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Nuclear symmetry energy and stability of matter in neutron stars
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It is shown that the nuclear symmetry energy is the key quantity in the stability consideration in neutron star
matter. The symmetry energy controls the position of crust-core transition and also may lead to new effects in
the inner core of neutron star.
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I. INTRODUCTION

In neutron stars, the prevailing part of the interior is fulfilled
with matter in the state called the beta equilibrium [1]. It
concerns the liquid core as well as the inner parts of the star
crust in the region of crust-core transition. The transitional
region performs a nuclear matter being a subject of instability
against clusterization to a two-phase system: neutron-rich
nuclei immersed in dripped neutrons (and sometimes protons)
[2]. As nuclei are arranged in a lattice they form solid state
crust covering the star core being a homogeneous liquid.

In this work we intend to show that this kind of instability
may be analyzed in terms of simple inequalities that show
direct connections to the shape of nuclear symmetry energy.
The symmetry energy behavior with density is still not well
determined, especially at densities much above saturation point
n0, which are found in the neutron star core. There is no
experimental evidence (from terrestrial laboratories) about the
shape of Es at these densities. To obtain any description we
are forced to extrapolate a theory that is well tested merely
around n0. Most of models predict high values of Es or at least
steady increase with density [3]. However, recent observations
of neutron star cooling suggest that fast cooling through direct
URCA cycle does not work in stars [4], which would mean that
Es takes rather low values at higher densities. These “too hot”
neutron stars may sustain direct URCA only after inclusion the
proton superfluidity [5] but in this way the cooling observation
cease to be conclusive for Es behavior. In this work we find
that a very low Es leads to a new effect that changes the
internal structure of neutron stars and may have observational
consequences not connected with cooling only.

II. STABILITY CONDITIONS

The beta reactions that take place in a neutron star conserve
charge Q and baryon number B. Having neglected the
temperature, relevant only for a young hot star, the total energy
U becomes a function of volume and conserved numbers
U (V,B,Q). To consider stability of single phase one needs
to introduce intense (local) quantity u = U/B. The energy per
particle u then becomes a function of other local quantities,
taken per baryon number v = V/B and q = Q/B. The first
principle of thermodynamics takes the following form:

du = −Pdv − µdq, (1)

where P is the pressure and µ the chemical potential of an
electric charge. From beta equilibrium one may reads that

µ = µe = µµ = µn − µp. (2)

The minus sign before µ in Eq. (1) comes from the definition
of Q = Np − Ne − Nµ, which is negative for leptons.1 The
stability of any single phase, also called the intrinsic stability,
is ensured by the convexity of u(v, q) [6]. Thermodynamical
identities allow us to express this requirement in terms of
following inequalities [7]:

−
(

∂P

∂v

)
q

> 0 −
(

∂µ

∂q

)
P

> 0. (3)

Usually, only the positive compressibility is examined; in
particular, it is required for locally neutral matter that

−
(

∂P

∂v

)
q=0

> 0. (4)

However, the second inequality in Eq. (3) is of the same
importance. It concerns the stability of charge fluctuations
and, as shown later, it is connected to the positive value of the
screening length in matter. Not all nuclear models ensure the
charge fluctuations to be stable. As was shown in the case of
kaon condensation for wide class of models the system is not
stable at any density [7]. In this work we show that a system
like npl matter also represents a region of density where the
instability occurs.

One may find another pair of inequalities that are equivalent
to those in Eq. (3) and, as it shown later, are more convenient
in further calculations:

−
(

∂P

∂v

)
µ

> 0 −
(

∂µ

∂q

)
v

> 0. (5)

The intrinsic stability is determined by the details of nucleon-
nucleon interactions. To show that on the most general level,
let’s split the total energy per baryon into the nucleonic and
leptonic part, u = uN + uL. The nucleonic contribution may
be always expressed as a function of baryon number density,
n = B/V , and the proton fraction, x = Np/B. For leptons
εL, the energy per volume, is completely determined by their

1This convention of charge sign is opposite to that used in Ref. [7]
and, of course, is more natural.
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chemical potential µ. Such decomposition is also true for the
total pressure, so one may write

u = uN (n, x) + εL(µ)/n (6)

P = P N (n, x) + P L(µ), (7)

where P N = n2uN
n ; henceforth, we indicate the partial deriva-

tives of uN or P N by subscripts n or x. One may show that
µn − µp = (∂uN/∂x)n and then the beta equilibrium means
that

µ = −uN
x . (8)

Differentiation of that equation leads to the expression for
proton fraction derivative hold under beta equilibrium

(∂x/∂n)µ = −uN
nx

/
uN

xx. (9)

Above relation, together with P N = n2uN
n , allows us to express

the stability conditions only in terms of nucleonic contribution
uN to the total energy u. Let’s take first the compressibility
appearing in Eq. (5)

−
(

∂P

∂v

)
µ

= n2

[
P N

n + P N
x

(
∂x

∂n

)
µ

]
(10)

= n4

[
2
uN

n

n
+ uN

nn −
(
uN

nx

)2

uN
xx

]
. (11)

Keeping in mind that charge per baryon is q = x − nL/n and
using Eq. (8), we obtain

−
(

∂q

∂µ

)
n

= − 1

uN
x x

+ n′
L(µ)

n
, (12)

which is the inverse of derivative appearing in the second
inequality in Eq. (5).

