PT distribution. Before
proceeding further, however, first let us consider the fact
that a nonstatistical effect recently was reported [2] near
En = 350 eV from an analysis of 147Sm(n, α) data. With
this in mind, we divided the �0

n data into two groups from
En = 0–350 eV and En = 350–700 eV. Also, because our
analysis indicates that the average reduced neutron widths are
equal for J = 3 and 4, we combined the data (as �0

n) for the
two spins to increase the statistical precision. In Ref. [20],
the data were combined as g�0

n (where g = 2J + 1/2(2I + 1)
where I = 7

2 the spin of the target nuclide 147Sm) as typically
is done when the resonance spins are unknown. However,
combining two spin groups in this way implicitly assumes that
the number of resonances are proportional to 2J + 1, which
we have shown is not the case. Neutron width distributions
for the two energy regions are shown in Fig. 10. From
this figure, it appears that the �0

n distribution changes shape
between the two energy regions. Below 350 eV, the shape
appears to be very well described by a PT distribution. Using
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Both J = 3 and 4 Resonances

FIG. 10. (Color online) Distributions of reduced neutron widths
for two different energy regions. Plotted are the number of resonances
(both J = 3 and 4 combined) having a reduced neutron width greater
than a given value versus the square root of that value. Resonances
with En < 350 eV and 350 < En < 700 eV are shown as solid circles
and X’s, respectively. We used symbols rather than the more typical
staircase plots for the data so that they could be distiguished more
easily from each other and from the theoretical curves. The solid red
and dashed blue curves are the expected PT and ν = 3.5 distributions,
respectively, after corrections for missed resonances as explained in
the text.
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Eq. (2) and (the x 1
2

= 0.01 curve in) Fig. 2 in Ref. [23] leads
to ν = 1.02 ± 0.22 for the lower-energy region, in excellent
agreement with PT. In contrast, this same method leads to
ν = 3.5 ± 0.22 for the En = 350–700 eV region or more
than 11 standard deviations different from ν = 1. To obtain
this result, we used the equations in Ref. [23] to extend the
curves in Fig. 2 of that reference (which ends at ν = 2).
For such large ν values, curves for the different x 1

2
values

are nearly the same. One problem with the technique of
Ref. [23] is that the correction for missed resonances is made
using an energy-independent threshold value x 1

2
, whereas in

most experiments the sensitivity decreases with increasing
energy. Therefore, it seems prudent to employ a more realistic
correction for the number of missed resonances.

In Ref. [27], a technique for calculating the number of
missed resonances was devised that is based on realistic
experimental conditions. The technique as it is laid out in
Ref. [27] also assumes the reduced neutron widths obey a PT
distribution. We have shown above that the neutron widths
for resonances below 350 eV are in good agreement with PT.
Therefore, we applied the technique of Ref. [27] to the data
in this region to obtain corrected D0 and S0 values (and hence
corrected values for the number of resonances in the 350-eV
interval Ncorr and corrected values for the average reduced
neutron width) and assumed these values remain the same for
the next 350-eV interval.

To apply this technique, it is necessary to determine
an energy-dependent threshold �0

n below which resonances
are missed, δ(E) = c〈�0

n〉Eb, where c and b are constants
determined from the data and type of experiment, respectively.
Reference [27] indicates that b = 1.75 for the present exper-
iments and, as can be seen in Fig. 11, this choice of b seems
to agree well with the experimental threshold across a wide
energy range. An examination of the reduced neutron widths
below 350 eV indicates that the most sensitive limit is set by
the 228.53-eV resonance, from which c(1) = 1.22 × 10−6 is

0 100 200 300 400 500 600 700
En (eV)
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10-1

100

101

Γ n
0  (

m
eV
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147Sm
149,150 Sm
N = 60
N = 61

FIG. 11. (Color online) Reduced neutron widths for 147Sm res-
onances (blue solid circles) and effective �0

n values for 149,150Sm
resonances (black X’s) in our DANCE data as functions of resonance
energy. Also shown are threshold curves calculated according to
Ref. [27] for four (N = 60, solid geen curve) and five (N = 61,
long-dashed red curve) missed resonances by En = 350 eV. See text
for details.

