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Role of the ρ meson in the description of pion electroproduction experiments
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We study the p(e, e′π+)n reaction in the framework of an effective Lagrangian approach including nucleon,
π and ρ meson degrees of freedom and show the importance of the ρ-meson t-pole contribution to σT , the
transverse part of cross section. We test two different field representations of the ρ meson, vector and tensor,
and find that the tensor representation of the ρ meson is more reliable in the description of the existing data. In
particular, we show that the ρ-meson t-pole contribution, including the interference with an effective nonlocal
contact term, sufficiently improves the description of the recent JLab data at invariant mass W <∼ 2.2 GeV and
Q2 <∼ 2.5 GeV2/c2. A “soft” variant of the strong πNN and ρNN form factors is also found to be compatible
with these data. On the basis of the successful description of both the σL and σT parts of the cross section
we discuss the importance of taking into account the σT data when extracting the charge pion form factor Fπ

from σL.
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I. INTRODUCTION

The motivation of many experiments [1–6] on forward
pion electroproduction at large Q2 is the study (through
measurements close to the pion mass shell) of the pion charge
form factor Fπ (Q2). For values of the s-channel p + γ ∗ energy
W above the resonance region and for small momentum-k
(k2 = t) transferred to the nucleon spectator the longitudinal
part σL of the cross section is dominated by the t-channel
quasielastic mechanism (see Fig. 1). In this case the πNN

strong form factor F 2
πNN (t) ≈ 1 is a slowly varying function

at |t | ≈ M2
π and

σL ∼ |t |F 2
πNN (t)(

t − M2
π

)2 σ free
eπ , σ free

eπ ∼ F 2
π (Q2), (1)

where σ free
eπ is the free eπ cross section. However, with

currently available data [1–6] on the Rosenbluth separation
of σ = σL + σT the situation is not so simple. For comparison
of data to theoretical predictions one should calculate both σL

and σT parts of the cross section at least on the basis of a sum
of the s(u)- and t-pole diagrams depicted in Fig. 2. It should be
noted that the s(u)-channel contributions [Figs. 2(b) and 2(c)]
to the forward pion cross section are suppressed [7] only at
considerably high Q2, i.e., in the region Q2 >∼ 2–3 GeV2/c2,
where the product of corresponding vertex form factors and
propagators drop faster in Q2 (∼Q−n, n >∼ 4) as compared to
the ∼Q−2 behavior of the pion form factor Fπ (Q2). In this
Q2 region the forward pion cross section is not as large as
for smaller Q2 <∼ 1 GeV2/c2 studied earlier [1,3], and until
recently the available data on Rosenbluth separation were too
poor [3,4] to be a reliable basis for the evaluation of Fπ (Q2).

The high quality data recently obtained at JLab [5,6] for
Q2 = 1.6 and 2.45 GeV2/c2 can considerably aid in the study
of Fπ (Q2). However, at the values W = 1.95 and 2.2 GeV
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characteristic of the high Q2 JLab data (old and new) the
kinematical limit for the momentum transfer tc ≈ −(0.1–
0.15) GeV2/c2 is not so close to the pion pole position as is the
case for low Q2 <∼ 1 GeV2/c2. Thus the vertex dependence on
t for all the diagrams in Fig. 2 becomes very important for the
extraction of the pion form factor Fπ (Q2) from the data on σL.

In this context the existing data on σL and σT available
now [3,5,6] for a large region of momentum transfers 0.05 <∼
−t <∼ 0.5 GeV2/c2 can also be used for the study of the strong
meson-nucleon form factors FπNN (t),GρNN (t), and FρNN (t)
in parallel to the study of Fπ (Q2). The direct measurement
of these form factors would be very useful for both meson-
exchange models of the nuclear force [8] and of exchange
currents in nuclei [9]. Cutoff parameters �MNN (M = π or ρ)
used in the monopole parametrization

FπNN (t) = FπNN (0)

1 − t/�2
πNN

, FρNN (t) = FρNN (0)

1 − t/�2
ρNN

(2)

are presently known only indirectly from data and values of
�MNN are varying in a wide interval of Mρ <∼ �MNN <∼ 2Mρ

(exchange currents in nuclei are usually fitted with soft
form factors with �MNN ≈ Mρ , while the nucleon-nucleon
interaction models require harder form factors with �MNN ≈
1.5–2 Mρ). On the other hand, in the constituent quark model
(CQM) [10–12] the cutoff parameter �MNN , at least for form
factors at small values of −t <∼ 0.3 GeV2/c2, is determined by
the radius b of the three-quark system and for realistic values
b ≈ 0.5–0.6 fm one obtains �2

MNN ≈ 0.5–0.7 GeV2/c2.
In Refs. [12,13] it was shown that the recent JLab data

on forward pion electroproduction [3] are compatible with
a soft πNN form factor. However, in Ref. [3] the data
were described on the basis of a Regge model modified by
introducing a common electromagnetic form factor Fπ (Q2)
for both t-channel and “Reggeized” s-channel amplitudes [14]
as is schematically shown in Fig. 3. In this model proposed
by Vanderhaeghen, Guidal, and Laget (VGL) there are no
constraints on the maximum value of |t | as the t-dependence
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FIG. 1. (Color online) Dominating t-channel quasielastic mech-
anism for the longitudinal part σL of the cross section.

of the cross section is determined by the t-(and s-) behavior of
the π - and ρ-Regge trajectories. The model of VGL offers a
satisfactory explanation of both photo- and electroproduction
data for pions in a large interval of t including the longitudinal
part of the forward pion cross section σL measured at JLab, but
fails in explaining the transverse part σT . The prediction for σT

is about an order of magnitude smaller than measured values.
At small |t | <∼ 0.3 GeV2/c2 a conventional model predicts, on
the basis of the t-pole contribution, the same results starting
from the form factors (2) motivated by the CQM. This was
shown in our previous work [13] by comparison of predictions
for σL made in both models. The situation for σT is also
similar (see below), i.e., at small t , an approach using strong
vertex form factors based on the CQM is equally good in the
explanation of σL, but also fails for σT .