The obtained expression for derivatives appearing in the
stability conditions require some comments now. The first two
terms in Eq. (11) refer to the pressure and compressibility
of pure nucleonic matter and they are positive for very
fundamental reasons, whereas the third term (which comes
from leptons presence) contributes negatively. It is the leptons
that make the matter unstable. In the expression for (∂q/∂µ)n
one may recognize the derivative n′

L as the screening lengths
for leptons [8], so the second stability condition in Eq. (5) is
connected to the stable screening for leptons. However, the first
term in Eq. (12) lacks this kind of interpretation; as a result,
for the quantities like ∂q/∂µ we adopt the name “electrical
capacitance” of matter. It measures the energetic cost of change
in electric charge held in matter.

For further discussion we introduce the compressibility and
electric capacitance as

Ki = −v2

(
∂P

∂v

)
i

=
(

∂P

∂n

)
i

, i = q, µ (13)

χj = −
(

∂q

∂µ

)
j

, j = P, v (14)

then stability condition may be written as

Kµ = 2nuN
n + n2uN

nn −
(
uN

nxn
)2

uN
xx

> 0 (15)

χv = 1

uN
xx

+ µ(ke + kµ)

nπ2
> 0. (16)

Here we express n′
L(µ) in terms of Fermi momenta of leptons

ke, kµ.
In the same manner as presented above one may express

the first pair of conditions (3).

Kq = n2uN
nn + 2nuN

n

+ n2
Lv2uN

xx − uN
nx

(
2nL + n′

LnuN
nx

)
1 + uN

xxn
′
Lv

> 0 (17)

χP = P N
n + uN

xxn
2
Lv2 − 2unxnL

P N
n uN

xx − (
uN

nxn
)2 + µ(ke + kµ)

nπ2
> 0. (18)

By use of the standard theorem for implicit functions one may
get useful relations between compressibilities and capacitance

χP − χv = Kµα−2
P n−2 (19)

Kq − Kµ = χvα
2
qn

2, (20)

where αj = (∂µ/∂n)j . For further analysis we choose the
stability conditions expressed by the pair of equations (15) and
(16) rather than (17) and (18). They lead to simpler expressions
and moreover are more sensitive to the onset of instability. The
right-hand side of equations (19) and (20) is always positive,
so for any stable system the relation holds

Kµ < Kq and χv < χP , (21)

and if we approach to the instability point the Kµ vanishes
before Kq or χv vanishes before χP .

Finally, we may express the stability conditions (15) and
(16) in terms of symmetry energy. The isospin symmetry
allows us to decompose the nucleonic contribution uN in a
series of even powers of (1 − 2x) [9]:

uN (n, x) = V (n) + Es(n)(1 − 2x)2 + O(1 − 2x)4, (22)

where V (n) is the isoscalar potential and Es(n) the symmetry
energy corresponding to the interactions isovector channel. In
further analysis we neglect the quartic term. Up to now we
have no experimental constraint on its value. Some theoretical
investigations, like in Ref. [9], show that the terms higher
than (1 − 2x)2 are negligible. However, it was recently shown
that quartic terms are of great importance in the case of direct
URCA cycle [10]. It would be interesting to check its relevance
in the stability considerations, but we give up it in this work to
keep simple picture and avoid additional complexity.

Applying Eq. (22) to Eqs. (15) and (16) we obtain

Kµ = n2(E′′
s (1 − 2x)2 + V ′′) + 2n(E′

s(1 − 2x)2 + V ′)

−2(1 − 2x)2E′2
s n2

Es

> 0 (23)

