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Structure and decay constant of the ρ meson within the Bethe-Salpeter equation
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In this article, we study the structure of the ρ meson in the framework of the coupled rainbow Schwinger-Dyson
equation and ladder Bethe-Salpeter equation with a confining effective potential. The u and d quark propagators
get significantly modified, the mass poles are absent in the timelike region, which implements confinement
naturally. The Bethe-Salpeter amplitudes of the ρ meson center around zero momentum and extend to the energy
scale about q2 = 1 GeV2, which happens to be the energy scale of chiral symmetry breaking, strong interactions
in the infrared region result in bound state. The numerical results of the mass and decay constant of the ρ meson
are in agreement with the experimental data.
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I. INTRODUCTION

Low energy nonperturbative properties of quantum chro-
modynamics (QCD) put forward a great challenge to physicists
as the SU (3) gauge coupling at low energy scale does not
allow perturbative calculations. Among the existing theoretical
approaches, the coupled rainbow Schwinger-Dyson equation
(SDE) and ladder Bethe-Salpeter equation (BSE) are typical.
They have been very successful in describing the long
distance properties of low energy QCD and the QCD vacuum
(for reviews, one can consult Refs. [1–5]). The SDE can
naturally embody dynamical chiral symmetry breaking and
confinement, which are two crucial features of QCD, although
they correspond to two very different energy scales [5,6]. The
possible interplay of two dynamics lies in the following two
facts: the first one is that at high energy scale the chiral massive
quark dresses itself with a gluon cloud and quark-antiquark
pairs, and creates a constituent quark mass; the second one
is the double role of the light pseudoscalar mesons, as both
Nambu-Goldstone bosons and qq̄ bound states. The BSE is
a conventional approach in dealing with two-body relativistic
bound state problems [7]. From solutions of the BSE, we can
obtain useful information about the bound state structure of
the mesons and obtain powerful tests of the quark theory.

Many analytical and numerical calculations indicate that the
coupled rainbow SDE and ladder BSE with phenomenological
potentials can give model independent results and satisfactory
values [1–5]. The pseudoscalar mesons, especially the π and
K , have been studied extensively to understand the bound
state structures from nonperturbative QCD (for example,
Ref. [8], for more literature, one can consult Refs. [1–5]).
Chiral symmetry and axial Ward identity play an important
role, in chiral limit, the dominating Bethe-Salpeter amplitude
(BSA) of the pseudoscalar mesons with the structure γ5 is given
by B(q2)/fP , where B is the scalar part of the quark self-energy
and fP is the decay constant of the pseudoscalar meson. We
can perform many phenomenological analysis without solving
the BSE explicitly.
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The situation is much worse for the vector mesons. There is
a conserved vector current and the corresponding Ward identity
relates the longitudinal (not transverse) part of the vector vertex
with the quark propagator. We cannot obtain dynamical insight
into the relevant degrees of freedom without solving the BSE
directly. Furthermore, it is more difficult to solve the vector
BSE than the pseudoscalar BSE due to a larger number of
covariants and higher masses, which require extrapolation into
larger domain of the complex q2 plane [9].

The often used effective potential models are confining
Dirac δ function potential, Gaussian distribution potential, and
flat bottom potential (FBP) [10–12]. The FBP is a sum of
Yukawa potentials, which not only satisfies gauge invariance,
chiral invariance and fully relativistic covariance, but also
suppresses the singular point which the Yukawa potential
has. It displays dynamical chiral symmetry breaking and
confinement [13], and works well in understanding the QCD
vacuum (for example, the quark condensate, mixed condensate
and vacuum susceptibility) as well as the meson structures (for
example, the electromagnetic form factors, radius and decay
constants) [12,14,15].

In this article, we take the point of view that the ρ meson is
the qq̄ bound state, and study its structure and decay constant
in the framework of the coupled rainbow SDE and ladder BSE
with the infrared modified FBP, which take advantages of both
the Gaussian distribution potential and the FBP.

The article is arranged as the following. We introduce the
infrared modified FBP in Sec. II. In Secs. III, IV, and V,
we solve the coupled rainbow SDE and ladder BSE, study
analytical property of the quark propagators, finally obtain the
mass and decay constant of the ρ meson. Section VI is reserved
for conclusion.