In both models the ρ exchange has little influence on σL

for small values of −t , while σT is rather sensitive to this
contribution. Hence, a comprehensive analysis of the role
of the ρ meson for describing the transverse cross section
σT is required. Since the introduction and discovery of the
vector meson resonances their special role was recognized in
phenomena both in nuclear and particle physics [15]. Essential
properties of vector mesons (e.g., the ρ meson) such as
universality and dominance in electromagnetic hadronic form
factors had a large impact on the understanding of the electro-
magnetic structure of hadrons. Since the early sixties attempts
to include the vector mesons in the formalism of quantum field
theory have been initiated (see [15] and references therein)
including effective chiral Lagrangian approaches [16–26]. A
detailed investigation of different ways to include massive
vector mesons in the effective low-energy Lagrangians has
been performed in Ref. [21]. In particular, it was shown
that the pure tensor representation of vector mesons is most
natural for constructing their coupling to pseudoscalar mesons

Fπ(Q2) ×
Pπ,ρ

Regge(t, s)

p n

γ π+

+ p n

γ π+

× (t−m2
π) Pπ

Regge(t, s)

FIG. 3. (Color online) Factorization of the amplitude of pion
electroproduction off the nucleon in the Regge model [14].

and photons (the extension onto the baryon sector was done
in Ref. [22]) consistent with chiral symmetry, vector meson
dominance (VMD), and asymptotic QCD behavior. However,
the conventional vector representation of vector mesons is in
conflict with VMD and the asymptotic properties of QCD [21].
In Ref. [21] for the example of the pion electromagnetic form
factor, it was demonstrated in the context of chiral perturbation
theory (ChPT) [19,27] how to remedy the shortcomings of the
vector representation: an appropriate local term of order of
O(p4) has to be introduced in addition. The corresponding
coupling of the local term was fixed to achieve a complete
agreement between the two schemes based on the tensor and
vector field representations of the vector mesons.

Chiral symmetry plays an important role in the low-energy
domain (below 1 GeV) of quantum chromodynamics: it
governs the strong interaction between hadrons. All known
low-energy approaches (effective field theories, different types
of quark models, etc.) in the study of the properties of
light hadrons have to incorporate the concept of at least an
approximate chiral symmetry to get reasonable agreement
with data. In our case, contrary to what might be naively
expected for the high energy process p(e.e′π )n, the t-channel
contribution [Fig. 2(a)] to the quasielastic pion knockout
corresponds to a transfer of low energy k0 = t/2mN and
momentum |k| =

√
k2

0 − t to the nucleon spectator, and thus
a low-energy approach to the t-channel terms might well be
substantiated.

However, in practice we have the interplay of two energy
regimes: on the one hand the low-energy dynamics of nucleons
with low-momentum π - and ρ-mesons in the t-channel, and
on the other hand the initial photon with a large Euclidean mo-
mentum transfer squared Q2 >∼ 1–2 GeV2/c2 and the final pion
with a large energy Eπ >∼ 2 GeV. The diagrams contributing to
the pion electroproduction in the relevant kinematical regime
are displayed in Fig. 2: t-channel resonance diagrams with
π and ρ exchange in Fig. 2(a), s- and u-pole diagrams with
the intermediate nucleon and a tower of nucleon resonances in

π+, ρ+, . . .

q

k′

k

p n

γ

π+

p p′

γ π+

p, N∗, . . .

q k′

p n

γ π+

n, N∗, . . .

q k′

p n

q k′

γ π+

p n

(a) (b) (c)

FIG. 2. (Color online) Feynman diagrams (“Born approximation”) for the pion electroproduction off the nucleon.
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Fig. 2(b) and the contact γπNN diagram (the Kroll-Ruderman
term) of Fig. 2(c).

On the basis of these Feynman diagrams the main objective
of the present work is to study how the predictions for σL and
σT depend on the ρ meson representation. In our calculations
we accept the following strategy.

First, we consider the transverse cross section σT and show
that it can be well described by taking the ρ meson-exchange
diagram only. The quality of the description is valid up to
Q2 � 2 GeV2. To our knowledge this is the first successful
description of σT including the special role of the intermediate
ρ meson. We test both representations of the ρ meson:
tensor and vector. Our result is that the tensor representation
gives a sufficiently better description of σT . Of course, both
representations can be put in equivalence following the idea
of Ref. [21] by adding an appropriative local term to the
Lagrangian of the vector representation. We do not resort to
this procedure, instead we argue that the pure tensor variant
is more appropriate from a phenomenological point of view
and constraints dictated by VMD and the asymptotic QCD
behavior.

Second, we consider the longitudinal cross section σL

and show that this quantity asks for a more sophisticated
interplay of different diagrams from the set of Fig. 2. Any
description of the s(u)-channel contributions to σL in terms
of nucleon resonances would be rather complicated and
might lead to doubtful results. Here we follow the results
of our recent work [13]. On the basis of a quark model
it was shown that in the region of intermediate Q2 (>∼ 1–
2 GeV2/c2) the effective description of s(u)-channel and
contact-term contributions might be reduced to a renormal-
ization of the Kroll-Ruderman contact term modified by
strong and electromagnetic form factors. The renormalization
constant is the sole free parameter which we fit to the σL

data.
Our main finding is that a realistic description of both σL

and σT can be obtained in a t-channel π + ρ approach with
standard values of coupling constants and cutoff parameters, if
(i) we use the tensor representation for the ρ meson leading to
the reproduction of data on the transverse cross section; (ii) we
approximate the sum of all the s-channel diagrams in Figs. 2(b)
and 2(c) by a single effective contact term of type Fig. 2(c)
with a phenomenological form factor. For simplicity and to
reduce the number of possible free parameters we choose the
cutoff parameter in this form factor to be close to the one used,
e.g., in the ρπγ form factor. The normalization of this term is
fitted to the σL data.

In the present manuscript we proceed as follows. First,
in Sec. II we discuss the basic notions of our approach.
We derive the effective Lagrangian for the description of
pion electroproduction off the nucleon. We discuss different
field representations of the ρ meson. Then we discuss the
contributions of different Born diagrams to the amplitude of
pion electroproduction. In Sec. III we discuss the choice of
hadronic form factors parametrizing finite size effects due to
hadronic interactions including the photons. In Sec. IV our
results are presented in comparison to the JLab data and to
the predictions of the VGL model. Finally, in Sec. V we give
a short summary of our results and discuss the importance

of taking into account the σT data when extracting Fπ values
from the data on σL.