χv = 1

8Es(n)
+ µ(ke + kµ)

nπ2
> 0. (24)
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Above equations shows explicitly the importance of symmetry
energy Es in the stability considerations. The concrete shape of
the function Es(n) is not well known. We know only its value at
saturation point, n0 = 0.16 fm−3, where it takes about 30 MeV.
Recent analysis on the isospin diffusion in heavy-ion collisions
constrained significantly the slope of E′

s(n0) and the stiffness
E′′

s (n0) at saturation point [11,12]; however, these results do
not determine the high-density behavior definitely. There is no
experimental evidence about values of Es at very high density
that is available in the central parts of a neutron star. In such
extrapolations we must rely on the model calculations. For all
of them the symmetry energy at saturation point have positive
slope but at higher densities, they lead to different conclusions.
For most the Es is a monotonically increasing function of n but
some models lead to the Es that saturates at higher densities or
even bends down at some point and goes to zero [13,14]. This
kind of behavior is especially interesting as the last term in
Eq. (23) may then take arbitrary large negative values and lead
to instability. From the other side, going to very low density,
we encounter uncertainties as well. All models predict Es

decreasing to 0. However, recent experiments [15] show that
symmetry energy saturates at the level about 10 MeV for very
low densities.

III. NUCLEAR MODELS

To present the role played by the symmetry energy we apply
a set of nuclear models. At low densities the isoscalar part is
kept the same, whereas the symmetry energy takes different
forms. The isoscalar potential V (n) was taken from Ref. [16]
and leads to the compressibility of symmetric matter equal to
240 MeV at saturation point. For Es we used shapes applied
by Chen et al. in Ref. [12]; they were numbered by a parameter
x = 1, 0,−1,−2. Here we named them a, b, c, and d to avoid
confusion with proton fraction x. The shapes of symmetry
energy dependence at lower densities are presented in Fig. 1.

At higher densities, much above n0, we introduce two kinds
of isoscalar potential V (n): one from Ref. [16] (the same
as in low density regime) and the second from Ref. [17].
The isoscalar potential mainly influences the stiffness of the
equation of state. In this way one may test how the instability
point is affected by the stiffness of the equation of state. The
latter potential is stiffer and lead to stars with higher maximal
mass and is in better agreement with recent observations of
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FIG. 1. The different shapes of the symmetry energy at densities
below saturation point.

TABLE I. The parameterization of symme-
try energy (n1, n2) and results for soft and stiff
equations of state. All densities are in fm−3.

A B C

n1 1.0 1.5 1.8
n2 2.3 2.5 10.0

Soft
nc 0.74 1.20 1.43
ncen 1.92 1.32 1.21
Mmax/M� 1.64 1.73 1.84

Stiff
nc 0.85 1.40 >1.6
ncen 1.35 1.22 1.17
Mmax/M� 2.02 2.08 2.13

pulsar with mass 2.1 ± 0.2M� [18]. For Es we applied a
“bent-down” function. This type of symmetry energy with
low values at high density was typical in the past variational
calculations based on realistic potentials [13]. This kind of
behavior is not obtained in more recent calculations like in
Ref. [17]. Nevertheless, there are also other modern ap-
proaches based on chiral dynamics [14] and Skyrme effective
forces [19] or relativistic mean field [20] where very low values
of Es were obtained. Although the “bent-down” scenario
seems to be less likely it cannot be abandoned completely.
Here, for numerical simplicity (to avoid uncertainty in
derivatives of interpolated function), we introduce the simple
polynomial that imitates results of works mentioned above

Es(n) = E(0)
s

n(n − n1)(n − n2)

n0(n0 − n1)(n0 − n2)
, (25)

where E(0)
s = 30 MeV and other parameters are given in

Table I. The shapes of these functions, named A, B, and C, are
shown in Fig. 2.

IV. RESULTS

The transition between the liquid core and the solid crust of
the star is strictly connected to the breaking of the conditions
(23) and (24). When at least one of them is broken the matter
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FIG. 2. Three different shapes of the symmetry energy at densities
above saturation point (solid lines). For comparison the results of
realistic potentials (dotted lines), the higher (UV14UVII) and the
lower (UV14TNI).
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FIG. 3. The compressibility Kµ (thick) and its contributions (thin
lines). The dotted line corresponds to the energy per baryon for neutral
matter u(n, 0).

can no longer be homogeneous; it splits into two phases.
Figure 3 shows the compressibility under constant µ and
its two contributions: “nuclear,” Knuc

µ , the two first terms in
Eq. (23), and “beta,” Kβ

µ , the last term in Eq. (23), which
comes from the presence of leptons. The “beta” contribution is
always negative, hence there is always a competition between
the positive “nuclear” compressibility and the beta reactions
that tend to destabilize the matter. At some critical point, nc,
the compressibility, changes its sign and below nc the matter
cannot exist as a single, neutral phase. The actual splitting into
two phases does not occur exactly at nc but at slightly above
nc, because the system must find a state where the two charged
phases may coexist. The correction is expected to be tiny, so
the point for the vanishing of Kµ may be treated as a good
estimation for the boundary of the liquid core in a neutron
star.