II. INFRARED MODIFIED FLAT BOTTOM POTENTIAL

The present techniques in QCD calculation cannot give
satisfactory analytical results for the infrared behavior of the
two-point Green’s function of the gluon. Infrared enhanced
effective potential models have been phenomenologically
quite successful [10–12].
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One can use a Gaussian distribution function to represent
the infrared behavior of the two-point Green’s function of the
gluon,10

G1(q2) = � 2

�2
e− q2

� , (1)

which determines the quark-antiquark interaction through a
strength parameter � and a range parameter � [11]. This form
is inspired by the Dirac δ function potential (in other words
the infrared dominated potential) used in Ref. [10], which it
approaches in limit � → 0. The integral

∫
d4qq2nG1(q2) is

finite for spacelike squared momentum q2. Such an infrared
behavior can result in large dressing for the quark’s Schwinger-
Dyson functions (SDFs) A(q2) and B(q2) near q2 = 0, the
curves at the infrared region may be steep enough to forbid
extrapolation to deep timelike region. When we introduce
an extra factor, q2/�, the modified gaussian distribution can
result in more flat curve near zero momentum. Furthermore,
systematic studies with the coupled SDEs of the quark, gluon
and ghost indicate this type of behavior at about q2 = 0
[16]. We use the following modified gaussian distribution
to represent the infrared behavior of the two-point Green’s
function of the gluon [11],

� 2

�2
e− q2

� → � 2

�2

q2

�
e− q2

� . (2)

In numerical calculation, the range parameter � is taken to

be
√

� ≈ 0.62 GeV, the Gaussian type of function q2e− q2

�

centers around q = 0.6 GeV, and extends to about q =
1.2 GeV. Systematic studies with the coupled SDEs indicate
that the nonperturbative gluon propagator is greatly enhanced
at about q = 1 GeV [16]. The value

√
� ≈ 0.62 GeV is

more reasonable than the value
√

� = 0.3 GeV taken from
Ref. [9].

For intermediate momentum, we take the FBP as the best
approximation and neglect the contribution from perturbative
QCD calculations as the strong coupling constant at high
energy scale is very small. The FBP is a sum of Yukawa
potentials which is an analogy to exchange of a series of
particles and ghosts with different masses,

G2(q2) =
n∑

j=0

aj

q2 + (N + jη)2
, (3)

where N stands for the minimum value of the masses, η

is their mass difference, and aj is their relative coupling
constant. Definition of momentum regions between infrared
and intermediate momentum is about �QCD = 200 MeV,
which is set up naturally by the minimum value of the masses
N = 1�QCD. Certainly, there are some overlaps between those
regions, in this way, we can guarantee continuity for the
momentum. The FBP at energy N + jρ with j > 3 extends
to the perturbative region and exhibits some perturbative

1In this article, we use the metric δµν = (1, 1, 1, 1), {γµγν +
γνγµ} = 2δµν , the coordinate xµ = (it,−→x ), the momentum pµ =
(iE,−→p ).

characters. The infrared modified FBP is supposed to embody
a great deal of physical information about all momentum
regions.

Due to the particular condition we take for the FBP, there
is no divergence in solving the SDE. In its three dimensional
form, the FBP takes the following form:

V (r) = −
n∑

j=0

aj

e−(N+jη)r

r
. (4)

In order to suppress the singular point at r = 0, we take the
following conditions:

V (0) = constant,

dV (0)

dr
= d2V (0)

dr2
= · · · = dnV (0)

drn
= 0. (5)

The aj can be determined by solving equations inferred from
the flat bottom condition. As in previous literature [12–15],
n is set to be 9. The gluon propagator can be approximated
by

G(q2) = G1(q2) + G2(q2). (6)

III. SCHWINGER-DYSON EQUATION

The SDE, in effect the functional Euler-Lagrange equation
of quantum field theory, provides a natural framework for
studying the nonperturbative properties of quark and gluon
Green’s functions. By studying the evolution behavior and
analytic structure of the dressed quark propagator, one can
obtain valuable information about dynamical chiral symme-
try breaking phenomenon and confinement. In the rainbow
approximation, the SDE takes the following form:

S−1(p) = iγ · p + m̂u,d + 4π

×
∫

d4k

(2π )4
γµ

λa

2
S(k)γν

λa

2
Gµν(k − p), (7)

where

S−1(p) = iA(p2)γ · p + B(p2)

≡ A(p2)[iγ · p + m(p2)], (8)

Gµν(k) =
(

δµν − kµkν

k2

)
G(k2). (9)

In this article, we assume that a Wick rotation to Euclidean
variables is allowed, and rotate p, k into the Euclidean region
analytically. Alternatively, one can derive the SDE from
Euclidean path-integral formulation of the theory, and avoid
possible difficulties in performing the Wick rotation [17]. The
analytical structures of quark propagators have interesting
information about confinement, we will revisit this subject
in Sec. V.
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IV. BETHE-SALPETER EQUATION