II. EFFECTIVE LAGRANGIAN AND MATRIX ELEMENTS

Our considerations for the pion electroproduction are based
on an effective Lagrangian approach. It involves nucleon, pion,
ρ meson, and photon degrees of freedom. The finite size effects
of hadronic interactions are parametrized by corresponding
form factors.

A. Inclusion of nucleons, pions, and photons

The part of the full Lagrangian including the doublet
of nucleons N = (p, n), the triplet of pions �π and the
electromagnetic field Aµ is motivated by chiral perturbation
theory (ChPT) [19,27,28] and has the standard form

Leff = N̄ ( �D − mN )N + 1

2

[
Dµ �πDµ �π − M2

π �π2
]

− gA

2Fπ

N̄Dµ �π �τγ µγ 5N − 1

4
FµνF

µν + · · · , (3)

where π± = −(π1 ∓ iπ2)/
√

2, π0 = π3, Fµν = ∂µAν −
∂νAµ is the stress tensor of the electromagnetic field, gA is
the nucleon axial charge, Fπ is the leptonic decay constant,
mN ≡ mp = 938.27 MeV and Mπ ≡ Mπ± = 139.57 MeV are
nucleon and pion masses. The symbol · · · denotes terms of
higher order not needed in our consideration. In the numerical
calculations we express gA/(2Fπ ) = gπNN/(2mN ) through the
strong πNN coupling constant using the Goldberger-Treiman
relation with gπNN = 13.5. The covariant derivative Dµ,
containing the electromagnetic field and acting on proton and
charged pion fields, is defined as Dµp = (∂µ − ieAµ)p and
Dµπ± = (∂µ ∓ ieAµ)π±, where e is the proton charge. For
neutral fields (neutron and π0) Dµ coincides with ordinary
derivative. The inclusion of the ρ meson and the addition
of strong and electromagnetic form factors in the effective
Lagrangian (3) will be discussed below. Note, in addition
to the more convenient pseudovector (PV) coupling of the
pion to nucleons [the third term in the right hand side of
Eq. (3)] we also consider the pseudoscalar (PS) coupling:
LPS

πNN = gπNNN̄iγ 5 �π �τN .

B. Inclusion of vector mesons

For the ρ meson we use two different field representation:
tensor and vector. Here we follow Refs. [19–22,24]. In the
tensor representation the triplet of ρ mesons is written in terms
of antisymmetric tensor fields: ρW

µν = −ρW
νµ = ( �ρW �τ )µν/

√
2 .

The free Lagrangian of vector mesons in the tensor represen-
tation is written in the form

LW
ρ = −1

2
∂µρWa

µν ∂αρWαν
a + M2

ρ

4
ρWa

µν ρWµν
a . (4)
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The ρ-meson propagator in the tensor representation has the
form

Gab
W ;µν,αβ(x − y) = 〈0|T {

ρWa
µν (x), ρWb

αβ (y)
}|0〉

= − δab

M2
ρ

∫
d4k

(2π )4i

eik·(x−y)

M2
ρ − k2 − iε

× [
gµαgνβ

(
M2

ρ − k2
)

+ gµαkνkβ − gµβkνkα − (µ ↔ ν)
]
, (5)

where the terms in the square brackets proportional to (M2
ρ −

k2) will generate contact terms in the vector-meson exchange
interaction.

Now we turn to a discussion of the vector representation of ρ

mesons, i.e., in terms of the vector fields ρµ. The corresponding
free Lagrangian has the form

LV
ρ = −1

4
ρV a

µν ρV aµν + M2
V

2
ρa

µρaµ, (6)

where ρV a
µν = ∂µρa

ν − ∂νρ
a
µ. For the sake of comparison be-

tween the two different representation it is convenient to write
down the propagator in the vector representation as a t-product
of ρV

µν :

Gab
V ;µν,αβ(x − y) = 〈0|T {

ρV a
µν (x), ρV b

αβ (y)
}|0〉

= − δab

M2
V

∫
d4k

(2π )4i

eik·(x−y)

M2
V − k2 − iε

× [gµαkνkβ − gµβkνkα − (µ ↔ ν)]. (7)

As was stressed in Ref. [21] the propagators Gab
W ;µν,αβ and

Gab
V ;µν,αβ differ by the contact term contained in the tensorial

propagator:

Gab
W ;µν,αβ(x)

= Gab
V ;µν,αβ(x) + i

M2
V

[gµαgνβ − gµβgνα]δabδ4(x). (8)

Therefore, the use of the two different representations leads
to a different off-shell behavior of vector meson-exchange
diagrams. As we already mentioned in the Introduction, a
detailed analysis of vector and tensor schemes was performed
in Ref. [21] for the example of the electromagnetic pion
form factor. The tensor representation was found to be fully
consistent with constraints of chiral symmetry, VMD and
the asymptotic behavior of QCD. To get equivalence of the
two representations a certain inclusion of an additional local
term was required. In our analysis we find that the tensor
representation for the vector mesons is more reliable and leads
to an understanding of the transverse cross section of the pion
electroproduction in the considered kinematical situation. In
particular, the additional contact term in the propagator of the
tensor representation considerably modifies the ρ-exchange
contribution to the cross section.

According to [22,24], a chirally invariant Lagrangian for the
couplings of the tensor field ρW

µν to baryons can be written in
the general form containing couplings which can be related to
the ones of the commonly used vector representation. There-
fore, we further proceed using the vector representation for the

ρNN couplings:

LρNN = 1

2
N̄

(
GρNN �ρµγ µ − FρNN

2mN

σµν∂ν �ρµ

)
�τN. (9)

The anomalous ρπγ coupling is defined as

LV (W )
ρπγ = eMρ

4
gρπγ εµναβFµν �ρV (W )

αβ �π. (10)

The coupling constant gρπγ = 0.728 GeV−1 is fixed from the
ρ → πγ decay width:

�(ρ → πγ ) = α

24
g2

ρπγ M3
ρ

[
1 − M2

π

M2
ρ

]3

, (11)

where α = 1/137.036 is the fine-structure constant. In our
convention the isospin symmetric hadron masses of the
isomultiplets are identified with the masses of the charged
partners:

mN = mp = 938.27 MeV, Mπ = Mπ± = 139.57 MeV,

(12)

Mρ = Mρ± = 775.5 MeV.

