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Using the light-cone QCD dipole formalism we investigate manifestations of color transparency (CT) and
coherence length (CL) effects in electroproduction of longitudinally (L) and transversally (T ) polarized vector
mesons. Motivated by forthcoming data from the HERMES experiment we predict both the A and Q2 dependence
of the L/T ratios for ρ0 mesons produced coherently and incoherently off nuclei. For an incoherent reaction the
CT and CL effects add up and result in a monotonic A dependence of the L/T ratio at different values of Q2. In
contrast, for a coherent process the contraction of the CL with Q2 causes an effect opposite to that of CT and we
expect quite a nontrivial A dependence.
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I. INTRODUCTION

Electroproduction of vector mesons has been intensively
studied during the past three decades. Numerous fixed-target
experiments have provided high-quality data: the OMEGA [1]
and NMC [2] experiments at CERN, CHIO [3] and E665
experiments at Fermilab [4], etc. [5]. In particular, the E665
Collaboration [6] observed for the first time a manifestation
of color transparency [7,8] in vector meson production on
nuclear targets. The data confirmed the predictions for color
transparency presented in Ref. [9].

Moreover, important dynamical information on vector
meson electroproduction, in a wide range of Q2 and energies
and for different photon polarizations, transverse (T ) and
longitudinal (L), was provided by experiments performed by
both the ZEUS [10] and H1 [11] Collaborations at HERA. In
particular it was found that the longitudinal-to-transverse ratio,
RLT , for exclusive electroproduction of ρ0 mesons, rises with
Q2, but has a weak energy dependence at fixed Q2 [2,4,12–21].
Some correlation between the energy and Q2 dependence was
detected in the ZEUS experiment [12]. The energy dependence
of the ratio RLT is stronger at larger Q2.

These observations can be understood within the dipole
approach [22]. The shrinkage of the q̄q component of the
photon with Q2 and the small-size behavior of the dipole cross
section [7], σq̄q(r) ∼ r2,1 lead to a scanning effect [9,22,23].
Namely, the vector meson production amplitude is dominated
by the contribution of dipole sizes of the order of r ∼ rS , where

rS ≈ Y√
Q2 + m2

V

, (1)

and the product of the photon wave function and the dipole
cross section forms a sharp peak. Varying Q2 and the mass
of vector meson mV one can study the transition from the
nonperturbative region of large rS to the perturbative region

1σq̄q (r) is the cross section for the interaction with a nucleon of the
q̄q fluctuations of the photon having transverse separations �r .

of very small rS � RV , where RV is the radius of the vector
meson.

Factor Y in Eq. (1) was evaluated in [22] at Y ≈ 6. However,
this estimate made use of a nonrelativistic approximation,
which is reasonable for charmonium and is rather accurate
for bottonium production. Moreover, in the general case the
parameter Y depends on polarization and increases slowly
with Q2. The Q2 dependence of YT,L is related to so-called
aligned-jet configurations of the q̄q configurations when q or q̄

carry almost the whole momentum of the photon. Since these
end-point configurations in longitudinally polarized photons
are suppressed, one should expect YL < YT . In another words,
the production amplitude of longitudinal vector mesons scans
their wave function at smaller transverse sizes. According
to Eq. (1) higher Q2 results in a smaller transverse size
of the color q̄q dipole (i.e., in a smaller rS). Stronger
energy dependence of the dipole cross section σq̄q(r, s) at
smaller dipole size causes a weak energy dependence of
the ratio RLT (see also Ref. [24]). However, large errors of
available data do not allow this energy dependence to be seen
clearly.

Equation (1) shows that one can reach small perturbative
scanning radius only at very large scale (Q2 � m2

V ).
There is much experimental and theoretical evidence [25,

26] that a semihard scale of a nonperturbative origin exists
in QCD [27]. Namely, the mean transverse distance of gluon
propagation is small, of the order of r0 ∼ 0.3 fm. To rely
on pQCD calculations one should make the scanning radius
smaller than r0, that is,

(
Q2 + m2

V

)
>∼ Q2

pQCD = Y 2

r2
0

. (2)

As was discussed in Refs. [28–30], nuclear targets represent
unique analyzers of the dynamics of vector meson production.
They allow us to study other phenomena such as color
transparency (CT), coherence length (CL) effects, and gluon
shadowing (GS). These effects were studied in Ref. [28] for
coherent and incoherent electroproduction of vector mesons,
and within a quantum-mechanical description of the q̄q
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evolution, based on the light-cone (LC) Green function tech-
nique [31]. The same LC Green function formalism has been
applied also for Drell-Yan production in proton-nucleus and
nucleus-nucleus interactions [32], and for nuclear shadowing
in deep-inelastic scattering [33,34].

Data for vector meson production off nuclei are usually
presented in the form of the so-called nuclear transparency,
defined as a ratio

T rA = σγ ∗A→V X

Aσγ ∗N→V X

(3)

for the diffractive incoherent (quasielasic) production of vector
mesons, γ ∗A → V X, where one sums over all final states of
the target nucleus except those that contain particle (pion)
creation.

If electroproduction of a vector meson leaves the target
intact, the process γ ∗A → V A is usually called coherent or
elastic. For this process one can formally define the nuclear
transparency in the same way, Eq. (3); however, the coherent
production cross section σ coh

γ ∗A→V A has a form different from
the incoherent cross section σ inc

γ ∗A→V X, as will be seen in
Secs. IV and V [see Eqs. (65) and (73)].

There are two time scales that control the dynamics of
vector meson production [28]. The first time scale, called
formation time, is connected with the phenomenon called
color transparency. This effect comes from QCD and has
been studied intensively for almost two decades. The second
time scale, known as the coherence time, is connected with
quantum coherence effects. Both phenomena cause nuclear
suppression.

The phenomenon of CT can be treated either in the hadronic
or in the quark basis. The former approach leads to Gribov’s
inelastic corrections [35], whereas the latter manifests itself
as a result of color screening [7,8]. Although these two
approaches are complementary, the quark-gluon interpretation
is more intuitive and straightforward, coming from the fact that
colorless hadrons can interact only because color is distributed
inside them. If the hadron transverse size r tends to zero then
the interaction cross section σq̄q(r) vanishes as r2 [7]. As a
result, the nuclear medium is more transparent for smaller
transverse size hadrons. Besides, this fact naturally explains
the correlation between the cross sections of hadrons and their
sizes [36–38].

Diffractive electroproduction of vector mesons off nuclei is
one of the most effective processes for studying CT. According
to Eq. (1), in this case a photon of high virtuality Q2 � m2

V is
expected to produce a pair with a small transverse separation
∼1/Q2.2 Then CT manifests itself as a vanishing absorption
of the small-size colorless q̄q wave packet during propagation
through the nucleus. The dynamical evolution of this small-
size q̄q pair into a normal-size vector meson is controlled by
the time scale called formation time. Because of the uncertainty
principle, one needs a time interval to resolve different levels
V (the ground state) or V ′ (the next excited state) in the final

2In fact, the situation is somewhat more complicated. For very
asymmetric pairs, when the q or q̄ carry almost the whole photon
momentum, the pair can have a large separation; see Sec. II.

state. In the rest frame of the nucleus this formation time is
Lorentz dilated,

tf = 2ν

m′2
V − m2

V

, (4)

where ν is the photon energy. A rigorous quantum-mechanical
description of the pair evolution was suggested in Ref. [31]
and is based on the nonrelativistic light-cone Green function
technique. A complementary description of the same process
in the hadronic basis is presented in Ref. [39].

Another phenomenon known to cause nuclear suppression
is quantum coherence, which results from the destructive
interference of amplitudes for which the interaction takes
place on different bound nucleons. It is controlled by the
distance from the production to the absorption point when
the pointlike photon becomes the hadronlike q̄q pair and may
be also interpreted as the lifetime of q̄q fluctuation, thus
providing the time scale that controls shadowing. Again, it
can be estimated by relying on the uncertainty principle and
Lorentz time dilation as

tc = 2ν

Q2 + m2
V

. (5)

This is usually called coherence time, but we also will use the
term coherence length, since light-cone kinematics is assumed,
lc = tc (similarly, for formation length lf = tf ). The CL is
related to the longitudinal momentum transfer in γ ∗N → V N

as qc = 1/lc, which controls the interference of the production
amplitudes from different nucleons.

Since the exclusive production of vector mesons at high
energies is controlled by small-xBj physics, gluon shadowing
becomes an important issue [28]. In fact, GS suppresses
electroproduction of vector mesons. Although it has been
shown [40] that for electroproduction of charmonia off nuclei
GS starts to be important at center-of-mass energies

√
(s) �

30–60 GeV, the same does not happen for electroproduction
of light vector mesons [28], where GS starts to be effective
at smaller energy values

√
(s) � 7–30 GeV. Nevertheless, GS

in the HERMES kinematical range discussed in the present
paper is negligible and does not need to be included in
calculations.

In electroproduction of vector mesons off nuclei one
needs to disentangle CT (absorption) and CL (shadowing)
as the two sources of nuclear suppression. These effects
can be associated with final- and initial-state interactions,
respectively. A detailed analysis of the CT and CL effects in
electroproduction of vector mesons off nuclei showed [28],
for a vector dominance model (VDM) example, that one
can easily identify the difference of the nuclear suppression
corresponding to absorption and shadowing, in the two limiting
cases:

(i) The limit of lc shorter than the mean internucleon spacing
(∼2 fm). In this case only final-state absorption matters.
The ratio of the quasielastic (or incoherent) γ ∗A → V X

and γ ∗N → V X cross sections, usually called nuclear
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transparency, reads [31]

T r inc
A

∣∣∣
lc�RA

≡ σ
γ ∗A
V

Aσ
γ ∗N
V

= 1

A

∫
d2b

∫ ∞

−∞
dz ρA(b, z)

× exp

[
−σV N

in

∫ ∞

z

dz′ ρA(b, z′)
]

= 1

AσV N
in

∫
d2b

{
1 − exp

[ − σV N
in TA(b)

]}
= σV A

in

AσV N
in

. (6)

Here z is the longitudinal coordinate and �b the impact
parameter of the production point of vector meson. In
Eq. (6) ρA(b, z) is the nuclear density and σV N

in is the
inelastic V N cross section.

(ii) The limit of long lc, where the expression for the nuclear
transparency takes a different form,

T r inc
A

∣∣∣
lc�RA

=
∫

d2bTA(b) exp
[ − σV N

in TA(b)
]
, (7)

and where we assume σV N
el � σV N

in for the sake of
simplicity. Here TA(b) is the nuclear thickness function

TA(b) =
∫ ∞

−∞
dz ρA(b, z). (8)

The exact expression that interpolates between the two
regimes (6) and (7) can be found in Ref. [41].

The problem of CT-CL separation is different depending on
the mass of the produced vector meson. In the production of
light vector mesons (ρ0,�0) [28] the coherence length is larger
or comparable with the formation length, lc >∼ lf , starting
from the photoproduction limit up to Q2 ∼ 1–2 GeV2. For
charmonium production, however, there is a strong inequality
lc < lf independent of Q2 and ν [29,30], which therefore leads
to a different scenario of CT-CL mixing.

Recently, new HERMES data [42,43] for diffractive exclu-
sive electroproduction of ρ0 mesons on nitrogen target have
gradually become available. At the beginning the data were
presented as a dependence of nuclear transparencies (3) on
coherence length (5). The data for incoherent ρ0 production
decrease with lc, as expected from the effects of initial-state
interactions. In contrast, the nuclear transparency for coherent
ρ0 production increases with coherence length, as expected
from the effects of the nuclear form factor [28]. However,
each lc bin of the data contains different values of ν and Q2

(i.e., there are different contributions from both effects, CT and
CL). For this reason the lc behavior of nuclear transparency
does not allow us to study CT and CL effects separately.
Therefore it was proposed in Refs. [28,39] that CT can be
separately studied, eliminating the effect of CL from the data
on the Q2 dependence of nuclear transparency, in a way that
keeps lc = const. According to this prescription, the HERMES
data [43] were later presented as the Q2 dependence of nuclear
transparency, albeit at different fixed values of lc. Then the
rise of T r inc

A and T rcoh
A with Q2 represents a signature of CT.

The HERMES data [43] are in a good agreement with the
predictions from Ref. [28].