The BSE is a conventional approach in dealing with two-
body relativistic bound state problems [7]. Precise knowledge
about the quark structure of the ρ meson can result in better
understanding of its property. In the following, we write down
the ladder BSE of the ρ meson:

S−1

(
q + P

2

)
χ (q, P )S−1

(
q − P

2

)

= −16π

3

∫
d4k

(2π )4
γµχ (k, P )γνGµν(q − k) , (10)

where Pµ is four-momentum of the center of mass of the
ρ meson, qµ is relative four-momentum between the two
quarks, γµ is the bare quark-gluon vertex, and χ (q, P ) is the
BSA of the ρ meson.

We can perform the Wick rotation analytically and continue
q, k into Euclidean region.2 The Euclidean BSA of the ρ meson
can be decomposed as

χ (q, P ) = εµχµ(q, P ), (11)

χµ(q, P ) =
{
γµ − Pµ �P

P 2

}
{iF0+�PF1−�qF2 + i[�P,�q]F3}

+
{
qµ − Pµq · P

P 2

}
{F2+2i �PF3}

+
{
qµ−Pµq · P

P 2

}
{F4+i �PF5−i �qF6+[�P,�q]F7} ,

(12)

due to Lorentz covariance. Here εµ is the polarization vector of
the ρ meson [18]. The BSAs Fi(q, q · P,P ) can be expanded

in terms of Tchebychev polynomials T
1
2

n (cos θ ),

Fi(q, q · P,P ) =
∞∑
0

inF n
i (q, P )qnP nT

1
2

n (cos θ ) , (13)

where θ is the included angle between qµ and Pµ. It is
impossible to solve an infinite series of coupled equations of
the Fn

i , we have to make truncation in one or the other ways.
Numerical calculations indicate that taking only some terms

2To avoid any possible difficulties in performing the Wick rotation,
we can derive both the SDE and BSE from Euclidean path-integral
formulation of the theory directly, then continue the four-momentum
of the center of mass of the ρ meson into Minkowski spacetime
analytically, P 2 = −m2

ρ . As far as only the numerical values are
concerned, the two approaches are equal.

with n = 0, 1, 2 can give satisfactory results,3

χµ(q, P ) =
{
γµ − Pµ �P

P 2

} {
iF 0

0 + i[4(q · P )2 − q2P 2]

× F 2
0 +�PF 0

1 −�qq · PF 1
2 + i[�P,�q]F 0

3

}
+

{
qµ − Pµq · P

P 2

} {
q · PF 1

2 + 2i �PF 0
3

}
+

{
qµ − Pµq · P

P 2

} {
F 0

4 + i �Pq · PF 1
5

− i �qF 0
6 + [�P,�q]F 0

7

}
. (14)

In solving the BSE, it is important to translate the BSAs Fn
i

into the same dimension of mass to facilitate the calculation

F 0
0 → �0F 0

0 , F 2
0 → �2F 2

0 , F 0
1 → �1F 0

1 ,

F 1
2 → �3F 1

2 , F 0
3 → �2F 0

3 , F 0
4 → �1F 0

4 ,

F 1
5 → �4F 1

5 , F 0
6 → �2F 0

6 , F 0
7 → �3F 0

7 ,

q → q/�, P → P/�,

where � is a quantity with dimension of mass. The ladder
BSE of the ρ meson can be projected into the following nine
coupled integral equations:∑

j

H (i, j )F 0,1,2
j (q, P ) =

∑
j

∫
d4kK(i, j ), (15)

where H (i, j ) and K(i, j ) are 9 × 9 matrices, the correspond-
ing ones for the pseudoscalar mesons are 4 × 4 matrices [14].
The analytical expressions of the matrix elements H (i, j ) and
K(i, j ) are cumbersome and will take up more than seven
pages, and not shown explicitly for simplicity.

3We can borrow some ideas from the twist-2 light-cone distribution
amplitudes φ(µ, u) of the pseudoscalar mesons π and K , where
u is momentum fraction of the quark, and µ is the energy scale.
The φ(µ, u) is always expanded in terms of Gegenbauer polynomi-
als, φ(µ, u) = 6u(1 − u){1 + a1(µ)C3/2