C. Born diagrams contributing to the pion electroproduction

In the calculation of the amplitude for the pion electropro-
duction off the nucleon we restrict to the Born approximation.
At the order of accuracy we are working in we include
t-channel diagrams with ρ and π exchange [Fig. 2(a)], s- and
u-channel diagrams with intermediate nucleons [Fig. 2(b)]
and in the case of the pseudovector coupling of pions to
nucleons we have the extra diagram [Fig. 2(c)], the so-called
Kroll-Ruderman term, describing the contact coupling of the
photon to two nucleons and one pion.

1. Contribution of the ρ-meson exchange diagram

We start with the discussion of the ρ-meson exchange
diagram. Despite the difference between the propagators and
between the ρπγ couplings in the respective representations
the final expression has a common universal form. For
the ρ-meson exchange diagram contribution to the pion
electroproduction amplitude [Fig. 2(a)] for both the W and
V variants we have

T

{
V

W

}
ρ (λ, s, s ′) = e

2
√

2
gρπγ ε(λ)

µν (q)ūn(p′, s ′)

×
{[

GρNN +

{
k2

M2
ρ

}
4m2

N

FρNN

]
2mN

M2
ρ − k2

σµνγ5

− 2mN

M2
ρ − k2

[
GρNN

P µγ ν − P νγ µ

2mN

−FρNN

P µkν − P νkµ

4m2
N

]
iγ5

}
up(p, s), (13)

where P = p + p′, k = p − p′ and s, s ′ denote the spin
projections of the initial proton and final neutron, respectively;
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ε(λ)
µν (q) = qµε(λ)

ν (q) − qνε
(λ)
µ (q). Here ε(λ)

µ (q), with λ = 0,±1,
are basis vectors of circular polarization for the virtual photon
quantized along the momentum q, i.e., they are defined as

ε(λ=0)µ(q) =
{ |q|

Q
, 0, 0,

q0

Q

}
,

(14)

ε(λ=±1)µ(q) =
{

0,∓ 1√
2
,

−i√
2
, 0

}
, Q =

√
−q2.

The vectors ε(λ)
µ (q) satisfy the conventional orthogonality,

normalization and completeness conditions [29]

qµε(λ)
µ (q) = 0, ε(λ)µ(q)ε(λ′)

µ

∗
(q) = (−1)λδλλ′

,
(15)∑

λ=0,±1

(−1)λε(λ)
µ (q)ε(λ)

ν

∗
(q) = gµν − qµqν

q2
.

In Eq. (13) the factor { k2

M2
ρ

} in the first square brackets should

be taken equal to k2 for the vector V -variant and equal to
M2

ρ for the tensor W -variant. From Eq. (13) one can conclude
that the results for the W and V variants are degenerate when
k2 → M2

ρ , but in the region (M2
ρ − k2) ≈ m2

N characteristic
of the JLab data [3–6] they are considerably different. The
corresponding ρ-induced γπNN “contact” interaction arising
in the tensor variant can be defined as

T W
ρ − T V

ρ = e

4mN

√
2
gρπγ FρNNε(λ)

µν (q)

×ūn(p′, s ′)σµνγ5up(p, s). (16)

It should be noted that the difference encoded in the pion
electroproduction amplitude in the contact term (16) is
sufficient to get a good description of the transverse cross
section σT .

2. Contribution of the π -meson exchange diagram

The pion t-pole diagram [Fig. 2(a)] gives the following
contribution to the amplitude:

Tπ (λ, s, s ′) = e
√

2gπNN

ε(λ)(q) · (k + k′)
M2

π − k2

×ūn(p′, s ′)iγ5up(p, s), (17)

where k = p − p′, t = k2, k′ = k + q, k′2 = M2
π , and q2 =

−Q2.

3. Nucleon s- and u-pole diagrams

The sum of the nucleon s- and u-pole diagram contributions
to the total amplitude is

TN(s+u)(λ, s, s ′)

= −e
√

2gπNNε(λ)
µ (q)ū(p′, s ′)

[{
iγ5
i �k′γ5

2mN

} �p+ �q + mN

W 2 − m2
N

×
(

F1pγ µ + F2p

iσµνqν

2mN

)
−

(
F1nγ

µ + F2n

iσµνqν

2mN

)

× �p− �k′ + mN

W 2 + Q2 + t − M2
π − m2

N

[{
iγ5

i �k′γ5

2mN

}]
u(p, s), (18)

where s = (p + q)2 = W 2 and u = (q − p′)2 = −W 2 −
Q2 − t + 2m2

N + M2
π . Here the factors iγ5 or �kiγ5

2mN
in the col-

umn {· · ·} correspond to the pseudoscalar (PS) or pseudovector
(PV) πNN coupling, respectively. The coupling constants FiN

equal

F1p = 1, F1n = 0, F2p = µp − 1, F2n = µn, (19)

where µp and µn are magnetic moments of proton and neutron.

4. The γπ N N contact diagram

The γπNN contact diagram of Fig. 2(c) only shows up for
the case of the PV variant. The corresponding amplitude is (we
denote it by the subscript “CPV,” that is contact pseudovector
coupling):

TCPV(λ, s, s ′) = −e
√

2gπNN

2mN

ū(p′, s ′) �ε(λ)(q)iγ5u(p, s). (20)

Finally, we make a comment concerning the interference
of the ρ-exchange amplitude with other contributions in the
calculation of the cross section. In the vector variant the
interference term between the Tπ - and T V

ρ -pole diagrams does
not contribute to the σL and σT cross sections. However,
in the tensor variant the interference term between the Tπ -
and T W

ρ -pole diagrams is not negligible (see below) and
thus we should consider the interference terms for all the
potentially important diagrams including the s(u)-channel
diagrams [Fig. 2(b)].

III. FORM FACTORS

A. General consideration

Up to now we deal with diagrams generated by the effective
Lagrangian involving nucleons, pions, the ρ meson, and the
photon (see discussion in previous section). It can be easily
checked that the sum of Born diagrams (Fig. 2) is gauge
invariant. For example, the hadronic electromagnetic current
〈p′s ′|Jµ

Born|ps〉 defined as

ε(λ)
µ 〈p′s ′|Jµ

Born|ps〉 = Tρ(λ, s, s ′) + Tπ (λ, s, s ′)

+Tn(s+u)(λ,s, s ′) + TCPV (λ,s, s ′) (21)

satisfies current conservation qµ〈p′s ′|Jµ

Born|ps〉 = 0. Note,
that the ρ-meson exchange and pion-pole diagrams satisfy
current conservation separately, while s(u)-pole and contact
Kroll-Ruderman term are separately do not satisfy this condi-
tion (i.e., only in sum).