New HERMES data on neon and krypton targets should
be presented soon and these will allow us to verify further
the predictions for CT from Ref. [28]. In addition, gradually
increasing the statistics of the HERMES data should allow us
to also obtain results at different polarizations L and T , and this
offers the interesting possibility of studying the polarization
dependence of the CT and CL effects, in both coherent and
incoherent production of vector mesons. The data are usually
presented as the L/T ratio RA

LT of the corresponding nuclear
cross sections. Knowing the nucleon L/T ratio RLT one can
define the nuclear modification factor as

f (s,Q2, A) = RA
LT

RLT

(9)

for both coherent and incoherent processes. The nuclear
modification factor represents a modification of the nucleon
L/T ratio, given by a nuclear environment. Its deviation
from unity allows one to obtain information about a possible
different onset of CT and CL effects in the production of
L and T vector mesons. Therefore an exploratory study
of the Q2 and A dependence of the factors finc and fcoh

gives an alternative way for investigating CT and CL effects
in coherent and incoherent production of vector mesons, at
different polarizations L and T . This is the main goal of the
present paper.

The paper is organized as follows. In Sec. II we present
the light-cone approach to diffractive electroproduction of
vector mesons in the rest frame of the nucleon target.
Here we also describe the individual ingredients contained
in the production amplitude: (i) the dipole cross section, (ii)
the LC wave function for a quark-antiquark fluctuation of the
virtual photon, and (iii) the LC wave function of the vector
meson.

In Sec. III we calculate the nucleon L/T ratio RLT of
the cross sections for exclusive electroproduction of L and
T polarized ρ0,�0, and charmonia. The model calculations
reproduce quite well the available data for the Q2 dependence
of RLT . This is an important test of the model because
RLT is included in the calculations of the nuclear L/T

ratio.
Section IV is devoted to the incoherent production of vector

mesons off nuclei. First, in Sec. IV A we define the different
transparency ratios, and in Sec. IV B, we briefly describe
the formalism based on the LC Green function technique.
In Sec. IV C we analyze different regimes of incoherent
production of vector mesons, depending on the magnitude
of the coherence length. Then in Sec. IV D we present a
discussion on the A and Q2 behavior of the nuclear L/T

ratio in the limit of long coherence length lc � RA, because in
this limit the corresponding formulas and theoretical treatment
get simplified with respect to the general case lc ∼ RA, where
there is a strong CT-CL mixing. Here we also present the
model predictions for the nuclear modification factor finc

and nuclear L/T ratio. Finally, we study the general case
when there is no restriction on the coherence length. The
numerical calculations of Sec. IV E produce the prediction
for the L/T ratio of nuclear cross sections, for production of
L and T polarized vector mesons, as a function of the mass
number A at different fixed values of 〈Q2〉 corresponding to
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the HERMES kinematics. We find a monotonic A dependence
of this ratio. We discuss why this A behavior of RA

LT (inc)
only weakly changes with Q2. Following the prescription of
Refs. [28,39] we also investigate how a clear signal of CT
effects manifests itself separately in the production of L and
T polarized vector mesons. We present the model predictions
for the Q2 dependence of finc at different fixed values of
the coherence length. Such a polarization dependence of CT
effects can be analyzed by the HERMES Collaboration and in
the experiments at JLab.

Coherent production of vector mesons off nuclei leaving
the nucleus intact is studied in Sec. V. The formalism,
with an emphasis on the nuclear L/T ratio, is described in
Sec. V A. Then, just as for incoherent production, we analyze
in Sec. V B the A and Q2 behavior of the nuclear L/T ratio,
in the limit of long coherence length. Here we also present the
corresponding model predictions for the nuclear modification
factor and the L/T ratio. The general case with no restriction
on the coherence length is analyzed in Sec. V C. In contrast to
incoherent vector meson production, here we find, at medium
and large values of Q2 (when lc <∼ RA, where RA is the
nuclear radius), a nonmonotonic A dependence of the nuclear
L/T ratio. This nontrivial and anomalous A dependence of
RA

LT (coh) is even more complicated at larger values of Q2, as
a result of a stronger interplay between CT and CL effects.
We find also a different manifestation of the net CT effects
in the production of L and T polarized vector mesons, by
performing the predictions at fixed values of the coherence
length.

Gluon shadowing starts to manifest itself at
√

s �
7–30 GeV and is not significant in the HERMES energy range
studied in the present paper. Therefore it is not included in the
calculations.

The results of the paper are summarized and discussed
in Sec. VI. The important conclusion of a nontrivial A

dependence of the coherent nuclear L/T ratio for the expected
new HERMES data and for the future planned experiments is
stressed.

II. COLOR DIPOLE PHENOMENOLOGY FOR ELASTIC
ELECTROPRODUCTION OF VECTOR MESONS

γ ∗ N → V N

The LC dipole approach for elastic electroproduction
γ ∗N → V N was already used in Ref. [44] to study the
exclusive photo- and electroproduction of charmonia, and in
Ref. [28] for elastic virtual photoproduction of the light vector
mesons ρ0 and �0 (for a review see also Ref. [45]). Therefore,
we present only a short review of this LC phenomenology,
with the main emphasis on looking at the effects of the
different polarizations L and T . In this approach a diffractive
process is treated as elastic scattering of a q̄q fluctuation
of the incident particle. The elastic amplitude is given by
convolution of the universal flavor-independent dipole cross
section for the q̄q interaction with a nucleon, σq̄q [7], and the
initial and final wave functions. For the exclusive photo- or
electroproduction of vector mesons γ ∗N → V N the forward

production amplitude is represented in the following form:

Mγ ∗N→V N (s,Q2) = 〈V |σq̄q(�r, s)|γ ∗〉

=
∫ 1

0
dα

∫
d2r�∗

V (�r, α)σq̄q(�r, s)

×�γ ∗ (�r, α,Q2), (10)

with the normalization

dσ (γ ∗N → V N )

dt

∣∣∣∣
t=0

= |Mγ ∗N→V N (s,Q2)|2
16π

. (11)

There are three ingredients contributing to the amplitude (10):

(i) the dipole cross section σq̄q(�r, s), which depends on the
q̄q transverse separation �r and the c.m. energy squared
s,

(ii) the LC wave function of the photon �γ ∗ (�r, α,Q2), which
depends also on the photon virtuality Q2 and the relative
share α of the photon momentum carried by the quark,
and

(iii) the LC wave function �V (�r, α) of the vector meson.

Notice that in the LC formalism the photon and
meson wave functions also contain higher Fock states
|q̄q〉, |q̄qG〉, |q̄q2G〉, etc. The effects of higher Fock states
are implicitly incorporated into the energy dependence of the
dipole cross section σq̄q(�r, s), as is given in Eq. (10).

A. Dipole cross section

The dipole cross section σq̄q(�r, s) represents the interaction
of a q̄q dipole of transverse separation �r with a nucleon [7]. It
is a flavor-independent universal function of �r and energy, and
allows us to describe in a uniform way various high-energy
processes. It is known to vanish quadratically [σq̄q(r, s) ∝ r2]
as r → 0, owing to color screening (CT property). The dipole
cross section cannot be predicted reliably because of poorly
known higher order pQCD corrections and nonperturbative
effects. A detailed discussion of the dipole cross section in
connection with production of vector mesons is presented in
Ref. [28].

There are two popular parametrizations of σq̄q(�r, s). The
first, suggested in Ref. [46], reflects the fact that at small
separations the dipole cross section should be a function of r

and xBj ∼ 1/(r2s), to reproduce Bjorken scaling. It describes
well data for deep-inelastic scattering (DIS) at small xBj and
medium and high Q2. However, at small Q2 it cannot be
correct since it predicts energy-independent hadronic cross
sections. Besides, xBj is no longer a proper variable at
small Q2 and should be replaced by energy. This defect is
removed by the second parametrization proposed in Ref. [27],
which is similar to the first one [46] but contains an explicit
dependence on energy, and it is valid down to the limit of real
photoproduction. Since we will consider HERMES data with
a typical kinematical region of the photon energy, 5 < ν <

24 GeV, and virtuality, 0.8 < Q2 < 5 GeV2, we choose the
second parametrization, which has the following form:

σq̄q(r, s) = σ0(s)
[
1 − e−r2/r2

0 (s)
]
, (12)
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where

σ0(s) = σ
πp
tot (s)

[
1 + 3

8

r2
0 (s)〈
r2

ch

〉 ]
mb (13)

and

r0(s) = 0.88

(
s

s0

)−0.14

fm. (14)

Here 〈r2
ch〉 = 0.44 fm2 is the mean pion charge radius squared,

and s0 = 1000 GeV2. The cross section σ
πp
tot (s) was fitted to

data in Ref. [47,48] and reads

σ
πp
tot (s) = 23.6

(
s

s0

)0.079

+ 1.425

(
s

s0

)−0.45

mb. (15)

This represents the Pomeron and Reggeon parts, correspond-
ing to exchange of gluons and q̄q, respectively. A detailed
description of the incorporation of Reggeons into the LC dipole
formalism can be found in Ref. [28].

The dipole cross section presented in Eqs. (12)–(15)
provides the imaginary part of the elastic amplitude. It is
known, however, that the energy dependence of the total cross
section also generates a real part [49],

σq̄q(r, s) ⇒
(

1 − i
π

2

∂

∂ ln(s)

)
σq̄q(r, s). (16)

Therefore the energy dependence of the dipole cross section
given by Eq. (12), which is rather steep at small r , leads to a
large real part that should not be neglected.

B. The q̄q wave function of the photon

The perturbative distribution amplitude (“wave function”)
of the q̄q Fock component of the photon has the following
form, for T and L polarized photons [50–52]:

�
T,L
q̄q (�r, α) =

√
NCαem

2π
Zqχ̄ÔT ,LχK0(εr), (17)

where χ and χ̄ are the spinors of the quark and anti-
quark, respectively, Zq is the quark charge, with Zq =
1/

√
2, 1/3

√
2, 1/3, 2/3, and 1/3 for ρ0, ω0,�0, J/�, and

ϒ production respectively, NC = 3 is the number of colors.
and K0(εr) is a modified Bessel function with

ε2 = α(1 − α)Q2 + m2
q . (18)

Here mq is the quark mass, and α is the fraction of the LC
momentum of the photon carried by the quark. The operators
ÔT ,L are given by

ÔT = mq �σ · �e + i(1 − 2α)(�σ · �n)(�e · �∇r ) + (�σ × �e) · �∇r ,

(19)

ÔL = 2Qα(1 − α)(�σ · �n). (20)

Here �∇r acts on the transverse coordinate �r, �e is the polar-
ization vector of the photon, �n is a unit vector parallel to the
photon momentum, and �σ is the three-vector of the Pauli spin
matrices.

The transverse separation of the q̄q pair contains an explicit
α dependence and can be written uby sing the expression for

the scanning radius, Eq. (1), as

rq̄q ∼ 1

ε
= 1√

Q2α(1 − α) + m2
q

(21)

∼ rS

3
= Ỹ√

Q2 + m2
V

,

where Ỹ = Y/3. For very asymmetric q̄q pairs the LC
variable α or (1 − α) <∼ m2

q/Q
2. Consequently, the transverse

separation rq̄q ∼ 1̃/mq and the scanning radius rS become
large. However, this is not the case of charmonium and
bottonium production because of the large quark masses
mc = 1.5 GeV and mb = 5.0 GeV, respectively. Therefore in
this latter case it is straightforward to include nonperturbative
interaction effects between q and q̄. In the production of light
vector mesons there are two ways to fix the problem of a huge
q̄q transverse separation. One can introduce an effective quark
mass mq ≈ �QCD, which should represent the nonperturbative
interaction effects between the q and q̄, or one can introduce
this interaction explicitly. We use the second possibility, with
the corresponding phenomenology based on the LC Green
function approach developed in Ref. [27].

The Green function Gq̄q(z1, �r1; z2, �r2) describes the propa-
gation of an interacting q̄q pair between points with longitudi-
nal coordinates z1 and z2, and with initial and final separations
�r1 and �r2. This Green function satisfies the two-dimensional
Schrödinger equation,

i
d

dz2
Gq̄q(z1, �r1; z2, �r2)

=
{

ε2 − �r2

2να(1 − α)
+ Vq̄q(z2, �r2, α)

}
Gq̄q(z1, �r1; z2, �r2).