Table I shows the critical density at which Kµ vanishes. It
depends strongly on Es but does not behaves monotonically
with the Es . For symmetry energy taking both high and low
values (a, d case) the nc moves to higher density close to
saturation point. The lowest values of nc are achieved with
intermediate Es (models b and c). There is no simple relation
between values of Es and nc because the first and second
derivatives of Es are essential as well.

The stability of matter at densities much greater than n0 do
not need to be obvious. For the symmetry energy increasing
in the whole range of density the matter is stable indeed.
However, the chosen nuclear models with very low values
of Es lead again to the same kind of instability as occurs in
the crust-core transition region. For all presented models (A,
B, and C, soft and stiff), there is a critical density nc where Kµ

vanishes. The behavior of the compressibility Kµ for model
B with soft isoscalar potential is shown in Fig. 4. It is worth
noting that energy per baryon for neutral matter u(n) ≡ u(n, 0)
reveals no pathology—it is monotonically increasing and its
convexity, unn(n) = Kq/n2, remains positive at all densities.
If one looks only at the energy per baryon behavior, one

TABLE II. The critical density for different
models.

Model a b c d

nc, fm−3 0.119 0.092 0.095 0.160
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FIG. 4. The compressibility Kµ (thick) and its contributions (thin
lines) for soft equation of state and B symmetry energy. The dashed
line corresponds to Kq and dotted line energy per baryon for neutral
matter, u(n) ≡ u(n, 0).

may overlook that the matter becomes unstable at some point.
Table II shows the value of nc depends mainly on the symmetry
energy model. The lower Es is at higher density the lower nc

is. The stiffness of equation-of-state changes nc by moving it
to higher densities for all A, B, and C models.

Of course, the instability point has physical meaning only
if it is attainable in a neutron star. Table II shows basic neutron
star properties: the central density, ncen, of a star with maximal
mass, Mmax, found by solving of the Tolman-Oppenheimer-
Volkoff (TOV) equation. The results in Table II are in apparent
contradiction to the common conviction that the equation of
state is softer (maximal mass is lower) for larger Es . That is
true for the case when Es has a positive slope [E′

s(n) > 0]. The
pressure depends only on the slope of V and Es (let’s neglect
the tiny leptonic contribution)

P = n2(V ′ + (1 − 2x)2E′
s).

For increasing Es matter becomes more symmetric, x → 1/2,
and the contribution to the pressure from Es becomes smaller
and the equation of state is softer. For A, B, and C models
matter gets less symmetric, x → 0, but at some density E′

s(n)
changes its sign, and now low values of proton fraction increase
the negative contribution from symmetry energy, making the
equation of state softer again. Another comment concerns the
concrete values of maximal masses in Table II. The equation
of state applied in TOV equations assumes a one-phase system
also for densities above nc. It shows that nc is attainable only
for a given equation of state. Above nc the equation of state
should be corrected by a proper construction for a two-phase
system and then ncen and Mmax may change, but, we suspect,
that not much. As one may notice, in the models A and B for
soft and in model A for the stiff equation of state the phase
instability occurs for a sufficiently massive star. For such star,
the central part of its core must contain separated phases. It is
an open question about properties of matter in this state. The
instability itself only signals formation of inhomogeneities
with different charge and density. One may suspect formation
of mixed phase with liquid properties or solidification of the
central part of stellar core. To answer the question, what
actually happens above the critical density requires a more
detailed analysis, including the phase coexistence and fine-size
effects like surface and Coulomb energy.
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V. SUMMARY AND DISCUSSION

In this article we presented the simple connection between
the symmetry energy Es and the phase stability of dense
matter filling the neutron star interior. It was shown that
the relevant quantity in such considerations is Kµ, the
compressibility under constant chemical potential, rather than
Kq , the compressibility under constant charge. The instability
of matter under low density below n0 leads to phase separations
and corresponds to the transition from the liquid core to the
solid crust. The pulsar glitching phenomenon allows us to
estimate the size of neutron star crust [21], so in this way one
may get constraint on Es behavior at low densities coming
from pulsar observations.

The stability considerations were also carried out at a very
high density. It was shown that for nuclear models with small
values of Es the instability indeed occurs. The value of critical
density depends mainly on Es but, moreover, the stiffness
represented by the isoscalar potential V influences the onset
of instability. The instability may lead to solidification of
the internal parts of the core; this seems to be especially
interesting in connection to rotational and magnetic prop-
erties of pulsars. Such research seems to be worth doing.
Knowledge about possible observational consequences of
the solid inner core will enable us to verify the nuclear
models leading to the “bent-down” scenario for the symmetry
energy.
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