Now we are in the position to modify the vertices describing
strong and electromagnetic interactions of hadrons—by intro-
ducing hadronic form factors. The idea of such a modification
is clear: we would like to include finite size effects. The
introduction of form factors into the interaction Lagrangian
and, therefore, into the Born amplitudes leads to a violation
of gauge invariance. To restore gauge invariance one can use
different methods (see, e.g., discussion in Refs. [30–35]). One
of the methods is based on the Gross-Riska procedure [30],
which does the following modification in matrix elements:
every term containing form factor F which is multiplied with
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γ -matrix and vector P µ with open Lorentz index µ coinciding
with the index of the photon polarization vector is modified
as [30]

γ µF → γ µF + qµ �q
q2

(1 − F ) = γ
µ

⊥ F + qµ �q
q2

,

(22)

P µF → P µF + qµ Pq

q2
(1 − F ) = P

µ

⊥F + qµ Pq

q2
,

where γ
µ

⊥ = γ µ − qµ �q/q2 and P
µ

⊥ = P µ − qµPq/q2 are the
Dirac matrix and momentum which are orthogonal to photon
momentum and are obtained from original quantities by multi-
plying with the projector g⊥

µν = gµν − qµqν/q
2. Note that the

idea suggested in [30] was extended to pion electroproduction
in [32] and was extensively used in Refs. [33,34]. In particular,
the Gross-Riska procedure leads to the correct low-energy
theorems and guarantees that the partial conservation of axial
current (PCAC) constraint for the pion electroproduction
amplitude is satisfied [33].

In this paper we use the similar method of restoring
electromagnetic gauge invariance which is fully equivalent to
the Gross-Riska prescription [30] when we fulfill the additional
conditions (16), i.e., use the circular polarization for the virtual
photon field. In particular, our modification of matrix elements
reads as

γ µF → γ
µ

⊥ F,
(23)

P µF → P
µ

⊥F.

An advantage of our method is that each diagram is separately
satisfy the current conservation by construction, due to
qµγ

µ

⊥ = 0 and qµP
µ

⊥ . It is sufficient in our consideration while
instead of sum of the s(u)-pole and local Kroll-Ruderman
term we will use the modified Kroll-Ruderman term with form
factor (see discussion below), which should satisfy the current
conservation separately.

When introducing form factors, in the fit to data we intend
to deal with a minimal amount of free parameters which should
be common for both variants of the ρ representation. For this
purpose we use a common form factor of a simple monopole
form (2) for all the strong meson-nucleon vertices with the
same cutoff parameter �str:

gπNN → gπNN (t) = gπNNFstr(t),

GρNN → GρNN (t) = GρNNFstr(t),
(24)

FρNN → FρNN (t) = FρNNFstr(t),

Fstr(t) = 1

1 − t/�2
str

.

We vary the parameter �2
str in the region 0.5–0.7 GeV2/c2

(which is close to the CQM predictions) to fit the JLab data
on σL.

The form factors for the electromagnetic vertices are known
with better accuracy, both for the pion and the nucleon. We
use a monopole parametrization for the pion

e → eFπ (Q2), Fπ (Q2) = 1

1 + Q2/�2
π

, (25)

where �2
π should be close to its mean value of �2

π ≈
0.54 GeV2/c2, and the dipole parametrization for the elec-
tromagnetic Sachs form factors of nucleons.

The form factor of the ρπγ vertex is the most uncertain
since at this vertex two variables, t and Q2, are off-shell (for
the ππγ vertex, where the situation is similar, we neglect the
t dependence, since for the forward pion electroproduction t ,
as a rule, is close to its on-mass shell value of t = M2

π ). For
reasons motivated by the CQM we modify the ρπγ vertex as

gρπγ → gρπγ (t,Q2) = gρπγ Fρπγ (t,Q2), (26)

where for the form factor Fρπγ (t,Q2) we take the combined
expression

Fρπγ (t,Q2) = 1

1 + (
M2

ρ − t
)/(

4M2
ρ

) 1

1 + Q2/�2
eff

. (27)

We consider only two possibilities for the Q2 behavior:

(a) �eff = �π , the “soft” variant,

(b) �eff >∼ 2�π , the “hard” variant.

In the “hard” variant �eff is considered as a free parameter
close to the usual values of �ρ ≈ 1–1.2 GeV/c [5,14]. We will
fit �eff to the JLab data on σT .

In conclusion we shortly formulate/repeat a common rule
for all the vertices where a pion is created or annihilated. In
the Born expression for such a vertex

(i) eFπ (Q2) should be substituted for the charge e,
(ii) gπNN (t) should be substituted for gπNN .

This rule is extended to the contact term (20) as well (see
below). The modification of the s- and u-channel contributions
including the contact (Kroll-Ruderman) term will be discussed
in the next subsection.

Some remarks on the t-dependence of Eq. (27) should
be added. We use a “hard” cutoff parameter 2Mρ for the
t-dependence of the ρπγ vertex in both the time-like t > 0 and
space-like t < 0 regions. In the space-like region the strong
hadron form factors have been evaluated in many works (see,
e.g., [8,9]) on the basis of a rich data base on NN scattering
and exchange currents in nuclei, in which case the value of the
cutoff parameter varies between Mρ and 2Mρ . But our task is
to evaluate the form factor in the time-like region on the basis
of the σT data. Our efforts to describe σT with the soft cutoff
parameter ∼Mρ fail since in this case the effective value of the
ρπγ coupling in the region near t ∼ 0 is suppressed by the
factor [1 + (M2

ρ − t)/M2
ρ]−1 ∼ 1/2. This probably indicates

that in the time-like region the cutoff parameter should be
hard, and thus here we use the large value 2Mρ . We further
do not vary this parameter to simplify handling other free
parameters when fitting the cross section.