obtained. Following the iterative procedure of Ref. [27], these
values of b and c(1) lead to a corrected average level spacing
of D0 = 5.74 ± 0.40 eV (for both spins combined, with
uncertainty calculated according to Ref. [18]) and negligible
change to S0. Assuming the relative number of resonances for
the two different spins remains unchanged, the corrected spin-
separated average level spacings are D0,3 = 11.76 ± 0.93 eV
and D0,4 = 11.21 ± 0.85 eV. Hence, this technique indicates
that 5 resonances were missed by 350 eV or Ncorr = 61. Peaks
in our data due to small amounts of 149,150Sm (0.50 and
0.17 atom percent, respectively) in the sample indicate that this
is a conservative estimate and that the actual number of missed
resonances is smaller. Of the observed 149,150Sm resonances,
the one at 68.3 eV yields the most sensitive limit. Using this
resonance, the parameters in Ref. [15], the assayed amount
of 149Sm in the sample, and the methods of Ref. [27] yield
Ncorr = 60 by 350 eV. Reduced neutron widths for 147Sm and
effective �0

n values for 149,150Sm are shown together with the
Ncorr = 60 and 61 threshold curves in Fig. 11.

In addition to providing corrections for the number of
missed resonances, the calculations above also make it possible
to do a more careful and realistic maximum likelihood analysis
as described in Ref. [25]. Instead of the somewhat arbitrary
threshold used in Ref. [23], in the technique of Ref. [25], an
energy-independent threshold is determined from the data by
examining a plot such as Fig. 11. The threshold �0

n value is
chosen such that, within the energy range being considered,
all s-wave resonances appear to have been observed and
all p-wave resonances excluded. As explained above, the
latter consideration can be neglected in the present case.
From Fig. 11, it can be seen that the conservative (N = 61)
threshold curve implies that �0

n = 0.2 meV is a reasonable
threshold value for En < 350 eV. Similarly, �0

n = 0.7 meV
is a reasonable threshold value for En < 700 eV. With these
threshold choices, applying the technique of Ref. [25] leads
to ν = 0.91 ± 0.32 for the En < 350 eV region, and ν =
3.19 ± 0.83 for the 350 < En < 700 eV region. Hence, this
improved analysis leads to the same conclusion as applying the
method of Ref. [23]. The data in the lower energy region are
consistent with a PT distribution, but the higher-energy data are
inconsistent with PT. Even if the very conservative threshold
of �0

n = 2.0 meV is assumed for the 350 < En < 700 eV
region, the ν value obtained (2.68 ± 0.76) still is inconsistent
with a PT distribution at the 2.2σ level. Uncertainties were
dominated by finite sampling errors, which were determined
in the usual way when maximum likelihood estimators are
used, as described in Ref. [25]. These uncertainties tend to be
substantially larger than those calculated following Ref. [26],
which is based on the formalism of error propagation.

As a further check, a second statistical technique was ap-
plied. The Kolmogorov-Smirnov (KS) test [28] can be used to
test the hypothesis that theoretical and measured distributions
are equivalent. This test involves calculating the maximum
vertical distance D+ between the data and the hypothesized
distribution and accounts for the fact that a limited number of
samples were measured in the experiment. The expected PT
distribution using the more conservative correction for missed
resonances (Ncorr = 61) is shown in Fig. 10. It appears to be
in excellent agreement with the data for En < 350 eV and
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significantly different from the data for 350 < En < 700 eV.
We applied the KS test to the data in both energy regions. Using
Ncorr = 61, we calculated D+ = 0.0919 and 0.2432 for the
En < 350 eV and 350 < En < 700 eV regions, respectively.
These D+ values together with the number of observed
resonances were used to calculate P values of 63.40% and
99.87% for the En < 350 eV and 350 < En < 700 eV regions,
respectively. These P values indicate the hypothesis that the
data are consistent with a PT distribution is accepted for the
lower-energy region, but rejected at the 99.87% confidence
level for the 350 < En < 700 eV region. KS tests of these
same data compared to a χ2 distribution with 3.5 degrees
of freedom result in the opposite conclusion; the hypothesis
that the data are consistent with this distribution is accepted
for the higher-energy region (P = 40.75%), but rejected at
the 100.00% confidence level for the En < 350 eV region.
Although the data in the 350 < En < 700 eV region are in
better agreement with larger ν values, intermediate degrees
of freedom (e.g., D+ = 0.1167 and P = 78.72%, for ν =
2) cannot be excluded. Taken together, both the maximum
likelihood and KS methods indicate the shape of the �0

n

distribution changes from PT to ν � 2 at En ≈ 350 eV. Results
from KS tests of the various distributions are summarized in
Table II.