(22)

Here ν is the photon energy, and the Laplacian �r acts on the
coordinate r .

The imaginary part of the LC potential Vq̄q(z2, �r2, α) in
Eq. (22) is responsible for the attenuation of the q̄q in
the medium, whereas the real part represents the interaction
between the q and q̄. This potential is supposed to provide the
correct LC wave functions of the vector mesons. For the sake
of simplicity we use the oscillator form of the potential,

ReVq̄q(z2, �r2, α) = a4(α)�r2
2

2να(1 − α)
, (23)

which leads to a Gaussian r dependence of the LC wave
function of the meson ground state. The shape of the function
a(α) will be discussed in the following.

In this case Eq. (22) has an analytical solution, leading to an
explicit form of the harmonic oscillator Green function [53],

Gq̄q(z1, �r1; z2, �r2)

= a2(α)

2πisin(ω�z)
exp

{
ia2(α)

sin(ω�z)

[(
r2

1 + r2
2

)
cos(ω�z)

− 2�r1 · �r2
]}

exp

[
− iε2�z

2να(1 − α)

]
, (24)
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where �z = z2 − z1 and

ω = a2(α)

να(1 − α)
. (25)

The boundary condition is Gq̄q(z1, �r1; z2, �r2)|z2=z1 = δ2(�r1 −
�r2).

The probability amplitude of finding the q̄q fluctuation of a
photon at the point z2 with separation �r is given by an integral
over the point z1 where the q̄q is created by the photon with
initial separation zero:

�
T,L
q̄q (�r, α) = iZq

√
αem

4πνα(1 − α)

×
∫ z2

−∞
dz1 (χ̄ÔT ,Lχ )Gq̄q(z1, �r1; z2, �r)

∣∣∣
r1=0

.

(26)

The operators ÔT ,L are defined by Eqs. (19) and (20). Here
they act on the coordinate �r1.

If we write the transverse part as

χ̄ÔT χ = χ̄mq �σ · �eχ + χ̄ [i(1 − 2α)(�σ · �n)�e + (�σ × �e)]χ · �∇r

= E + �F · �∇r , (27)

then the distribution functions read

�T
q̄q(�r, α) = Zq

√
αem[E�0(ε, r, λ) + �F · ��1(ε, r, λ)],

(28)

�L
q̄q(�r, α) = 2Zq

√
αemQα(1 − α)χ̄ �σ · �nχ�0(ε, r, λ),

(29)

where

λ = 2a2(α)

ε2
. (30)

The functions �0,1 in Eqs. (28) and (29) are defined as

�0(ε, r, λ) = 1

4π

∫ ∞

0
dt

λ

sh(λt)

× exp

[
−λε2r2

4
cth(λt) − t

]
, (31)

��1(ε, r, λ) = ε2�r
8π

∫ ∞

0
dt

[
λ

sh(λt)

]2

× exp

[
−λε2r2

4
cth(λt) − t

]
, (32)

where sh(x) and cth(x) are the hyperbolic sine and hyperbolic
cotangent, respectively. Note that the q̄-q interaction enters
Eqs. (28) and (29) via the parameter λ defined in Eq. (30).
In the limit of vanishing interaction (λ → 0; i.e., Q2 →
∞, α fixed, α �= 0 or 1), Eqs. (28) and (29) produce the
perturbative expressions of Eq. (17). As previously mentioned,
for charmonium and bottonium production nonperturbative
interaction effects are weak. Consequently, the parameter λ

is then rather small owing to the large quark masses mc =

1.5 GeV and mb = 5.0 GeV, and it is given by

λ = 8a2(α)

Q2 + 4m2
c,b

. (33)

With the choice a2(α) ∝ α(1 − α) the end-point behavior
of the mean-square interquark separation 〈r2〉 ∝ 1/α(1 − α)
contradicts the idea of confinement. Following Ref. [27] we
fix this problem via a simple modification of the LC potential,

a2(α) = a2
0 + 4a2

1α(1 − α). (34)

The parameters a0 and a1 were adjusted in Ref. [27] to data on
total photoabsorption cross section [54,55], diffractive photon
dissociation, and shadowing in nuclear photoabsorption reac-
tions. The results of our calculations vary within only 1% when
a0 and a1 satisfy the relations

a2
0 = v1.15(0.112)2 GeV2,

(35)
a2

1 = (1 − v)1.15(0.165)2 GeV2,

where v takes any value in the range 0 < v < 1. In view of
this insensitivity of the observables we fix the parameters at
v = 1/2. We checked that this choice does not affect our results
beyond a few percent uncertainty.

C. Vector meson wave function

The last ingredient in the elastic production amplitude (10)
is the vector meson wave function. We use the popular pre-
scription of Ref. [56], obtained by applying a Lorentz boost to
the rest-frame wave function, assumed to be Gaussian, which
in turn leads to radial parts of transversely and longitudinally
polarized mesons in the form (for an alternative description of
the vector meson wave function see Refs. [57,58])

�
T,L
V (�r, α) = CT,Lα(1 − α)f (α) exp

[
−α(1 − α)�r2

2R2

]
, (36)

with the normalization defined in the following, and

f (α) = exp

[
− m2

qR
2

2α(1 − α)

]
, (37)

with the parameters, taken from Ref. [24], R = 0.515 fm,
mq = 0.1 GeV for ρ0 production; R = 0.415 fm, mq =
0.3 GeV for �0 production; R = 0.183 fm, mq = 1.3 GeV for
charmonium production; and R = 0.061 fm, mq = 5.0 GeV
for bottonium production.

We assume that the distribution amplitude of the q̄q

fluctuations for both the vector meson and the photon have
a similar structure [24]. Then in analogy to Eqs. (28) and (29),

�T
V (�r, α) = (E + �F · �∇r )�T

V (�r, α), (38)

�L
V (�r, α) = 2mV α(1 − α)(χ̄ �σ · �nχ )�L

V (�r, α). (39)
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Correspondingly, the normalization conditions for the
transverse and longitudinal vector meson wave functions read

NC

∫
d2r

∫
dα

[
m2

q

∣∣�T
V (�r, α)

∣∣2

+ [α2 + (1 − α)2]
∣∣∂r�

T
V (�r, α)

∣∣2] = 1 (40)

and

4NC

∫
d2r

∫
dαα2(1 − α)2m2

V

∣∣�L
V (�r, α)

∣∣2 = 1. (41)

III. ELECTROPRODUCTION OF VECTOR MESONS ON A
NUCLEON: COMPARISON WITH DATA

As the first test of the formalism, in this section we verify the
LC approach by comparing its results with data for nucleon
targets. Since the expected new HERMES data will be, at
separate polarizations L and T , predominantly for electropro-
duction of ρ0, we focus our attention on the production of
light vector mesons. Using all the ingredients specified in the
previous section [i.e., the nonperturbative photon equations
(28) and (29) and vector meson wave function equations (38)
and (39)], we can calculate the forward production amplitude
γ ∗N → V N for transverse and longitudinal photons and
vector mesons. Under the assumption of s-channel helicity
conservation (SCHC), the forward scattering amplitude reads

MT
γ ∗N→V N (s,Q2)

∣∣
t=0 = NCZq

√
2αem

∫
d2rσq̄q(�r, s)

×
∫ 1

0
dα

{
m2

q�0(ε, �r, λ)�T
V (�r, α)

− [α2 + (1 − α)2] ��1(ε, �r, λ)

× �∇r�
T
V (�r, α)

}
, (42)

ML
γ ∗N→V N (s,Q2)

∣∣
t=0 = 4NCZq

√
2αemmV Q

∫
d2rσq̄q(�r, s)

×
∫ 1

0
dαα2(1 − α)2

×�0(ε, �r, λ)�L
V (�r, α). (43)

These amplitudes are normalized as |MT ,L|2 =
16πdσ

T,L
N /dt |t=0, and their real parts are included

according to the prescription described in Sec. II. The
terms ∝ �0(ε, �r, λ)�V (�r, α) and ∝ ��1(ε, �r, λ) · �∇r�V (�r, α)
in Eqs. (42) and (43) correspond to the helicity-conserving
and helicity-flip transitions in the γ ∗ → q̄q, V → q̄q

vertices, respectively. The helicity-flip transitions represent
the relativistic corrections. For heavy quarkonium these
corrections become important only at large Q2 � m2

V .
For production of light vector mesons, however, they are
non-negligible even in the photoproduction limit, Q2 = 0.

Usually the data are presented in the form of the production
cross section σ = σT + ε′σL, at fixed photon polarization ε′.
Here the cross section integrated over t reads

σT,L(γ ∗N → V N ) = |MT ,L|2
16πBγ ∗N

, (44)

where Bγ ∗N ≡ B is the slope parameter in the reaction γ ∗p →
Vp. The absolute value of the production cross section has
already been checked by comparing with data for elastic ρ0

and �0 electroproduction in Ref. [28] and for charmonium
exclusive electroproduction γ ∗p → J/�p in Refs. [29,30].

Motivated by the expected data from the HERMES Collab-
oration, we are going to make predictions for the production
cross sections σL,T (γ ∗N → V N ) at separate polarizations
L and T . However, the data are usually presented as the
ratio RLT = σL(γ ∗N → V N)/σT (γ ∗N → V N) at different
photon virtualities Q2. Then a deviation of RLT from unity
indicates a difference in the production mechanisms of L and
T polarized vector mesons. To calculate the ratio RLT , using
Eqs. (42) and (43) for forward production amplitudes at dif-
ferent polarizations L and T , one should know corresponding
slope parameters Bγ ∗

LN ≡ BL and Bγ ∗
T N ≡ BT :

RLT = |ML|2
|MT |2

BT

BL

≈ |ML|2
|MT |2

(
1 + �BT L

B

)
, (45)

where �BT L = BT − BL.
The scanning phenomenon, Eq. (1), was already discussed

in Refs. [22,24,59], and it can be understood qualitatively by
analyzing the forward production amplitude (10). Here we
assume for simplicity the perturbative distribution amplitudes
of the q̄q Fock component of the photon containing the Bessel
function K0(εr) [see Eq. (17)]. As was mentioned in the
previous section, the most important property of the dipole
cross section σq̄q(�r, s) is the CT-driven dependence ∝ r2 at
small r . Because of the smooth shape of the vector meson wave
functions �

L,T
V (r, α) [see Eq. (36)] and because of the behavior

of the Bessel functions K0,1(x) ∝ exp(−x) at large values of
x, the production amplitude is dominated by the contribution
from rS ≈ 3/ε. In the nonrelativistic approximation of mV ∼
2mq and α ∼ 0.5, it leads to the scanning radius [Eq. (1)]
and the estimate Y ≈ 6 (see also Fig. 1). In general, to be
more precise, the scanning property [see Eq. (1)] is quantified
separately for L and T polarizations via the Q2-dependent
scale parameters YL and YT , as illustrated in Fig. 1. The dotted
line represents the fact that for electroproduction of bottonia
both scale parameters YT ∼ YL ∼ 6, and they practically do
not depend on Q2 as a consequence of the nonrelativistic
approximation. Dashed lines describe the Q2 dependence of
YL and YT for charmonium electroproduction. One can see
that both YL and YT smoothly rise with Q2, do not differ much
from each other, and are a little bit higher than the value 6
resulting from the nonrelativistic approximation. For this
reason charmonium can be safely treated as a nonrelativistic
object at small and medium values of Q2 such that rS >∼ RJ/� .3

At larger Q2 � m2
J/� , the scale parameters YL,T have a

stronger Q2 dependence, reaching ∼7.7 at Q2 = 100 GeV2,
which differs from the nonrelativistic value Y ∼ 6. This means
that relativistic effects are no longer negligible and should
be included in the calculations [59]. However, the situation
is completely different for light vector meson production, as
illustrated in Fig. 1 by the solid lines. In this case, the presence

3RJ/� is the radius of charmonium.