B. An effective description of s- and u-channel contributions

The only exclusion from rules (i) and (ii) is the πNN

vertex in the nucleon s- and u-pole diagrams [Fig. 2(b)], where
the pion is on its mass shell (k′2 = M2

π ), but the intermediate
nucleon, after absorption of a large Q2 >∼ m2

N is severely off its
mass shell. For this vertex we formally introduce a form factor
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P

P-k

q+k

k
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FIG. 4. (Color online) Microscopic inter-
pretation of t- and s-channel processes within
the quark model. Thick lines indicate the prop-
agation of a large photon momentum q through
separate partons inside the nucleon.

Feff(t,Q2), but do not really use it in calculations since such
a form factor should include contributions of all the excited
baryon states compatible with a large virtual mass W in the
s-channel.

Since a description in terms of baryon poles would be
very complicated and in practice is beyond reach we turn
from the hadron picture of the s-channel process to the quark
model consideration following our recent work [13]. Such a
consideration gives at least qualitative insight into the relevant
processes when a large Q2, induced by electroproduction of
pions, is propagating through the three-quark system (Fig. 4).
In the quark models three mechanisms are implied. The first
one [Fig. 4(a)] corresponds to the t-channel hadron mechanism
considered above with a small momentum transfer to the
nucleon spectator. The other two mechanisms [Figs. 4(b) and
4(c)] generate amplitudes which differ in the power n of the
large Q2 behavior (∼Q−n). For the diagram of Fig. 4(c) the
amplitude has an asymptotic behavior with n >∼ 4, while for
the other one [Fig. 4(b)] n should be smaller and similar to the
one of the pion form factor with n = 2.

Starting from this observation we discussed the above quark
mechanisms in Ref. [13] in terms of a naive 3P0 model [10,11]
on the basis of a harmonic oscillator quark model. Our evalu-
ation had shown that in this approximation the corresponding
effective amplitude Teff becomes proportional to the contact
term (20) times the product of two form factors, the electric
pion and strong πNN , i.e., Teff ∼ TCPV Fπ (Q2)FπNN (t) (see
Ref. [13] for detail). The resulting amplitude is perfectly in
line with the above formulated empirical rules (i) and (ii).

However, at large Q2 the 3P0 model cannot be reliable in
predictions for the Q2 behavior of the amplitudes and thus,
instead of the pion form factor Fπ (Q2), we use the more
general phenomenological form factor of the form

Feff(Q
2) = 1

1 + Q2/�2
eff

. (28)

For simplicity we use the same cutoff parameter �eff for all the
effective Q2-dependent terms [see, for example, the analogous
effective ρπγ form factor of Eq. (27)] .

From the above discussion follows that the effective
description of s(u)-channel and contact-term contributions to
the pion electroproduction amplitude at intermediate values of
Q2 might be reduced to a renormalization of the contact term
modified by electric Feff and strong Fstr form factors

{TN(s+u) + TCPV}eff ≈ ZFeff(Q
2)Fstr(t)TCPV. (29)

In a simplified model here we consider this possibility by
fitting the free parameter Z to the data on σL. Hence, the total
amplitude is written in the form

T = Tπ + Tρ + ZFeff(Q
2)Fstr(t)TCPV, (30)

where TCPV is the Born amplitude (20), while Tρ and Tπ

are the amplitudes (13) and (17) modified by strong and
electromagnetic form factors, respectively.

IV. RESULTS

In this section we discuss result of our calculation of the
transverse and longitudinal cross sections.

The differential cross section for the p(e, e′π+)n reaction
integrated over the azimuthal angle φe′ of the electron in the
one-photon approximation is usually defined [37] as

∫ 2π

0

d5σ

dEe′d�e′d�∗
π ′

dφe′ = 2|q∗||k′∗|2π�t

{
ε

dσL

dtdφ∗
π ′

+ dσT

dtdφ∗
π ′

+ ε
dσT T

dtdφ∗
π ′

+
√

2ε(1 + ε)
dσLT

dtdφ∗
π ′

}
, (31)

where ε is the invariant parameter used for the Rosenbluth
separation of cross sections

ε =
[

1 + 2q2

Q2
tan2 θe′

2

]−1

=
[

1 + 2q∗2

Q2
tan2 θ∗

e′

2

]−1

(32)

and �t is the “virtual-photon flux factor”. In Eq. (31) and below
the variables defined in the center-of-mass reference frame are
denoted by an asterisk “∗” while in the laboratory frame they
are used without an asterisk, e.g.,

|q| =
√(

W 2 − m2
N + Q2

2mN

)2

+ Q2, |q∗| = mN

W
|q|,

(33)

|q∗
r | = |q∗|Q2=0 = W 2 − m2

N

2W
.

The final expressions for the longitudinal and transverse
cross sections in the approximation of the lowest order t-, s-,
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and u-channel diagrams (35) read

dσL

dt
= Nσ

1

4π
|T (λ = 0)|2,

dσT

dt
= Nσ

1

2

∑
λ=±1

1

4π
|T (λ)|2,

(34)
dσT T

dt
= Nσ

{
−1

2

∑
λ=±1

1

4π
T (λ)T (−λ)∗

}
,

dσLT

dt
= Nσ

{
−1

2

∑
λ=±1

λ

(
T (0)T (λ)∗ + T (λ)T (0)∗

4π
√

2

)}
,

where T (λ) is the pion electroproduction amplitude, which
describe the π -, ρ-, nucleon-poles- and contact-term contribu-
tions to the hadron current

〈p′, s ′|ε(λ)
µ Jµ|p, s〉 ≡ T (λ, s, s ′) = Tπ (λ, s, s ′)

+ T w(v)
ρ (λ, s, s ′) + TN(s+u)(λ, s, s ′)

+ TCPV(λ, s, s ′). (35)

The common kinematical factor Nσ /4π is defined by the
standard expression

Nσ = 1√(
W 2 − m2

N + Q2
)2 + 4m2

NQ2

1

W 2 − m2
N

. (36)

The sum over spin projections

|T (λ)|2 = 1

2

∑
s,s ′

|T (λ, s, s ′)|2 (37)

in Eq. (34) can be calculated by the standard trace technique,
and the calculation results in an universal formula for all the
cross sections listed in Eq. (34). In the extended version of this
paper which is available [38] we list the full analytical results
for both longitudinal σL and transverse σT parts given for all
the diagonal and interference terms.