In doing the above tests, we have calculated the correction
for missed resonances using the data in the En = 0–350
eV region, and assumed the same number of resonances
(Ncorr = 61) in the 350 < En < 700 eV region. Although
it could be argued that it might be better to use the data
in the 350 < En < 700 eV region to obtain the corrected
number of resonances in this region, there are at least three
reasons why our approach is better. First, as shown in Fig. 11,
sensitivity to small resonances is greatest at lower energies.
Hence by using the data in the En = 0–350 eV region, the
correction factor is, in principle, smaller and any unknown

systematic errors should be less important. Second, all such
correction methods must assume a neutron-width distribution.
As discussed above, applying statistical tests to the data in
the En = 0–350 eV region indicate that these data are in
good agreement with a PT distribution. Hence, it should be
safe to apply the method of Ref. [27] (which assume a PT
distribution) to the data in this region to obtain the corrected
number of resonances. However, these same statistical tests
indicate that the data in the 350 < En < 700 eV region do
not follow a PT distribution, so it may not be valid to apply
the technique of Ref. [27] to obtain the corrected number
of resonances in this region from these data; furthermore, to
do so would result in a somewhat circular test (i.e., assuming
ν = 1 to obtain the corrected number of resonances with which
to test if ν = 1). Third, all such correction techniques are
multiplicative in nature; they obtain the corrected number of
resonances by multiplying the observed number of resonances
by a correction factor. Therefore, a significant systematic
error can result if the wrong neutron-width distribution is
assumed. This is because there are fewer resonances having
small neutron widths for a ν = 3.5 distribution than for a
PT one. Therefore, for a given threshold such as shown in
Fig. 11, fewer resonance will be missed for a ν = 3.5 distribu-
tion than for a PT one. Hence, if a PT distribution is assumed,
but the distribution actually has ν = 3.5, the resultant corrected
number of resonances will be too large. To illustrate this point,
we adapted the technique of Ref. [27] to a ν = 3 distribution.
Applying the technique of Ref. [27] (with c(1) = 1.22 × 10−6)
to the data in the 350 < En < 700 eV region, assuming
ν = 1 results in a corrected average level spacing of 4.93 ±
0.35 eV, which is 2.3 standard deviations [18] different from
the corrected value (5.74 ± 0.40 eV) in the En = 0–350 eV
region. In contrast, applying this same technique to these same
data, but assuming ν = 3 results in a corrected average level
spacing of 6.25 ± 0.44 eV (Ncorr = 56), only 1.2 standard

TABLE II. Results of Standard Kolmogorov-Smirnov Tests.

Quantity Distribution J �E (eV) Max Nobs P (%)

�0
n PT 3 + 4 0–350 0.0919 56 63.40

�0
n χ 2 with ν = 2 3 + 4 0–350 0.2435 56 99.90

�0
n χ 2 with ν = 3.5 3 + 4 0–350 0.4075 56 100.00

�0
n PT 3 + 4 350–700 0.2432 54 99.87

�0
n χ 2 with ν = 2 3 + 4 350–700 0.1167 54 78.72

�0
n χ 2 with ν = 3.5 3 + 4 350–700 0.0667 54 40.75

D0 GOE 3 0–350 0.1261 27 60.89
D0 GUE 3 0–350 0.1753 27 83.04
D0 GOE 4 0–350 0.1522 27 70.04
D0 GUE 4 0–350 0.2166 27 93.18
D0 GOE 3 350–700 0.1944 24 85.67
D0 GUE 3 350–700 0.2224 24 92.02
D0 GOE 4 350–700 0.1122 28 53.98
D0 GUE 4 350–700 0.1548 28 76.35
D0 GOE 3 + 4 0–350 0.0996 55 68.52
D0 GUE 3 + 4 0–350 0.0920 55 62.86
D0 GOE 3 + 4 350–700 0.1107 53 74.61
D0 GUE 3 + 4 350–700 0.0922 53 61.73
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deviations from the result obtained for the En = 0–350 eV
region. Hence, these calculations indicate the approach we
have taken is reasonable, and further indicate that the �0

n data
in the 350 < En < 700 eV region are inconsistent with a PT
distribution.

As a further check on the correction for missed resonances,
we applied the technique of Ref. [29], which is based on the �3
statistic. The present case is very similar to the 235U example
discussed in Ref. [29], from which it can be calculated that
most likely 0+5

−0
147Sm + n resonances were missed for each

spin state for En < 700 eV. Hence, the corrected number of
resonances for En < 700 eV from this technique is smaller
than, but consistent with, the value obtained above following
the technique of Ref. [27].