025210-7



B. Z. KOPELIOVICH, J. NEMCHIK, AND IVAN SCHMIDT PHYSICAL REVIEW C 76, 025210 (2007)

5

6

7

8

9

10

11

12

13

14

15

10
-1

1 10 10
2

Q2 (GeV2)

Y
L

,T

YT

YL

YT

YL

YT~ YL

ρ0 electroproduction
J/Ψ electroproduction
Υ electroproduction

FIG. 1. Q2 dependence of the scale parameters YL and YT , from
the expression for the scanning radius [Eq. (1)], corresponding to
the production of L and T polarized vector mesons. Solid, dashed,
and dotted lines represent electroproduction of ρ0, J/�, and ϒ ,
respectively.

of strong relativistic effects causes the scale parameters to rise
with Q2 much more rapidly than for the production of heavy
vector mesons.

Compared to ML [Eq. (42)] the transverse production
amplitude MT [Eq. (43)] receives larger contributions from
large-size asymmetric end-point q̄q fluctuations with α(1 −
α) � 1. This is illustrated in Fig. 1, where YT > YL in
the whole Q2 range, and the difference between YT and
YL rises with Q2. This fact is especially evident for the
electroproduction of ρ0 mesons, depicted by the solid lines.
For electroproduction of charmonia the difference between
YT and YL is small as a consequence of small relativistic
effects, whereas for electroproduction of bottonia it was
already indicated in Ref. [59] that YT ∼ YL ∼ 6 in a very broad
Q2 range, which supports the conclusion that the relativistic
corrections are negligible.

At small rS <∼ RV , the production amplitudes (42) and (43)
can be evaluated as

MT ∝ r2
Sσq̄q(rS, s) ∝ Y 4

T(
Q2 + m2

V

)2 , (46)

ML ∝
√

Q2

mV

r2
Sσq̄q(rS, s) ∝

√
Q2

mV

Y 4
L(

Q2 + m2
V

)2

∝
√

Q2

mV

Y 4
L

Y 4
T

MT , (47)

which means that the longitudinally polarized vector mesons
dominate at Q2 � m2

V .
A detailed analysis of the diffraction cone [59,60] for

exclusive vector meson electroproduction, within the color
dipole generalized Balitskij-Fadin-Kuraev-Lipatov (BFKL)
phenomenology, showed the presence of geometrical

contributions from the target nucleon ∼ BN and the beam
dipole ∼ r2. At fixed energy and according to the scanning
phenomenon [Eq. (1)], the diffraction slope is predicted to
decrease with (Q2 + m2

V ) as

B(Q2) ∼ BN + C̃r2
S ≈ BN + const

Y 2

Q2 + m2
V

. (48)

One can see from Eq. (48) that different scanning properties
for L and T polarized vector mesons (YL < YT ; see Fig. 1 and
subsequent discussion) lead also to an inequality BL < BT

of the slope parameters in the reactions γ ∗
LN → VLN and

γ ∗
T N → VT N . Consequently, the difference �BT L in Eq. (45)

is positive and can be estimated as

�BT L ∝ �Y 2
T L

Q2 + m2
V

, (49)

where

�Y 2
T L = Y 2

T − Y 2
L. (50)

For electroproduction of ρ0 mesons at small Q2 <∼ m2
ρ the

rise of �Y 2
T L with Q2 can compensate or even overcompensate

the decrease of �BT L with (Q2 + m2
ρ). Consequently, the

difference �BT L in Eq. (49) can weakly rise with Q2. This
does not happen at larger Q2 > m2

ρ , when �BT L decreases
slowly with Q2. In the HERMES kinematical range �BT L ∼
0.7 GeV−2 at Q2 = 0.7 GeV2, reaching a value of ∼0.4 GeV−2

at Q2 = 5 GeV2. Correspondingly, the factor �BT L/B in
Eq. (45), treated as a correction to unity in the brackets, is
about 0.09 at Q2 = 0.7 GeV2 and decreases very slowly with
Q2, reaching a value of ∼0.07 at Q2 = 5 GeV2. For this reason
the factor �BT L/B cannot be neglected in the calculations.

Using Eqs. (45) and (47) one can present the nucleon L/T

ratio as

RLT ∝ Q2

m2
V

Y 8
L

Y 8
T

BT

BL

≈ Q2

m2
V

FY (Q2)

(
1 + �BT L

B

)
, (51)

and thus RLT is given mainly by three ingredients:

(i) The factor Q2/m2
V , which comes from σL [see Eq. (43)],

represents a generic consequence of electromagnetic
gauge invariance.

(ii) The Q2-dependent factor FY (Q2) = Y 8
L/Y 8

T , which
comes from the scanning phenomenon [Eq. (1)], reflects
the different relativistic corrections for the L and T pro-
duction amplitudes. These corrections become important
only at large Q2 � m2

V (see Fig. 1). The factor FY leads
to a substantial reduction of the rise of RLT with Q2,
especially for the production of light vector mesons.

(iii) The factor BT /BL follows from the fact that the slope
parameters BL and BT for the production of L and
T polarized vector mesons are different. According to
the scanning property (BL < BT ), this factor decreases
slightly with Q2, tending to unity from above at large
Q2 � m2

V [59]. The ratio BT /BL leads to an additional
but small reduction of the Q2 rise of RLT .

Our predictions are plotted in Figs. 2 and 3, together with the
data on the Q2 dependence of the ratio RLT for the production
of ρ0 and �0 mesons, taken from Ref. [21]. We added also the

025210-8



PRODUCTION OF POLARIZED VECTOR MESONS OFF NUCLEI PHYSICAL REVIEW C 76, 025210 (2007)

10
-1

1

10

10
-1

1 10

Q2 (GeV2)

R
L

T
H1 prelim.
ZEUS prelim.
HERMES
NMC
E665
H1
ZEUS

ρ0 electroproduction

FIG. 2. Q2 dependence of the ratio RLT of the integrated cross
sections for the reactions γ ∗

Lp → ρ0
Lp and γ ∗

T p → ρ0
T p. The solid

and dashed lines represent model calculations at W = 15 and 90 GeV,
respectively. The data are taken from Ref. [21]. The preliminary H1
and ZEUS data can be found in Refs. [18] and [14], respectively. The
dotted curve represents the Q2/m2

V rise of RLT .

last published data from H1 [16] and preliminary data from
the H1 [18] and ZEUS [14,15] Collaborations. The analogous
Q2 dependence of RLT for electroproduction of charmonia is
plotted in Fig. 4 together with results from the H1 [61] and
ZEUS [62] Collaborations.

One can see from Eq. (51) that the Q2 rise of the nucleon
ratio RLT gets diminished by the factor FY , coming from
the different scanning properties of the L and T production
amplitudes, and by the ratio of the slope parameters BT
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FIG. 3. Q2 dependence of the ratio RLT of the integrated cross
sections for the reactions γ ∗

Lp → �0
Lp and γ ∗

T p → �0
T p. The solid

and dashed lines represent model calculations at W = 15 and 90 GeV,
respectively. The data are taken from Ref. [21] and H1 data are from
Ref. [16]. The preliminary ZEUS data can be found in Ref. [15]. The
dotted curve represents the Q2/m2

V rise of RLT .
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FIG. 4. Q2 dependence of the ratio RLT of the integrated cross
sections for the reactions γ ∗

Lp → (J/�)Lp and γ ∗
T p → (J/�)T p.

The model calculations are performed at W = 90 GeV. The H1 and
ZEUS data are taken from Refs. [61] and [62], respectively. The
dotted curve represents the Q2/m2

V rise of RLT .

and BL. In the nonrelativistic approximation, represented
by the electroproduction of bottonia, the factor FY ∼ 1 [see
Eq. (51) and Fig. 1] and BT ∼ BL. Consequently, the ratio RLT

rises with Q2 as ∼ Q2/m2
V [59]. However, electroproduction

of light vector mesons has large relativistic effects and the
different scanning properties for the L and T production
amplitudes (YL < YT ) lead to a large decrease of the dom-
inance of the longitudinal cross section ∝ |ML|2. Thus the
ratio RLT rises with Q2 much less rapidly than Q2/m2

V . This
is illustrated in Figs. 2 and 3 as a difference between the
solid (dashed) and dotted lines. For charmonium production
the decrease of the rise of the ratio RLT with Q2/m2

J/� is
much less effective because of smaller relativistic effects, as
one can see in Fig. 4 as a difference between the solid and
dotted lines. Notice that in all calculations we assumed SCHC
as the consequence of the spin independence of the dipole
cross section σq̄q(r, s) in the forward production amplitude
[Eq. (10)]. This assumption is supported by the low-energy
data, indicating that the amplitude for the photon-vector meson
transition is predominantly s-channel conserving (i.e., the
helicity of the vector meson is equal to that of the photon
when the spin-quantization axis is chosen along the direction
of the meson momentum in the γ ∗p center-of-mass system).
In general, however, small helicity-single-flip and helicity-
double-flip contributions to the production amplitude have
been reported in π+π− photoproduction in the ρ0 mass region,
at W <∼ 4 GeV [63]. Helicity-single-flip amplitudes have
also been observed in ρ0 electroproduction for 1.3 < W <

2.8 GeV and 0.3 < Q2 < 1.4 GeV2 [64]. A helicity-single-flip
contribution of (14 ± 8)% was measured in ρ0 muo production
at W = 17 GeV [3].

At high energy the breaking of SCHC has been measured by
the ZEUS [65] and H1 [17] Collaborations at HERA. The size
of the SCHC-breaking effects was quantified by evaluating
the ratios of the helicity-single-flip and helicity-double-flip
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amplitudes to the helicity-conserving amplitudes. The ratio of
T01 (for production of L polarized ρ0 mesons from T photons)
to the helicity-conserving amplitudes,

τ01 = |T01|√
|T00|2 + |T11|2

, (52)

gives the values τ01 = (6.9 ± 2.7)% for 0.25 < Q2 <

0.85 GeV2 and τ01 = (7.9 ± 2.6)% for 3 < Q2 < 30 GeV2,
determined by the ZEUS Collaboration [65]. The H1 result
for this quantity is (8 ± 3)% [17]. The ratio of helicity-
double-flip amplitudes to the helicity-conserving amplitudes
τ1−1, defined analogously as τ01 in Eq. (52), gives the values
τ1−1 = (4.8 ± 2.8)% for 0.25 < Q2 < 0.85 GeV2 and τ1−1 =
(1.4 ± 6.5)% for 3 < Q2 < 30 GeV2 [65]. In addition, the
ZEUS Collaboration [65] also determined the nucleon L/T

ratio for ρ0 electroproduction, without assuming SCHC. Those
results differ from those derived from the SCHC hypothesis
by less than 3%. Similarly, the last data from the HERMES
Collaboration [21] on electroproduction of ρ0 and �0 mesons
at 4 < W < 6 GeV and 0.7 < Q2 < 5 GeV2 confirm the
breaking of SCHC and are consistent with the H1 [17]
and ZEUS [65] results. The observed deviation from SCHC
changes the ratio RLT by only a few percent. Because in
the present paper we will focus predominantly on theoretical
predictions for the ratio of the L and T production cross
sections on nucleon and nuclear targets we can safely assume
SCHC.

The second test of our approach is the description of the
energy dependence of the production amplitudes [Eqs. (42)
and (43)], which is given by the energy-dependent dipole cross
section. As we mentioned in the previous section σq̄q(r, s)
has a stronger energy dependence at smaller dipole sizes.
According to the scanning phenomenon, the dipole cross
section is scanned at smaller transverse size in the L than in
the T production amplitude. Consequently, the L production
amplitude has a stronger energy dependence and so we expect
a weak energy dependence of the ratio RLT . Model predictions
at W = 15 and 90 GeV are depicted in Figs. 2 and 3 by the
dashed and solid lines. One can see that the data error bars are
too large to see such a weak energy dependence.