For the results we have tested two approximations to the
s(u)-channel amplitudes:

(i) the naive or “exact” representation (35) which makes use
of the proper Feynman amplitudes (18) and (20) with an
intermediate virtual nucleon;

(ii) the effective representation (30) [with two variants,
“soft” (a) and “hard” (b), discussed in Sec. III below
Eq. (27)] taking into account intermediate hadron states
through quark diagrams giving the main contribution to
the “s-channel part” of the cross section at large Q2.

Here we furthermore use both the tensor (W ) and vector (V )
representation of the ρ-exchange amplitude.

Our calculation shows that approximation (i) is extremely
unrealistic. The interference terms between the t-pole am-
plitudes and the “exact” TN(s+u) + TCPV amplitudes are too
large. The resulting longitudinal cross section is in rather poor
agreement with the observed data on σL. Only the diagonal
terms without the s(u)-pole contributions give qualitative
agreement with the σL data.

The approximation (ii) is more realistic. Results of this
approximation are displayed in Figs. 5 and 6. By varying

the free parameter Z one can obtain a good description of
both cross sections σL and σT for the tensor variant of the
ρ-exchange amplitude (W ). For the vector variant (V ) only
σL can be described in agreement with experimental data.
However, the “soft” variant (a) with �eff ≈ �π used in the
form factors Fρπγ (t,Q2) and Feff(Q2) is less suitable for
describing the existing data in a large interval of Q2 from 0.6 to
2.45 GeV2/c2, since it fails to describe the slow Q2 dependence
of σT in the full interval. The experimental ratio σT (Q2 =
0.6)/σT (Q2 = 2.45) is about 6, while the corresponding ratio
of form factors squared F 2

ρπγ (Q2 = 0.6)/F 2
ρπγ (Q2 = 2.45)

multiplied by the kinematical factor Nσ Eq. (36) is several
times larger.

Only the “hard” variant (b) with �eff >∼ 2�π is suitable
in describing the data. Taking the value �eff = 1.2 GeV/c,
which is close to the conventional values �ρ ≈ 1–1.2 used in
literature for the ρπγ form factor (see, e.g., [5]), and taking
the standard “soft” value �2

str = 0.7 GeV2/c2 for the common
strong form factor (25) we obtain a satisfactory description of
both σL and σT cross sections in a wide interval of Q2.

The values of the ρNN coupling constants were fixed
to GρNN (0) = 4 and FρNN (0) = 26 close to the recom-
mended in the ChPT approach [24] of GρNN (0) = 4 and
FρNN (0)/GρNN (0) = 6.1 (since the value of σT directly
depends on FρNN we slightly corrected the conventional
value of FρNN (0) to obtain the best description of the recent
data [5] on σT for Q2 = 1.6 GeV2/c2). In our calculation
we only have one free parameter Z introduced in Eq. (30)
as a phenomenological constant, which formally corresponds
to a renormalization of the Born contact term TCPV in the
full amplitude (30); in essence the term ZFeff(Q2)Fstr(t)TCPV

amounts to a phenomenological description of the s-channel
contributions, which otherwise cannot be calculated from first
principles. Based on general considerations (see Sec. III) we
can only expect that such contributions are suppressed at large
Q2, and thus a small value of the phenomenological constant
Z would be expected.

By varying Z one can improve the description of only one of
the cross section component (on account of the another), σL or
σT . To compare our results to the VGL model predictions [14],
which are only realistic for σL, we fit the value of Z to the
σL data in the full interval 0.6 < Q2 < 2.45 GeV2/c2. With
a value of Z = 0.11 we obtain a description of σL which
practically coincides (see Figs. 5 and 6) with the results of the
recent Regge-model motivated description of the data [5,6].

The small value of Z correlates well with the quark
mechanism proposed in Sec. III B for a description of
s-channel contributions [Figs. 4(b) and 4(c)] to the cross
section. In accordance with this picture, only a part of all
the possible quark diagrams [Fig. 4(b)] survives at large Q2,
while the most part of diagrams [of the Fig. 4(c) type] is
suppressed because of a high degree n of ∼Q−n behavior (it
can be assumed that the value of Z corresponds to the weight
∼1/3 of the surviving part of quark diagrams). On the other
hand, it would be very difficult to describe this situation at large
Q2 starting from the interference of many baryon-resonance
diagrams depicted in Fig. 2(b). Therefore, the smallness of
Z can be considered as an argument in favor of the quark-
model motivated representation of the transition amplitude
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FIG. 5. Longitudinal and transverse cross
sections for the p(e, e′π+)n reaction at small
Q2 <∼ 1 GeV2. The unscaled Fπ1 data are
centered at Q2 of 0.6, 0.75, and 1 GeV2.
Interference terms between π -pole, ρ-pole,
and contact πγNN amplitudes are taken
into account. Results obtained in the t-pole
approximation with the standard vector (V )
ρ-meson field are shown by dashed lines.
Results for the tensor variant (W ) of the ρ-
meson field (the contact diagram is included)
are shown by solid lines (by dotted lines
for the fixed value of �2

π = 0.5 GeV2/c2).
Note that the proper values of W and Q2

for each −t bin are different and they differ
from the average values shown in the figure
legends (see [5,6] for detail). For comparison
the proper Born approximation results (i.e.,
without the strong vertex form factors) are
shown by double-dot dashed lines.

in Eq. (30) and against the naive hadron representation in
Eq. (35).

Following Refs. [5,6], we use different values for the cutoff
parameters �π in the Fπ form factor for sets of data centered
at different values of Q2. In Table I we compare the values of
Fπ (and correspondingly �π ) obtained by such a method to

the values Fπ obtained in Refs. [5,6] on the basis of the VGL
model. The coupling constants and cutoff parameters used in
the calculation are listed in Table II.

In the case of the vector variant V , which (as is also the
case for the VGL model) describes only σL and fails for σT , the
extracted values of Fπ are close to the results of Refs. [5,6].

TABLE I. Comparison of results for the pion form factor Fπ (Q2).