One problem with using the KS test is that it is nonpara-
metric, but we have determined parameters of the theoretical
distribution from the data. In such cases, Ref. [28] indicates
that the KS test is conservative, and Refs. [28,30] describe
how to modify the KS test to make it parametric: The test
statistic remains unchanged, but different tables of critical
values are used, and these values are calculated using Monte
Carlo techniques.

It is straightforward to adapt the KS test when 〈�0
n〉 is

determined from the data. We wrote a computer program that
drew N (where N = 54 in the present case because this was
the number of observed resonances in the En = 350–700-eV
region) random �0

n values from a PT distribution. The average
reduced neutron width for this sampled set then was calculated,
and the maximum vertical difference (the D+ statistic)
between a PT distribution with this 〈�0

n〉 and the random
samples was calculated. The program performed this task
30,000 times to construct a distribution of D+ values. As a
check of the program, a second set of D+ values was obtained
in the standard KS sense (without calculating 〈�0

n〉 from the
sampled data). The P values calculated using these standard
D+ values were found to agree with those in references (e.g.,
Ref. [28]). Furthermore, it was found that there were fewer
large values of the D+ statistic when 〈�0

n〉 was determined
from the sampled data compared to the standard KS values,
verifying that the KS test is conservative. For example, in the
present case for a PT distribution having N = 61, the D+
value calculated from the data was 0.2432 (in the En = 350–
700-eV region), and the P value increased from 99.883% for
the KS test to 99.997% for this parametric variation.

Adapting the KS test to the case where N also is determined
from the data requires additional assumptions. We assumed
that the resonances were spaced according to a Wigner
distribution and that the method of Ref. [27] can be used
to correct for missed resonances. Hence, for the En = 350–
700-eV region, we assumed a starting value of D0 = 4.92 eV
(N = 71), and randomly sampled level spacings from this
Wigner distribution to obtain NTheory resonance energies
between 350 and 700 eV. We then used random sampling
to obtain a set of NTheory reduced neutron widths from a
PT distribution. We then applied the same threshold curve
determined from the data to remove those �0

n values which
were below threshold, resulting in NObs resonances with
averaged reduced neutron width 〈�0

n〉Obs. Subsequently, the
method of Ref. [27] was used to obtain corrected NCor and

〈�0
n〉Cor values. The PT distribution with these corrected

parameters was compared to the sampled data to obtain the
D+ value for this sample. Reduced neutron widths below the
maximum threshold for the correction technique of Ref. [27]
were excluded from this calculation. This procedure was
repeated 30,000 times to construct the distribution of D+
values. These calculations revealed that when both N and
〈�0

n〉 are determined from the data, there are even fewer large
D+ values than in either the standard KS case or the case
where 〈�0

n〉 alone is determined from the data. For example,
if a PT distribution having N = 71 is compared to the data in
the En = 350–700-eV region, D+ = 0.1677 is obtained, for
which the standard KS test yields P = 96.00%. In contrast,
this second modified KS test yields P = 99.98% in this case.

In addition to demonstrating that the data in the En =
350–700-eV region are inconsistent with a PT distribution
to high confidence, the above tests also illustrate that this
conclusion is unaltered by assuming, within reason, a higher
threshold �0

n value or more missing resonances (than applying
the method of Ref. [27] to the data for En < 350 eV yields).
For example, the final version of the “parametric” KS test
described above assumes that 10 more resonances were missed
(17 versus 7) in the En = 350–700-eV region.

C. Discussion

We have employed the same published techniques that have
been used to demonstrate the validity of the PT distribution
for reduced neutron widths to show that the PT distribution is
inconsistent with the current data for 350 < En < 700 eV to
high confidence. This conclusion is in contrast with Ref. [2]
where it was found that the reduced neutron width distributions
agreed fairly well with PT distributions. However, our new
DANCE data show that many of the spin assignments used
in Ref. [2] as well as the relative number of J = 3 to J = 4
resonances assumed (according to 2J + 1) in that reference
were incorrect.

Similar deviations from a PT distribution have been
reported for 232Th [31–34], as well as for five odd-A nuclides
(151Sm, 163Dy, 167Er, 175Lu, and 177Hf) [24] for which the
�3 statistic indicated that very few resonances had been
missed.