IV. INCOHERENT PRODUCTION OF VECTOR MESONS
OFF NUCLEI

A. Introduction

In diffractive incoherent (quasielastic) production of vector
mesons off nuclei, γ ∗A → V X, one sums over all final states
of the target nucleus, except those that contain particle (pion)
creation. The observable that is usually studied experimentally
is the nuclear transparency, defined as

T r inc
A = σ inc

γ ∗A→V X

Aσγ ∗N→V N

. (53)

The t slope of the differential quasielastic cross section is the
same as on a nucleon target. Therefore, instead of integrated
cross sections one can also use the forward differential cross

sections given in Eq. (11) to write

T r inc
A = 1

A

∣∣∣∣Mγ ∗A→V X(s,Q2)

Mγ ∗N→V N (s,Q2)

∣∣∣∣2

. (54)

We consider also the production of either longitudinal or trans-
verse polarized vector mesons on nucleon and nuclear targets,
and then one can define nuclear transparency separately for
incoherent production of L and T vector mesons as

T r inc
A (L) = 1

A

∣∣∣∣∣Mγ ∗
LA→VLX(s,Q2)

Mγ ∗
LN→VLN (s,Q2)

∣∣∣∣∣
2

(55)

and

T r inc
A (T ) = 1

A

∣∣∣∣∣Mγ ∗
T A→VT X(s,Q2)

Mγ ∗
T N→VT N (s,Q2)

∣∣∣∣∣
2

. (56)

However, to study the ratio of L and T polarized vector
meson production on nuclear targets using forward differential
cross sections we should also include the difference between
the L and T slope parameters, as was done in the previous
section [see Eq. (45)]:

RA
LT (inc) =

σ inc
γ ∗

LA→VLX

σ inc
γ ∗

T A→VT X

=
∣∣∣∣∣Mγ ∗

LA→VLX(s,Q2)

Mγ ∗
T A→VT X(s,Q2)

∣∣∣∣∣
2

BT

BL

= RLT

T r inc
A (L)

T r inc
A (T )

= RLT finc(s,Q2, A), (57)

where the nuclear transparencies T r inc
A (L) and T r inc

A (T ) for
L and T polarized vector mesons are given by Eqs. (55) and
(56), respectively. The variable finc in Eq. (57) represents the
nuclear modification factor already introduced by Eq. (9).

B. The LC Green function formalism

The nuclear forward production amplitude Mγ ∗A→V X

(s,Q2) was calculated by using the LC Green function
approach in Ref. [28]. In this approach the physical photon
|γ ∗〉 is decomposed into different Fock states, namely, the
bare photon |γ ∗〉0 plus |q̄q〉, |q̄qG〉, etc. As we mentioned
earlier the higher Fock states containing gluons describe
the energy dependence of the photoproduction reaction on a
nucleon. In addition, these Fock components also lead to gluon
shadowing as far as nuclear effects are concerned. However,
these fluctuations are heavier and have a shorter coherence time
(lifetime) than the lowest |q̄q〉 state, and therefore at medium
energies only the |q̄q〉 fluctuations of the photon matter.
Consequently, gluon shadowing, related to the higher Fock
states, will dominate at high energies. A detailed description
and calculation of gluon shadowing for the case of vector
meson production off nuclei is presented in Refs. [28,40]. In
the HERMES kinematical range studied in the present paper
gluon shadowing is negligible and therefore is not included in
the calculations.

The propagation of an interacting q̄q pair in a nuclear
medium is described by the Green function satisfying the
evolution equation (22). However, the potential in this case
acquires an imaginary part, which represents absorption in the
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medium [see Eq. (6) for notation],

ImVq̄q(z2, �r, α) = −σq̄q(�r, s)

2
ρA(b, z2). (58)

The evolution equation (22), with the potential Vq̄q(z2, �r2, α)
containing this imaginary part, was used in Refs. [33,34]. In
particular, nuclear shadowing in deep-inelastic scattering was
calculated, in good agreement with data.

Analytical solutions of Eq. (22) are only known for
the harmonic oscillator potential V (r) ∝ r2. Furthermore, to
keep the calculations reasonably simple we use the dipole
approximation

σq̄q(r, s) = C(s)r2, (59)

which allows us to obtain the Green function in an analytical
form [see Eq. (24)].

The energy-dependent factor C(s) was adjusted by de-
manding that the calculations employing the approximation of
Eq. (59) reproduce correctly the results based on the realistic
cross section [Eq. (12)], in the limit lc � RA (the so-called
frozen approximation), when the Green function takes the
simple form

Gq̄q(z1, �r1; z2, �r2)

⇒ δ(�r1 − �r2) exp

[
−1

2
σq̄q(r1)

∫ z2

z1

dz ρA(b, z)

]
, (60)

where the dependence of the Green function on impact
parameter has been dropped. A detailed description of the
determination of the factors C(s), separately for coherent and
incoherent vector meson production, is presented in Ref. [28].

With the potential given by Eqs. (58) and (59), the solution
of Eq. (22) has the same form as Eq. (24), except that one
should replace ω with �, where

� =
√

a4(α) − iρA(b, z)να(1 − α)C(s)

να(1 − α)
. (61)

The evolution equation (22), with the potential Vq̄q(z2,

�r2, α) containing the imaginary part [Eq. (58)], and with
the realistic dipole cross section [Eq. (12)], was recently
solved numerically for the first time in Ref. [66]. There
it was shown that the nuclear shadowing in deep-inelastic
scattering depends on the form of the dipole cross section σq̄q .
However, the approximation (59) gives a nuclear shadowing
that is very close to realistic numerical calculations using the
parametrization of Eq. (12), in the HERMES kinematical range
under consideration in the present paper. For this reason we
can safely use the dipole approximation (59) for the calculation
of vector meson production.

C. Different regimes for incoherent production of vector mesons

As we discussed in Ref. [28], the value of lc can distinguish
different regimes of vector meson production.

(i) When the CL is much shorter than the mean nucleon
spacing in a nucleus (lc → 0), G(z2, �r2; z1, �r1) → δ(z2 − z1).
Correspondingly, the formation time of the meson wave
function is very short, and it is given by Eq. (4). For light vector
mesons lf ∼ lc, and since the formation and coherence lengths

are proportional to the photon energy, both must be short.
Consequently, nuclear transparency is given by the simple
formula [Eq. (6)] corresponding to the Glauber approximation.

(ii) In the production of charmonia and other heavy flavors,
the intermediate case lc → 0, but lf ∼ RA, can be realized.
Then the formation of the meson wave function is described
by the Green function, and the numerator of the nuclear
transparency ratio, Eq. (54), has the form [31]

|Mγ ∗A→V X(s,Q2)|2lc→0;lf ∼RA

=
∫

d2b

∫ ∞

−∞
dz ρA(b, z)|F1(b, z)|2, (62)

where

F1(b, z) =
∫ 1

0
dα

∫
d2r1d

2r2�
∗
V (�r2, α)

×G(z′, �r2; z, �r1)σq̄q(r1, s)�γ ∗ (�r1, α)|z′→∞. (63)

(iii) In the high-energy limit (lc � RA; in fact, it is more
correct to compare with the mean free path of the q̄q in
a nuclear medium if the latter is shorter than the nuclear
radius), G(z2, �r2; z1, �r1) → δ(�r2 − �r1) (i.e., all fluctuations of
the transverse q̄q separation are “frozen” by Lorentz time
dilation). Then, the numerator on the right-hand side (r.h.s.) of
Eq. (54) takes the form [31]

|Mγ ∗A→V X(s,Q2)|2lc�RA
=

∫
d2bTA(b)

×
∣∣∣∣∫ d2r

∫ 1

0
dα�∗

V (�r, α)σq̄q(r, s)

× exp

[
−1

2
σq̄q(r, s)TA(b)

]
�γ ∗ (�r, α,Q2)

∣∣∣∣2

. (64)

In this case the q̄q pair attenuates with a constant absorption
cross section, as in the Glauber model, except that the whole
exponential is averaged rather than just the cross section
in the exponent. The difference between the results of the
two prescriptions are the well-known inelastic corrections of
Gribov [7].

(iv) In the general case when there are no restrictions for
either lc or lf , the corresponding theoretical tool has been
developed for the first time only recently in Ref. [28] and
has been applied to electroproduction of light vector mesons
at medium and high energies. The same approach was used
later for the study of virtual photoproduction of heavy vector
mesons [29,30]. Even within the VDM the Glauber model
expression interpolating between the limiting cases of low
[(i) and (ii)] and high [(iii)] energies has also been derived
only recently [41]. In this general case the incoherent nuclear
production amplitude squared is represented as a sum of two
terms [67],

|Mγ ∗A→V X(s,Q2)|2 =
∫

d2b

∫ ∞

−∞
dz ρA(b, z)

× |F1(b, z) − F2(b, z)|2. (65)

The first term, F1(b, z), introduced in Eq. (63), corresponds
to the short lc limit (ii). The second term, F2(b, z), in Eq. (65)
corresponds to the situation when the incident photon produces
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a q̄q pair diffractively and coherently at the point z1, prior to
incoherent quasielastic scattering at point z. The LC Green
functions describe the evolution of the q̄q over the distance
from z1 to z and further on, up to the formation of the meson
wave function. Correspondingly, this term has the form

F2(b, z) = 1

2

∫ z

−∞
dz1 ρA(b, z1)

∫ 1

0
dα

∫
d2r1d

2r2d
2r

×�∗
V (�r2, α)G(z′ → ∞, �r2; z, �r)σq̄q(�r, s)

×G(z, �r; z1, �r1)σq̄q(�r1, s)�γ ∗ (�r1, α). (66)

Equation (65) correctly reproduces the limits (i)–(iii).
At lc → 0 the second term, F2(b, z), vanishes because of
strong oscillations, and Eq. (65) reproduces the Glauber
expression [Eq. (6)]. At lc � RA the phase shift in the
Green functions can be neglected and they acquire the simple
form G(z2, �r2; z1, �r1) → δ(�r2 − �r1). In this case the integration

over longitudinal coordinates in Eqs. (63) and (66) can be
performed explicitly, and the asymptotic expression [Eq. (64)]
is recovered as well.

D. The nuclear ratio RA
LT (inc) in the limit of long coherence
length (lc � RA)

One can see from Eqs. (9) and (57) that the nuclear ratio
RA

LT (inc) differs from the nucleon ratio RLT by the nuclear
modification factor for the incoherent process finc(s,Q2, A),
given also as the ratio T r inc

A (L)/T r inc
A (T ) of nuclear trans-

parencies for the corresponding polarizations L and T .
To understand more intuitively and simply the Q2 and A

dependence of the nuclear ratio RA
LT (inc), it is convenient

to present the nuclear transparency in the high-energy limit
[lc � RA; see Eq. (64)]:

T r inc
A

∣∣
lc�RA

=
∫

d2bTA(b)
∣∣ ∫ d2r

∫ 1
0 dα�∗

V (�r, α)σq̄q(r, s) exp
[ − 1

2σq̄q(r, s)TA(b)
]
�γ ∗ (�r, α,Q2)

∣∣2

A
∣∣ ∫ d2r

∫ 1
0 dα�∗

V (�r, α)σq̄q(r, s)�γ ∗(�r, α,Q2)
∣∣2

= 1 − �
1

A

∫
d2bTA(b)2 + · · · , (67)

where the CT observable [9]

� =
∫

d2r
∫ 1

0 dα�∗
V (�r, α)σ 2

q̄q(r, s)�γ ∗ (�r, α,Q2)∫
d2r

∫ 1
0 dα�∗

V (�r, α)σq̄q(r, s)�γ ∗ (�r, α,Q2)
(68)

measures the strength of the intranuclear final-state interaction
(FSI).

For the sake of clarity in the subsequent discussion we
have explicitly shown in Eq. (67) only the leading term of
the FSI. Evaluation of the strength of the FSI can be done by
using the scanning phenomenon [Eq. (1); see also Eq. (21)
and Fig. 1]. Since the integrand of the matrix element in the
numerator of Eq. (68) is peaked at r ∼ rFSI = 5/3rS,

4 the FSI
is dominated by the contribution from q̄q pairs of transverse
size r ∼ rFSI. At large Q2 � m2

V and/or for production of
heavy vector mesons, when rFSI � RV , the observable � ≈
σq̄q(rFSI, s) and the nuclear transparency tend to unity from
below:

1 − T r inc
A ∝ 〈TA〉 Y 2

Q2 + m2
V

, (69)

where 〈TA〉 is the mean nuclear thickness given by

〈TA〉 =
∫

d2bTA(b)2

A
. (70)

The proportionality in Eq. (69) holds for 1 − T r inc
A � 1.