Fπ1 data [6] Fπ2 data [5]

Q2(GeV2/c2) 0.6 0.75 1 1.6 1.6 2.45
Fπ [5,6] 0.433 ± 0.017 0.341 ± 0.022 0.312 ± 0.016 0.233 ± 0.014 0.243 ± 0.012 0.167 ± 0.010
Fπ (V ) 0.412 0.348 0.309 0.239 0.242 0.168

�2
π (V ) 0.420 0.400 0.447 0.503 0.511 0.494

Fπ (W ) 0.420 0.368 0.335 0.294 0.272 0.200

�2
π (W ) 0.434 0.437 0.504 0.666 0.597 0.614
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TABLE II. Coupling constants and cutoff parameters.

gπNN gρπγ GρNN (0) FρNN (0) Z �2
str �2

eff

GeV−1 GeV2/c2 GeV2/c2

13.5 0.728 4 26 0.11 0.7 1.44

For the tensor variant W our values for Fπ differ from the
ones of Refs. [5,6], but in this case we obtain a satisfactory
description of σT as a byproduct of our approach.

It is evident that the proper form factor Fπ cannot fluctuate
sharply in magnitude from one Q2 to another and the same
is true for �π used for its parametrization. However, after
smoothing out the fluctuations one can see that there are
two Q2 regions, Q2 <∼ 1 GeV2/c2 and Q2 >∼ 1 GeV2/c2, with
different mean values for �π . For our W variant we take
�2

π = 0.5 GeV2/c2 in the region of smaller Q2 � 1 GeV2/c2

and �2
π = 0.6 GeV2/c2 in the Q2 region of the recent JLab

experiment (in this case in the full interval the mean value of

TABLE III. Predicted values of �2
π for a variety of theoretical

approaches.

�2
π (GeV2/c2) Theory

0.51 Extended Nambu-Jona-Lasinio model [35]
0.52 Bethe-Salpeter/Schwinger-Dyson equations [40]
0.54 Light front dynamics [41]
0.55 Relativistic quark model [36]
0.60 Nonlocal chiral quark model [42]
0.66 Bethe-Salpeter/Schwinger-Dyson equations [43]
0.66 QCD sum rules [44]

�2
π is about 0.54 GeV2/c2) and recalculate the cross section σL

(in practice σT does not depend on small Fπ variations). The
dotted lines in Figs. 5 and 6 show how σL(W ) behaves for these
averaged values of Fπ . For comparison, the predicted values
of �2

π for a variety of theoretical approaches are shown in
Table III.
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FIG. 6. Longitudinal and transverse cross
sections at larger values of Q2: 1.6 GeV2/c2

for the Fπ1 data and 1.6 and 2.45 GeV2/c2

for the Fπ2 data. The same notation as in Fig. 5.
The dotted lines correspond to the fixed value
of �2

π = 0.6 GeV2/c2. Here for comparison
the VGL model results (adapted from Ref. [5])
are shown by dash-dotted lines.
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V. SUMMARY AND CONCLUSIONS

We analyzed pion electroproduction p(e, e′π+)n, which
was intensively studied at JLab in the quasielastic regime [3–6]
for the original purpose of directly measuring the pion charge
form factor Fπ (Q2). Our framework is based on an effective
Lagrangian approach involving nucleon, pion, ρ meson, and
photon degrees of freedom. In the description of the ρ meson
we test two possibilities: the so-called vector (V ) and tensor
(W ) variants. For the standard vector variant V the transverse
part σT of the cross section is considerably underestimated,
whether it is the Regge model motivated approach VGL [14]
or the traditional Born one [39] modified by strong form
factors and contact terms [12,13]. Here we have shown that the
problem of underestimating σT might be solved by taking into
account specific contact terms in the ρ meson propagator that
can be most naturally obtained in terms of the tensor variant
W of the ρ meson description [20,24].

Based on these findings the uniqueness of the Fπ data
extracted from the σL cross section appears doubtful without
taking into account the associated data on σT . The modified
Born approach presented here is successful in the description
of both the σL and σT cross sections, thus present a new
possibility for the discussion of this problem.

First it should be noted that our results obtained for the
standard variant V (the dashed lines in Figs. 5 and 6 for
dσL/dt) obviously contradict the claim that the Born (i.e., the
Feynman tree diagrams) approach is completely unsuited for
the description of the forward pion electroproduction process.
In our opinion a refined version of this statement would
be more adequate: the Born approach is only unsuited for
the photoproduction (Q2 = 0) and for the low Q2 region
of electroproduction, but at intermediate and high Q2 this
approach becomes suitable. This statement is substantiated
by a series of previous works [12,13,45,46] and in particular,
by the present detailed evaluation. It seems likely that with
growing Q2 the full sum (not the isolated terms) of s(u)-
channel contributions is decreasing most and while the t-pole
contributions remain. However, any description of such Q2

behavior in terms of many baryon poles would be rather
complicated and, as a result, very doubtful. We can only use
physical arguments based on the comparison of dσL/dt data to
the respective t-pole contributions depicted in Figs. 5 and 6 for
variant V (the dashed line). One can see that starting at Q2 =
0.75 GeV2/c2 the t behavior of the measured dσL/dt is in good
agreement with predictions given by the t-pole contributions

(but the agreement breaks down for Q2 = 0.6 GeV2/c2 and for
smaller Q2 as our evaluation shows).

Second, the present successful description of σT on the
basis of the tensor variant W raises another issue that finally
remains to be resolved. Namely, for the variant V , which is
very similar in results to the VGL model predictions, there is
no π -ρ interference contribution to σL since the corresponding
spin average term vanishes (see Appendices in the extended
version [38]). But in the more realistic variant W this term
does not vanish and cannot be neglected. In other words, in
a realistic variant of the description of both σL and σT the
ρ-exchange term influences not only σT but σL as well. Hence,
the procedure of extracting Fπ values from the σL data alone
can, in principle, not be independent from a parallel description
of the σT data. We evaluated such a possible indirect influence
of the σT data on the final Fπ values extracted from the recent
JLab data (see last two rows in Table I). In our simplified model
for the W variant, including a phenomenological contact term
(proportional to the free parameter Z), we obtained values
for Fπ which differ from previous ones (extracted without
taking into account the σT data) by about 10–15% at Q2 >∼
1.6 GeV2/c2. This deviation is traced to the ρ-π interference,
which cannot be neglected. It counts rather in favor of the value
�2

π ≈ 0.6 GeV2/c2 obtained in our approach than in favor of
the value �2

π ≈ 0.5 GeV2/c2 obtained on the basis of the VGL
model. However, now we cannot obtain trustworthy values for
the uncertainties ±��2

π because of the considerable model
dependence of the s-channel contributions to σL.

In the future we intend to extend our formalism to the study
of kaon electroproduction in connection with the recent JLab
experiment E93-018 [47].
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