It is interesting to note that the reduced-neutron-width
distribution for 232Th changes shape in a manner similar to
what we have found for 147Sm; from having ν � 2 for one
energy range (En <∼ 400 eV) [31–34] to being consistent with
PT for another energy range (En <∼ 2000 eV) [25,34]. It also
is interesting to note that the deviation from a PT distribution
for 147Sm occurs at the same energy where an anomaly in
the α strength function ratio has been reported [2]. Finally,
it may be noteworthy that all seven of the reported deviations
from PT discussed above are limited to relatively low energies,
En,max ≈ 100–700 eV and nuclides in which deformation may
be important. Perhaps all these effects can be explained by the
same theory.

In the early days of neutron width measurements, an
exponential distribution (ν = 2) seemed to be favored [35]
for the reduced neutron widths. Subsequently it was shown
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[23], however, that a PT distribution fitted the data better. In
addition to fitting the data better, plausible arguments were put
forward to explain why the underlying physics should lead to
a PT distribution. The assumptions that expansion coefficients
of the compound nuclear wave function follow a Gaussian
distribution with zero mean, that these coefficients are real
(because, due to time-reversal invariance, the reduced width
amplitudes have been shown to be real [36]), and that neutron
scattering is a single-channel process at these energies leads to
the PT distribution [21]. Consequently, if one or more of these
conditions does not hold the result may be a width distribution
different from PT.

For example, the existence of additional channels results
in ν values greater than 1. It is well known, for example, that
the distribution of total radiation widths following neutron
capture is described by a χ2 distribution with many degrees
of freedom by virtue of the many different possible γ -ray
channels from the capturing state. However, the lowest-lying
excited state of 147Sm is at Ex = 121 keV. So, there are no
known neutron channels in addition to the elastic one in the
energy range of our analysis. Furthermore, the technique used
(transmission measurement) should yield neutron widths that
are fairly insensitive to inelastic channels.

Another way of adding an additional effective channel
might be through a nonstatistical nuclear structure effect such
as a doorway state. It is interesting that a (parity) doorway
model has been proposed to explain the so-called sign effect
[37] in parity-violating asymmetries for p-wave 232Th + n res-
onances, which occurs at about the same energy as the reported
[31–34] deviation from a PT distribution for the neutron widths
in this nuclide. It was expected (based on arguments similar
to those leading to the PT distribution) that the signs of these
parity-violating asymmetries would be random. However, all
10 measured asymmetries for resonances below 250 eV had
the same sign. Models proposed to explain this sign effect
are based on either distant [38–46] or nearby [47–53] (parity)
doorway states. Perhaps the same type of model could be
invoked to explain the observed deviations in the neutron width
distributions from the expected PT shape, while at the same
time these deviations might provide some clue to the physical
origins of the doorway. The doorway might produce deviations
from the PT shape by effectively providing a second channel.
In addition, it is interesting to note the local-doorway model of
Ref. [54] is associated with the known octupole deformation
of 233Th. Deformation also is known to be significant in the
148Sm region [55], and because deformation could have a large
effect on α decay, it is possible that the same type of model
might also explain the strange behavior of the α strength
function ratio [2]. There are at least two arguments against
a doorway explanation for the observed effects in 147Sm + n

resonances as well as the observed deviation of the 232Th + n

neutron-width distribution from the expected PT distribution.
First, the observed effects are much narrower than expected for
a doorway state. Second, doorways having such large effects
on the neutron-width distributions presumably also should be
visible (as large steps) in strength-function plots such as those
shown in the bottom part of Fig. 7. However, there are no such
effects visible in this figure nor in the corresponding plot for
232Th + n [34].

Deviations from a PT distribution also may be caused by
forms of symmetry breaking. For example, isospin-symmetry
breaking has been put forward [56] as an explanation for
differences between reduced-width data and a PT distribution.
However, the distributions resulting from these kinds of
symmetry breaking are expected to be superpositions of two
PT distributions rather than a χ2 distribution with ν > 1 as
observed herein.