The nuclear modification factor finc(s,Q2, A) in Eq. (57)
measures the nuclear modification of the nucleon L/T ratio.
Using Eq. (69) and different scanning properties for the

4Extension to the higher order rescattering is straightforward.

production of L and T polarized vector mesons, one can write
the following expression:

finc(Q2, A) − 1 ∝ 〈TA〉 �Y 2
T L

Q2 + m2
V

, (71)

where �Y 2
T L is given by Eq. (50). Thus at large Q2 � m2

V

the factor finc tends to unity from above. On the r.h.s. of
Eq. (71) the mean nuclear thickness causes a rise of finc with
A, whereas the fraction is responsible for the Q2 dependence.

As was already mentioned in Sec. II, different scale
parameters YL and YT lead to different scanning properties
for the production of L and T polarized vector mesons. In
fact, the L production amplitude is controlled by a smaller
dipole size than the T amplitude (YL < YT ). Therefore, the
following can be concluded:

(i) For bottonium production YT
.= YL ∼ 6, the variable

�Y 2
T L → 0, and the nuclear modification factor finc ∼ 1,

for any fixed mass number A of the nuclear target.
Consequently, the Q2 dependence of the nuclear L/T

ratio is almost exactly given by the analogous ratio RLT

for the process on a nucleon target.
(ii) For charmonium production both parameters YL and YT

slightly depend on Q2 and do not differ much from
each other. Consequently, the factor finc > 1 does not
differ much from unity, and it gradually decreases with
Q2, tending to unity at large Q2 � m2

V . According to
Eq. (71), this deviation of finc from unity rises weakly
with A.

(iii) The most interesting situation is in the production of light
vector mesons, where one should expect a much stronger
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FIG. 5. A dependence of the nuclear modification factor finc =
T r inc

A (L)/T r inc
A (T ) as the ratio of nuclear transparencies for inco-

herent production of L and T polarized ρ0 mesons, at different
fixed values of 〈Q2〉. Calculations are performed in the limit of long
coherence length, lc � RA.

nuclear modification of the nucleon ratio RLT than for
heavy mesons. At small and medium values of Q2, such
as rS >∼ RV , there is a strong Q2 dependence of both
scale parameters YL and YT . Moreover, the difference
between YT and YL rises very rapidly with Q2 (see
Fig. 1), resulting in a strong Q2 behavior of �Y 2

T L. The
rise with Q2 of �Y 2

T L in the numerator of the r.h.s. of
Eq. (71) can fully compensate or even overcompensate a
decrease of the r.h.s. of Eq. (71), with (Q2 + m2

V ). This
fact causes a weak Q2 rise of the nuclear modification
factor. Such expectation is confirmed by Fig. 5, where
we present the A dependence of finc for incoherent
production of ρ0 mesons, at several values of 〈Q2〉 and
at ν = 15 GeV, corresponding to HERMES kinematics.

According to Eq. (71), at fixed value of 〈Q2〉 one should
expect a monotonic A rise of finc, caused by the mean nuclear
thickness 〈TA〉. This is in accordance with the predictions
presented in Fig. 5, where one can see quite a strong nuclear
modification of the nucleon L/T ratio for heavy nuclei.

Using our results for the nucleon L/T ratio (see Fig. 2)
and for the nuclear modification factor finc (see Fig. 5), we
calculated the nuclear L/T ratio. The results are depicted
in Fig. 6. One can see again a monotonic A dependence of
RA

LT (inc), coming from the A behavior of finc.
Finally, we emphasize that the discussion presented here

concerns the high-energy limit lc � RA, when the q̄q fluc-
tuations can be treated as frozen during the propagation
through the nuclear target. This simplification was used for
a better and more intuitive qualitative understanding of the
Q2 and A behavior of the nuclear ratio RA

LT (inc). In this
frozen approximation any rise of nuclear transparency with
Q2 represents a net manifestation of CT [28–30], because
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FIG. 6. A dependence of the nuclear ratio RA
LT (inc) [Eq. (57)] of

the cross sections [Eq. (64)], for incoherent production of L and T

polarized ρ0 mesons off nuclei, and at different fixed values of 〈Q2〉.
Calculations are performed in the limit of long coherence length,
lc � RA.

CL effects are negligible. Generally, at smaller lc <∼ RA, when
fluctuations of the size of the q̄q pair become important, one
should include in addition CL effects, and therefore go beyond
the simplified frozen approximation. Thus in this kinematical
region one should solve the problem of CT-CL mixing. Both
CT and CL effects are naturally incorporated in the LC Green
function formalism, and the corresponding formulas become
much more complicated, as one can see here. As was analyzed
in detail in Ref. [28], the effects of CL can mock the signal of
CT if the coherence length varies from long to short compared
to the nuclear size. In this case the nuclear transparency rises
with Q2 because the length of the path in nuclear matter
becomes shorter, and the vector meson (or q̄q) attenuates
less. Consequently, the effects of CL lead to a stronger Q2

dependence of T r inc
A than in the frozen approximation, because

both effects work in the same direction. This leads to the
following expectations:

(i) According to the scanning phenomenon [Eq. (1)] and
Eq. (71) one should expect a little bit stronger Q2 de-
pendence of finc. However, in the HERMES kinematical
range the formation length lf >∼ lc and the CL lc ∼ RA

and varies with Q2 approximately from 4 to 1 fm. Then a
different interplay of coherence and formation effects at
different values of Q2 and A can modify or even change
the expected monotonic Q2 dependence of finc (see
Sec. IV E).

(ii) The monotonic A dependence of finc and/or RA
LT (inc)

should remain. The CT-CL mixing can only modify the
rate of the A rise of the nuclear modification factor finc

and/or RA
LT (inc).

In conclusion, we expect that the realistic calculations
performed within the LC Green function approach do not affect
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significantly the expectations and conclusions concerning
the Q2 and A dependence of the nuclear ratio RA

LT (inc) as
presented here in the frozen approximation.

E. Realistic predictions for the nuclear ratio RA
LT (inc)

Exclusive incoherent electroproduction of vector mesons
off nuclei has been suggested in Ref. [9,28] to be a very
convenient process for the investigation of CT. By increasing
the photon virtuality Q2 one squeezes the produced q̄q wave
packet, and such a small colorless system propagates through
the nucleus with little attenuation, provided that the energy
is sufficiently high (lf � RA), so the fluctuations of the q̄q

separation become frozen during propagation. Consequently,
a rise of nuclear transparency T r inc

A (Q2) with Q2 should give
a signal for CT. Indeed, such a rise was observed in the
E665 experiment [6] at Fermilab for exclusive production of
ρ0 mesons off nuclei, and this has been claimed as a manifes-
tation of CT. However, the effect of coherence length [41,68]
leads also to a rise of T r inc

A (Q2) with Q2, therefore imitating
the CT effects. Both effects work in the same direction and
so from this the problem of CT-CL separation arises, although
this has been already solved in Refs. [28,39], where a simple
prescription for the elimination of CL effects from the data on
the Q2 dependence of nuclear transparency was presented. One
should bin the data in a way that keeps lc = const. This means
that one should vary simultaneously ν and Q2, maintaining
the CL Eq. (5) constant,

ν = 1
2 lc

(
Q2 + m2

V

)
. (72)

In this case any rise with Q2 of nuclear transparency signals
CT [28,39].

In the present paper we investigate differences and pe-
culiarities in the production of vector mesons at different
polarizations. The data are usually presented as the ratio
of the nuclear cross sections for production of L and T

polarized vector mesons. Dependence of this ratio on various
variables demonstrates different properties and phenomena in
the production of vector mesons, at separated polarizations.
Therefore it is interesting to study the Q2 and A behavior of the
nuclear ratio RA

LT (inc) = σ inc
A (L)/σ inc

A (T ) as a manifestation of
the polarization dependence of the CT and CL effects. Because
new data from the HERMES Collaboration will appear soon
we provide predictions for the nuclear ratio RA

LT (inc) in the
HERMES kinematical range and analyze the corresponding
phenomena.

Motivated by the expected new data from the HERMES
Collaboration we concentrate in the present paper on the
production of light vector mesons (ρ0 and �0). Because the
results of the calculation for the production of ρ0 and �0

are quite similar we present predictions only for ρ0 mesons.
However, as was discussed in Refs. [28–30], the coherence
and formation effects in electroproduction of vector mesons
off nuclei are much more visible for light than for heavy vector
mesons, as is the case for differences in electroproduction of
L and T polarized vector mesons. The LC Green function
technique is a very effective tool for such studies because both
CT and CL effects are naturally incorporated.

According to Eqs. (9) and (57) the nuclear modification
factor finc [or ratio T r inc

A (L)/T r inc
A (T ) of nuclear transparen-

cies] for incoherent production of L and T polarized vector
mesons represents the strength of the nuclear modification
of the nucleon ratio RLT . Therefore besides the nuclear ratio
RA

LT (inc) the ratio finc is also a very effective variable for the
study of differences in the production of L and T polarized
vector mesons off nuclei.

First we investigate different manifestations of net CT
effects in incoherent electroproduction of L and T polarized ρ0

mesons, using the Eq. (72) prescription, which states that one
should study the Q2 dependence of the factor finc at fixed val-
ues of the CL Eq. (5). According to the scanning phenomenon
[see Eq. (1) and Fig. 1], for incoherent electroproduction of
L polarized vector mesons one expects a stronger CT ef-
fect than for T polarized vector mesons. Consequently, at
arbitrary Q2 the nuclear transparency T r inc

A (L) > T r inc
A (T )

and the nuclear modification factor finc > 1. The results
of finc for incoherent production of ρ0 at values of lc =
0.6, 1.0, 2.0, 3.0, 5.0, and 7 fm are presented in Fig. 7 for
nitrogen, krypton, and lead. One can see the following:

(i) The nuclear modification factor decreases slightly with
Q2, and at fixed lc the photon energy rises with Q2.
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FIG. 7. Q2 dependence of the ratio finc = T r inc
A (L)/T r inc

A (T ) of
nuclear transparencies for incoherent production of L and T polarized
ρ0 mesons on nuclear targets 14N, 84Kr, and 207Pb (from top to
bottom). The CL Eq. (5) is fixed at lc = 0.6, 1.0, 2.0, 3.0, 5.0, and
7.0 fm.
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Because of a weaker Q2 dependence of the nuclear
transparency at larger photon energy, there is also a
smaller difference between T r inc

A (L) and T r inc
A (T ) (i.e.,

a smaller value of finc).
(ii) The Q2 dependence of finc is stronger at smaller

lc. In fact, if the coherence length is long then the
formation length is also long, lf >∼ lc � RA, and nuclear
transparency rises with Q2 only because the mean
transverse separation of the q̄q fluctuation decreases.
Because the production of L polarized vector mesons
is scanned at smaller q̄q transverse separations, the
nuclear transparency T r inc

A (L) > T r inc
A (T ) and finc > 1.

If, however, lc <∼ RA and is fixed, the photon energy rises
with Q2 and the formation length [Eq. (4)] rises as well.
Thus, these two effects, the Q2 dependence of lf and the
q̄q transverse size, add up and lead to a steeper growth
of T r inc

A (Q2) for short lc. Consequently, this stronger Q2

dependence leads to a larger difference between T r inc
A (L)

and T r inc
A (T ) (i.e., to a larger value of finc).

(iii) The weak Q2 rise of finc at large lc >∼ 5 fm is given by
the Reggeon part contribution to the dipole cross section,
Eq. (15).

In Fig. 8 we present the A dependence of the ratio finc at
ν = 15 GeV and at several fixed values of Q2, corresponding to
the HERMES kinematical range. One can see that finc > 1 as
a consequence of the different scanning properties of T r inc

A (L)
and T r inc

A (T ) [see Eq. (71) and subsequent discussion]. Notice
the weak Q2 dependence of finc, coming from the factor
�Y 2

T L/(Q2 + m2
V ) on the r.h.s. of Eq. (71). However, in

contrast to the results from the frozen approximation (see
Fig. 5) the nuclear modification factor finc decreases now
slightly with Q2 as a consequence of a strong CT-CL mixing.
Moreover, at larger values of A >∼ 84 there is a change in the
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FIG. 8. A dependence of the ratio finc = T r inc
A (L)/T r inc

A (T ) of
nuclear transparencies for incoherent production of L and T polarized
ρ0 mesons at different fixed values of 〈Q2〉. Calculations are
performed at the photon energy ν = 15 GeV.

order of the curves calculated for different values of Q2. This
change is a manifestation of a different interplay of coherence
and formation effects as a function of Q2 and A. At larger
Q2 the effects of CL become more important also for lighter
nuclei, when the condition lc <∼ RA starts to be effective.