Other forms of symmetry breaking can lead to width
distributions having ν � 2. For example, time-reversal invari-
ance violation (TRIV) implies compound nuclear expansion
coefficients that are complex and hence a second degree of
freedom and therefore a χ2 distribution having ν = 2 for the
neutron widths. This extra degree of freedom also should
effect the level-spacing distribution [57], leading to fewer
small spacings than a Wigner distribution. Unfortunately,
these effects in the level-spacing distribution appear to be too
small to observe in the present case. Spacing distributions
for both J = 3 and 4 for the two different energy regions
are shown in Fig. 12. Also shown are the expected spacing
distributions corresponding to PT [Wigner distribution, or
Gaussian orthogonal ensemble (GOE)] and ν = 2 [the so-
called Gaussian unitary ensemble (GUE)] distributions for
the reduced neutron widths. There is no significant difference
between the two measured distributions for J = 4 and the data
are consistent with either theoretical distribution. Although
there is some difference between the measured distributions
for the two energy regions in the J = 3 case, given the
small number of resonances in each region, this difference
cannot be used to rule out either theoretical distribution at
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FIG. 12. (Color online) Integral level-spacing distributions for
J = 3 (top) and 4 (bottom) resonances for two energy regions. Blue
circles and black X’s depict the data for resonances below 350 eV
and for 350–700 eV, respectively. The solid red curves show the
expected Wigner distributions and the dashed green curves show the
expected spacing distributions corresponding to χ2 distributions for
the reduced neutron widths with two degrees of freedom.
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FIG. 13. (Color online) Integral level-spacing distributions for
combined J = 3 and 4 resonances for two energy regions. Blue circles
and black X’s depict the data for resonances below 350 eV and for
350–700 eV, respectively. The solid red curve shows the expected
Wigner distribution and the dashed green curve shows the expected
spacing distribution corresponding to a χ 2 distribution for the reduced
neutron widths with two degrees of freedom.

a reasonable confidence level. Results from KS tests of the
various distributions are summarized in Table II.

Data for the two spins can be combined to increase
the statistical precision. However, combining the two spins
also decreases the difference between the two theoretical
distributions. The net effect is that combining the two spins
does not improve the ability to distinguish between the two
theoretical distributions. This is shown in Fig. 13 where
spacing distributions for the two spins combined are shown
for the two energy regions and compared to the two theoretical
distributions. Although there appears to be a difference in
shape between the data in the two regions, neither data set can
be used to rule out either theoretical distribution at the 95%
confidence level. Curiously, the level-spacing data in the upper
energy region for the two spins combined looks very similar
to a Wigner distribution for a single spin.

IV. SUMMARY AND CONCLUSIONS

We have used information contained in multiplicity dis-
tributions of γ rays following neutron capture to assign
spins of 147Sm + n resonances. We have shown that the
DANCE detector at LANSCE is an excellent apparatus for
this application. We have devised a new technique for using the
measured multiplicity information to discern resonance spins.
We have demonstrated that this new technique is superior to
using the average multiplicity for assigning spins to closely
spaced resonances. Spins were determined for 33 resonances

without previous assignments and 8 firm spin assignments
were made for resonances previously having only tentative
assignments. There are several other nuclides for which this
technique should be applicable and so future measurements of
this type could lead to a wealth of new resonance parameter
data.

We used these new spin assignments together with re-
ported [15,20] neutron widths to determine average level
spacings, neutron strength functions, and level-spacing and
reduced-neutron-width distributions for J = 3 and 4 reso-
nances separately. Our analysis shows that there are very
few missing resonances below En = 700 eV. Furthermore,
using the same techniques that have been used to correct for
missed resonances and to demonstrate the validity of the PT
distribution for reduced neutron widths, we have shown that the
present data are inconsistent with PT. Specifically, the reduced
neutron width distribution changes shape near En = 350 eV,
from being consistent with PT below this energy to being
inconsistent with PT for the next 350 eV. This change occurs
at the same energy as a previously reported [2] anomaly in the
α strength-function ratio for 147Sm(n, α) resonances. A similar
unexplained deviation from PT was reported for neutron
resonances in 232Th [31–34] and five odd-A nuclides [58]
at about the same energy. We have discussed several possible
explanations for these observed nonstatistical effects. Of the
considered explanations (a previously unknown low-lying
excited state in 147Sm, a doorway state, and TRIV) only TRIV
is consistent with, but by no means proved by, the data. Indeed
we know of no physical explanation why TRIV would be
manifested in these nuclides at this energy at such levels. It
seems more likely that an unknown nuclear structure effect,
perhaps one related to deformation, is responsible for the
reported anomalies [2,31–34]. Finally, with current techniques
it should be possible to significantly improve both the accuracy
and sensitivity of the previous experiment on which the present
147Sm neutron widths are based [20]. Therefore, it could be
worthwhile to make new high-resolution and high-sensitivity
neutron capture and total cross section measurements on
147Sm.
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