As we already discussed in Sec. IV D, the A dependence of
the nuclear factor finc comes, in the high-energy limit, from
the A-dependent mean nuclear thickness [see Eqs. (69) and
(70)]. Figure 8 shows that by performing realistic calculations
(without restrictions on the coherence length) we also predict a
monotonic A rise of finc, similar to that obtained in the frozen
approximation (see Fig. 5), because both CT and CL effects
work in the same direction. However, in comparison with the
frozen approximation, the A dependence of the CL-CT mixing
causes a decrease of the A growth of finc.

According to Eq. (57), using known values for the nuclear
modification factor finc (see Fig. 8) and the nucleon L/T

ratio (see Fig. 2), we present in Fig. 9 the A dependence
of the nuclear ratio RA

LT (inc). The predictions are shown at
several values of 〈Q2〉 and at ν = 15 GeV, corresponding to the
HERMES kinematical range. The Q2 dependence of RA

LT (inc)
is given by the convolution of the Q2 behavior of the nucleon
ratio RLT (see Fig. 2) with nuclear factor finc (see Fig. 8). One
can see a monotonic increase of the A dependence of RA

LT (inc)
as a consequence of the monotonic increase with A behavior
of finc.

V. COHERENT PRODUCTION OF VECTOR MESONS

A. The LC Green function formalism

If electroproduction of a vector meson leaves the target
intact, the process is usually called coherent or elastic, and
the mesons produced at different longitudinal coordinates and
impact parameters add up coherently. This fact considerably
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FIG. 9. A dependence of the nuclear ratio RA
LT (inc) [Eq. (57)] of

the cross sections for incoherent production of L and T polarized ρ0

mesons off nuclei, at different fixed values of 〈Q2〉. Calculations are
performed at the photon energy ν = 15 GeV.
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simplifies the expressions for the cross sections, compared to
the case of incoherent production. The integrated cross section
has the form

σ coh
A ≡ σ coh

γ ∗A→V A =
∫

d2q

∣∣∣∣∫ d2bei �q·�bMcoh
γ ∗A→V A(b)

∣∣∣∣2

=
∫

d2b|Mcoh
γ ∗A→V A(b)|2, (73)

where the coherent nuclear production amplitude is expressed
as

Mcoh
γ ∗A→V A(b) =

∫ ∞

−∞
dz ρA(b, z)F1(b, z) (74)

and the function F1(b, z) is defined by Eq. (63).
In contrast to incoherent vector meson production, the

t slopes of the differential cross sections for nucleon and
nuclear targets are different and do not cancel in the ratio.
Therefore, the coherent nuclear transparency also includes the
slope parameter Bγ ∗N for the process γ ∗N → V N ,5

T rcoh
A = σ coh

A

AσN

= 16πBγ ∗Nσ coh
A

A|Mγ ∗N→V N (s,Q2)|2 . (75)

Because we study the L/T ratio of nuclear cross sections, just
as for incoherent vector meson production [see Eq. (57)] one
can define the coherent nuclear ratio RA

LT (coh) as

RA
LT (coh) =

σ coh
γ ∗

LA→VLA

σ coh
γ ∗

T A→VT A

= RLT

T rcoh
A (L)

T rcoh
A (T )

= RLT fcoh(s,Q2, A), (76)

where T rcoh
A (L) and T rcoh

A (T ) are defined by Eq. (75) and
represent the nuclear transparencies for coherent production
of L and T polarized vector mesons, respectively. The nucleon
L/T ratio RLT in Eq. (76) is defined by Eq. (45).

B. The nuclear ratio RA
LT (coh) in the limit of long coherence
length (lc � RA)

Expression (73) is simplified in the limit of long coherence
time (lc � RA) as

σ coh
A

∣∣
lc�RA

= 4
∫

d2b

∣∣∣∣∣
∫

d2r

{
1 − exp

[
−1

2
σq̄q(�r, s)TA(b)

]}

×
∫ 1

0
dα�∗

V (�r, α)�γ ∗ (�r, α)

∣∣∣∣2

. (77)

Here, again, for the sake of clarity in the subsequent
discussion we assume the frozen approximation (lc � RA),
which simplifies the expressions for the cross sections and
allows us to understand on a qualitative level the differences
between coherent production of L and T polarized vector

5Note that, in contrast to incoherent production, where nuclear
transparency is expected to saturate as T r inc

A (Q2) → 1 at large Q2,
for the coherent process nuclear transparency reaches a higher limit,
T rcoh

A (Q2) → A1/3.

mesons. The generalization of this long-lc limit to a more
complicated realistic case using the LC Green function
approach will be discussed in Sec. V C.

In the limit lc � RA the total integrated cross section for
coherent vector meson production is given by Eq. (77), and
consequently the nuclear ratio RA

LT (coh) can be written as

RA
LT (coh) = RLT

BL

BT

.

∫
d2bT 2

A(b)
[
1 − 1

2�LTA(b) + · · · ]∫
d2bT 2

A(b)
[
1 − 1

2�T TA(b) + · · · ]
= RLT

BL

BT

.
〈TA〉 − 1

2�L〈T 2
A〉 + · · ·

〈TA〉 − 1
2�T 〈T 2

A〉 + · · · , (78)

where the mean nuclear thickness 〈TA〉 is defined by Eq. (70),
and the mean nuclear thickness squared 〈T 2

A〉 is given by〈
T 2

A

〉 =
∫

d2bTA(b)3

A
. (79)

In Eq. (78) the variable � is defined by Eq. (68) and for
simplicity we have explicitly shown only the leading term of
the FSI.

As we discussed in Sec. IV, the FSI is dominated by the
contribution from q̄q pairs of transverse size r ∼ rFSI = 5/3rS .
At large Q2 � m2

V and/or for production of heavy vector
mesons, when rFSI � RV the observable � ≈ σq̄q(rFSI, s), and
according to the scanning phenomenon [Eq. (1)] the func-
tion 1 − g(Q2)T rcoh

A scales with (Q2 + m2
V ) [compare with

Eq. (69)],

1 − g(Q2)T rcoh
A ∝ 〈TA〉 Y 2

Q2 + m2
V

, (80)

where the Q2-dependent function g(Q2) reads

g(Q2) = 1

〈TA〉
1

16πB(Q2)
. (81)

The relation (80) holds for 1 − g(Q2)T rcoh
A � 1.

It can be seen from Eq. (76) that, in analogy with finc,
one can define the coherent nuclear modification factor fcoh

as the ratio of the coherent nuclear and nucleon L/T ratio.
A deviation of fcoh from unity as a function of Q2 and A

provides information about how the coherence and formation
effects manifest themselves in coherent electroproduction of
vector mesons at different polarizations L and T . Therefore
now we discuss the Q2 and A dependence of fcoh. For this
purpose it is convenient to write the following expression,
using Eqs. (78), (80), and (81):

BT

BL

fcoh − 1 ∝ �Y 2
T L

Q2 + m2
V

〈T 2
A〉

〈TA〉 ≈ 〈TA〉 �Y 2
T L

Q2 + m2
V

, (82)

where 〈T 2
A〉 is defined by Eq. (79). Within the discussed frozen

approximation we include for simplicity in Eq. (82) only the
leading term of the FSI, when Q2 � m2

V .
By assuming the equality BL = BT , Eq. (82) leads to an

analogous Q2 and A behavior of fcoh, as the one in Eq. (71)
for the incoherent nuclear modification factor finc. This is
fulfilled at large Q2 � m2

V and/or for the production of heavy
vector mesons, when the relativistic effects are small enough
to apply safely the nonrelativistic approximation. At small and
medium Q2, however, BL < BT [59] and the BT /BL ratio
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on the left-hand side (l.h.s.) of Eq. (82) reduces the coherent
nuclear factor fcoh. Consequently, for light nuclear targets A <∼
10 the factor fcoh can be less than unity.

As was discussed in detail in Sec. IV D, for bottonium
production YT

.= YL ∼ 6, and the slope parameters BL ≈ BT .
Consequently, fcoh ∼ 1 and the Q2 dependence of the nuclear
L/T ratio for coherent reactions is almost exactly given by
the analogous ratio RLT for the process on a nucleon. This
conclusion is essentially the same as the one expected for
incoherent production of bottonia.

For charmonium production both YL and YT depend
slightly on Q2 and do not differ much from each other.
Consequently, the difference �Y 2

T L acquires a small value and
rises very weakly with Q2. Because BT /BL ≈ 1.03 in the
photoproduction limit, the nuclear factor fcoh can go below
unity at small values of Q2 and A. As Q2 increases the ratio
BT /BL tends to unity from above and fcoh gradually comes
to unity from below at small A or from above at medium and
large A.

In contrast to the production of heavy vector mesons, for
the production of light vector mesons we expect much larger
nuclear modifications of the nucleon ratio RLT , just as for
the incoherent processes discussed in Sec. IV. At small and
medium Q2 such as rS >∼ RV , there is a strong Q2 dependence
of �Y 2

T L, which can even overcompensate the rise of (Q2 +
m2

V ) in the denominator of Eq. (82). This fact can lead to a weak
rise with Q2 of the coherent nuclear factor fcoh, which is further
enhanced by the decrease of the BT /BL ratio on the l.h.s. of
Eq. (82). As a result, we expect a stronger Q2 dependence
of fcoh than of finc. Such an expectation is supported by
calculations performed in the limit of long coherence length
and is shown in Fig. 10 (compare with Fig. 5).
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Calculations are performed in the limit of long coherence length,
lc � RA.

Concluding, in the HERMES kinematical range, ∼ 1 <

Q2 < 5 GeV2, studied in the present paper, we expect a rise
with Q2 of the nuclear modification factor fcoh. The rate of
this rise is then given by the mean nuclear thickness, as follows
from Eq. (82). Consequently, we expect a monotonic rise of
fcoh with A, just as for the incoherent nuclear modification
factor finc (see also Fig. 5). Monotonic A-increase behavior
of fcoh is confirmed also by the predictions depicted in
Fig. 10 at several values of 〈Q2〉, corresponding to the
HERMES kinematical range.

For completeness we also calculated the nuclear L/T ratio
using the known nuclear modification factor fcoh and the
nucleon L/T ratio. The results are presented in Fig. 11.
One can see a monotonic A dependence of RA

LT (coh) as
a consequence of a corresponding monotonic A-increase
behavior of fcoh.

In the following section we demonstrate, however, that
in contrast to incoherent vector meson production such a
picture of Q2 and A behavior for fcoh and/or RA

LT (coh)
drastically changes going beyond this frozen approximation.
This is the crucial point that leads to interesting physics in the
investigation of light vector mesons produced coherently off
nuclei.

C. Realistic predictions for the nuclear ratio RA
LT (coh)

Analogously as was done for incoherent production of
vector mesons, here we study the differences in coherent
electroproduction of L and T polarized vector mesons off
nuclei, performing a realistic calculation without restrictions
on the CL. We focus on the production of ρ0 mesons,
where CT and CL effects are the most visible. This is also
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supported by our expectations about the new data from the
HERMES Collaboration, and therefore our calculations cover
the corresponding kinematical range. We use the LC Green
function formalism, which naturally incorporates both CT and
CL effects.

First, we study the net CT effect in L and T polarizations,
by eliminating the effects of CL in a way similar to what was
suggested for incoherent reactions, which involves selecting
experimental data with lc = const. We calculated the nuclear
modification factor fcoh for the coherent reaction γ ∗A → ρ0A

as a function of Q2, at different fixed values of lc. The results
for lc = 0.6, 1.0, 2.0, 3.0, 5.0, and 7.0 fm are depicted in
Fig. 12. In contrast to the incoherent processes one can observe
a much more complicated Q2 behavior, which is the result of an
interplay between CT and CL effects when a contraction of the
CL causes an effect opposite to that of CT. This CL-CT mixing
as a function of Q2 changes the order of curves calculated at
different values of lc.

Following Eq. (76) we give the coherent nuclear factor
fcoh as the ratio T rcoh

A (L)/T rcoh
A (T ) of nuclear transparencies

for coherent production of L and T polarized vector mesons.
It represents the strength of the nuclear modification of the
nucleon ratio RLT . In Fig. 13 we present the A dependence
of fcoh for ρ0 production, at photon energy ν = 15 GeV
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and several fixed values of 〈Q2〉, corresponding to the
HERMES kinematical range. One can see that the predictions
dramatically changed from those that we found for the limit of
long CL, lc � RA, in Sec. V B. This is because the HERMES
kinematics does not allow us to neglect the effects of CL.
Only at very small A <∼ 4 and at Q2 <∼ 3 GeV2 can one
assume small CL effects, because lc > RA. Then the A and
Q2 behavior of fcoh follows the scenario described within the
frozen approximation (see Sec. V B), which means that fcoh

rises with Q2 and has a monotonic A dependence.
In Ref. [28] it was demonstrated that for coherent pro-

duction of vector mesons the contraction of the CL with Q2

causes an effect opposite to that of CT. Nuclear transparency is
suppressed rather than enhanced. At large Q2, when lc <∼ RA,
and at medium energies, corresponding to the HERMES
kinematics, the suppression of nuclear transparency can be
so strong that it fully compensates or even overcompensates
the rise of nuclear transparency with Q2 given by CT.
Because T rcoh

A (L) is scanned at smaller dipole sizes than
T rcoh

A (T ), one can expect that at fixed Q2 the former nuclear
transparency has stronger CL effects than the latter one. This
different manifestation of CL effects for L and T polarizations
depends also on A. Consequently, one may expect a nontrivial
and nonmonotonic A and Q2 dependence of the nuclear
modification factor fcoh.

Mainly because of the effects of CL, there is an unusual
order of curves at different values of 〈Q2〉, as is shown in
Fig. 13. Moreover, the order of curves is changed at various
values of A, as a consequence of the fact that the condition lc �
RA is broken in a different degree for different nuclear targets.
At 〈Q2〉 = 1 GeV2 the effects of CL start to be important
at A >∼ 100 and lead to a diminishing of the A rise of the
nuclear factor fcoh. One can see by the thick solid line in
Fig. 13 that there is even a maximum of fcoh at A ∼ 200,
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as a natural demonstration of the effectiveness of CL effects.
Larger 〈Q2〉 leads to a contraction of the CL. Consequently,
the effect of CL-contraction becomes also important for lighter
nuclear targets, which means that the maximum is shifted to
smaller values of A. The combination of the A rise of fcoh

through the nuclear profile function [Eq. (8)], together with
the different manifestation of CL effects as a function of Q2

and A, lead to a nontrivial and nonmonotonic A dependence of
fcoh, as is shown in Fig. 13. This A dependence is even more
complicated at larger values of 〈Q2〉, when the CL effects are
effective at a different level, for a broader range of nuclear
targets.

In Fig. 14 we present the A dependence of the nuclear ratio
RA

LT (coh), obtained from the nuclear modification factor fcoh

and the nucleon L/T ratio [see Eq. (76)]. The predictions
are shown at several values of 〈Q2〉, and at ν = 15 GeV,
corresponding to the HERMES kinematical range. One can
see that a nonmonotonic A dependence of fcoh is projected
into a nonmonotonic A dependence of RA

LT (coh). The Q2

dependence of RA
LT (coh) is given by the convolution of the Q2

behavior of the nucleon ratio RLT (see Fig. 2) with the nuclear
factor fcoh (see Fig. 13). The predicted anomalous A behavior
of the coherent nuclear ratio RA

LT (coh) at different values of
〈Q2〉 is a undeniable and irrefutable manifestation of strong
CL effects and can be tested by the HERMES Collaboration
or at JLab.

VI. SUMMARY AND CONCLUSIONS

Electroproduction of vector mesons off nuclei is a very
effective tool for the study of the interplay between coherence
(shadowing) and formation (color transparency) effects. In
the present paper we investigated how these effects manifest

themselves differently in the production of L and T polarized
vector mesons off nuclei. The data are usually presented as
the L/T ratio of the nuclear production cross sections. Then
an investigation of the behavior of this ratio as a function
of various variables (Q2, A, etc.), and a deviation of this
ratio from unity, allows the study of different properties and
manifestations of corresponding phenomena in the produc-
tion of vector mesons, at separated polarizations. We used,
from Ref. [28], a rigorous quantum-mechanical approach
based on the light-cone QCD Green function formalism,
which naturally incorporates these interference effects. We
focused on the production of light vector mesons, because
here the polarization dependence of CT and CL effects is
much more visible than in the production of heavy vector
mesons. Because new data from the HERMES Collaboration
are expected to appear soon, we presented predictions for
the nuclear L/T ratios [see Eqs. (57) and (76)] within the
corresponding kinematical range. These predictions are made
for ρ0 mesons produced both coherently and incoherently off
nuclei.

The strength of the nuclear modification of the nucleon
L/T ratio [Eq. (45)] is given by the nuclear modification
factors finc and fcoh, which are defined as the ratio of nuclear
transparencies for electroproduction of L and T polarized
vector mesons [see Eqs. (57) and (76)]. If these factors are
equal to unity there are no nuclear effects. Therefore in addition
tp the nuclear L/T ratios, the nuclear modification factors are
also very effective variables for the study of differences in the
production of L and T polarized vector mesons off nuclei. The
nuclear L/T ratio is then given as the product of the nucleon
L/T ratio and the nuclear modification factor.

As the first step we compare the nucleon L/T ratio as a
function of Q2 with available data on electroproduction of
ρ0 and �0 mesons and charmonia and find a nice agreement
(see Figs. 2, 3, and 4). This is a very important achievement
because the nucleon L/T ratio represents a basis for the
correct determination of the nuclear L/T ratio via the nuclear
modification factor.

To obtain more intuitive information about the A and Q2

behavior of the nuclear L/T ratio and/or nuclear modification
factor we presented on the qualitative level, using the scanning
phenomenon [Eq. (1)], the corresponding predictions in the
high-energy limit (lc � RA). Here the expressions for nuclear
production cross sections are sufficiently simplified. This
so-called frozen approximation includes only CT because there
are no fluctuations of the transverse size of the q̄q pair. For
incoherent electroproduction of ρ0 mesons we predict a very
weak Q2 growth of finc in the HERMES kinematical range
(see Fig. 5) owing to a strong Q2 rise of a difference between
the scanning radii corresponding to T and L polarizations
[see Fig. 1 and Eq. (1)]. In contrast to incoherent processes,
for ρ0 mesons produced coherently off nuclei one should
include in fcoh also the slope parameters BL and BT for
different polarizations L and T [see Eq. (82)]. Consequently,
we expect a stronger Q2 dependence of fcoh (see Fig. 10)
owing to different Q2 dependences of the corresponding slope
parameters. We predict a monotonic rise with A of both nuclear
factors finc and fcoh, which comes from the A-dependent mean
nuclear thickness.
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The “frozen” approximation cannot be applied for the study
of differences in electroproduction of vector mesons off nuclei
at different polarizations, in the HERMES kinematical range.
Therefore we use the approach of Ref. [28], which interpolates
between the previously known low- and high-energy limits for
incoherent production [see Eq. (65)]. Equation (74) does the
same for coherent production.

In the incoherent electroproduction of vector mesons at
low and medium energies, the onset of coherence effects
(shadowing) can mimic the expected signal of CT. Both effects,
CT and CL, work in the same direction. In comparison with
the high-energy limit, the onset of CL has little effect on the
A and Q2 behavior of finc. Consequently, we predict again a
weak Q2 dependence of finc (see Fig. 8). An investigation of
the A dependence of finc reveals that the interplay between
CT and CL effects changes the order of curves calculated
at different values of Q2. The CL-CT mixing also modifies
the rate of the A rise of finc, but it conserves the monotonic
A dependence typical for the frozen approximation (see
Fig. 8). Therefore we predict a monotonic A increase behavior
of the nuclear L/T ratio as well at different values of Q2 (see
Fig. 9).

In coherent production of vector mesons the natural
incorporation of the CL effects in the Green function formalism
changes drastically the A and Q2 behavior of fcoh predicted
for the high-energy limit. The contraction of the CL with
Q2 causes an effect opposite to that of CT. There is a
different manifestation of CL effects at various values of
Q2 and A, which together with CT effects leads to a
nontrivial and anomalous A and Q2 dependence of the nuclear
modification factor. The nonmonotonic A dependence is even
more complicated at larger values of Q2 as a result of stronger
CL effects for a broader range of nuclear targets (see Fig. 8).
Consequently, we predict also a nonmonotonic and anomalous
A dependence of the nuclear L/T ratio at different values of

Q2 (see Fig. 14), which gives a motivation to detect such
anomalous manifestations of strong CL effects in experiments
with the HERMES spectrometer and especially at JLab.

We also investigated different manifestations of net CT
effects at different polarizations L and T , using a prescription
from Refs. [28,39], calculating the nuclear modification factor
as a function of Q2 at various fixed values of the coherence
length.

(i) In incoherent production of ρ0 mesons, we found a
stronger CT effects for L than for T polarization (i.e.,
finc > 1). Moreover, finc rises toward small values of Q2

at short lc <∼ RA (see Fig. 7). The two effects, that is, the
Q2 dependence of lf and the q̄q transverse size, add up
and lead to a steeper Q2 growth of nuclear transparency,
and consequently to larger values of finc.

(ii) In coherent production of ρ0 mesons we predicted also
fcoh > 1 (see Fig. 12). However, the Q2 behavior of fcoh

is more complicated in comparison with the incoherent
reaction, which follows from the fact that a contraction
of the CL with Q2 causes an effect opposite to that of
CT. Then the CT-CL mixing as a function of Q2 changes
the order of curves calculated at different values of lc.

In conclusion, the exploratory study of the A dependence of
the nuclear L/T ratio, especially in coherent electroproduction
of light vector mesons off nuclei, opens new possibilities for
the search for the CL effects and their different manifestations
at different polarizations with medium-energy electrons.
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[46] K. Golec-Biernat and M. Wüsthoff, Phys. Rev. D 59, 014017
(1999); 60, 114023 (1999).

[47] A. Donnachie and P. V. Landshoff, Phys. Lett. B478, 146 (2000).
[48] Particle Data Group, Eur. Phys. J. C 15, 1 (2000).
[49] J. B. Bronzan, G. L. Kane, and U. P. Sukhatme, Phys. Lett. B49,

272 (1974).
[50] J. B. Kogut and D. E. Soper, Phys. Rev. D 1, 2901 (1970).
[51] J. M. Bjorken, J. B. Kogut, and D. E. Soper, Phys. Rev. D 3,

1382 (1971).
[52] N. N. Nikolaev and B. G. Zakharov, Z. Phys. C 49, 607 (1991).
[53] R. P. Feynman and A. R. Gibbs, Quantum Mechanics and Path

Integrals (McGraw-Hill, New York, 1965).
[54] H1 Collaboration, S. Aid et al., Z. Phys. C 69, 27 (1995).
[55] ZEUS Collaboration, M. Derrick et al., Phys. Lett. B293, 465

(1992).
[56] M. V. Terent’ev, Yad. Fiz. 24, 207 (1976); Sov. J. Nucl. Phys.

24, 106 (1976).
[57] H. G. Dosch, T. Gousset, G. Kulzinger, and H. J. Pirner, Phys.

Rev. D 55, 2602 (1997).
[58] G. Kulzinger, H. G. Dosch, and H. J. Pirner, Eur. Phys. J. C 7,

73 (1999).
[59] J. Nemchik, N. N. Nikolaev, E. Predazzi, B. G. Zakharov, and

V. R. Zoller, J. Exp. Theor. Phys. 86, 1054 (1998).
[60] J. Nemchik, Czech. J. Phys. 51, 531 (2001).
[61] H1 Collaboration, C. Adloff et al., Eur. Phys. J. C 10, 373

(1999).
[62] ZEUS Collaboration, S. Chekanov et al., Nucl. Phys. B695, 3

(2004).
[63] SBT Collaboration, J. Ballam et al., Phys. Rev. D 7, 3150

(1973).
[64] P. Joos et al., Nucl. Phys. B113, 53 (1976).
[65] ZEUS Collaboration, J. Breitweg et al., Eur. Phys. J. C 12, 393

(2000).
[66] J. Nemchik, Phys. Rev. C 68, 035206 (2003).
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