1 (2u − 1) + a2(µ)C3/2
2 (2u −

1) + a4(µ)C3/2
4 (2u − 1) + · · ·}, where C

3/2
1 (2u − 1), C3/2

2 (2u − 1)
and C

3/2
4 (2u − 1) are Gegenbauer polynomials, and ai(µ) are nonper-

turbative coefficients. The coefficients ai(µ) can be estimated with the
QCD sum rules approach, for large i, the ai(µ) involve high dimension
vacuum condensates which are known poorly. In general, one can
retain only the first few terms and fit them with experimental data,
and the truncated light-cone distribution amplitude φ(µ, u) always
gives satisfactory results [19]. In this article, we retain only some
terms with n = 0, 1 and 2 in expansion with Tchebychev polynomials
T 1/2

n (cos θ ), the contributions from other terms are supposed to be
small and neglected here. If the contributions from the neglected
terms are large, they cannot decouple approximately from the BSEs
and warrant the BSEs have reasonable solution. The numerical
results indicate that the dominating contribution comes from the F 0

0 ,
the sub-dominating contributions come from the F 0

1 and F 0
4 , and

F 0
0 � q2m2

ρF
2
0 , we expect the truncation is reasonable. It is obvious

that if we take into account more terms in expansion, more accurate
values can be obtained. However, the analytical expressions of the
coupled BSEs become very clumsy and are beyond capability of our
computer in numerical calculations.
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We can introduce a parameter λ(P 2) and solve above
equations as an eigenvalue problem. If there really exist a
bound state in the vector channel, the mass of the ρ meson can
be determined by the condition λ(P 2 = −m2

ρ) = 1,

∑
j

H (i, j )F 0,1,2
j (q, P ) = λ(P 2)

∑
j

∫
d4kK(i, j ). (16)

The matrix elements H (i, j ) are functions of the quark’s
SDFs A(q2 + P 2

4 ± q · P ) and B(q2 + P 2

4 ± q · P ). The rela-
tive four-momentum qµ is a quantity in Euclidean spacetime,
while the center of mass four-momentum Pµ is a quantity
in Minkowski spacetime, q · P varies throughout a complex
domain. We can expand the A and B in terms of Taylor series
of q · P to avoid solving the SDE with complex values of
quark momentum, for example,

A

(
q2 + P 2

4
± q · P

)
= A

(
q2 + P 2

4

)

±A

(
q2 + P 2

4

)′
q · P + · · · .

The other problem is that we cannot solve the SDE in the
timelike region. The two-point Green’s function of the gluon
cannot be exactly inferred from the SU (3) gauge theory even
in small spacelike momentum region. We can extrapolate the
values of the A(q2) and B(q2) from the spacelike region

smoothly to the timelike region q2 = −m2
ρ

4 ≈ −0.15 GeV2

with suitable polynomial. The masses of the vector mesons
are larger than the pseudoscalar mesons. So it is very difficult
to extrapolate the values to the deep timelike region. We
must be careful in choosing the polynomial to avoid possible
violation of confinement in sense of appearance of pole masses
q2 = −m2(q2) in the timelike region [11,14]. This requires a
certain amount of fine tuning. Furthermore, if the curves of
the A(q2) and B(q2) are very steep near q2 = 0, very large
values of the A(q2 + P 2

4 ) and B(q2 + P 2

4 ) are obtained in the

timelike region (q2 + P 2

4 ≺ 0), the solution of the BSE in the

small spacelike region (0 
 q2 ≺ m2
ρ

4 ) is not reasonable. In this
article, we use the modified Gaussian distribution rather than
the Gaussian distribution to modify the infrared behavior of
the two-point Green’s function of the gluon to outcome the
above difficulties.

Finally we write down normalization condition for the
BSAs of the ρ meson,

Nc

3

∫
d4q

(2π )4
T r

{
χ̄

∂S−1
+

∂Pµ

χ (q, P )S−1
−

+ χ̄S−1
+ χ (q, P )

∂S−1
−

∂Pµ

}
= 2Pµ, (17)

where χ̄ = γ4χ
+γ4, S+ = S(q + P

2 ) and S− = S(q − P
2 ).

V. COUPLED RAINBOW SDE AND LADDER BSE

Now we study the coupled equations of the rainbow SDE
and ladder BSE of the ρ meson.

In order to demonstrate confinement of quarks, we take the
Fourier transform with respect to Euclidean time T for the
scalar part of the quark propagator [1,3,20],

S∗
s (T ) =

∫ +∞

−∞

dq4

2π
eiq4T

B(q2)

q2A2(q2) + B2(q2)

∣∣∣∣−→q = 0

, (18)

where the three-vector part of qµ is set to zero. If the S(q)
has a mass pole at q2 = −m2(q2) in the real timelike region,
the Fourier transformed S∗

s (T ) would fall off as e−mT for
large T . In numerical calculations, for small T , the values of
S∗

s are positive, and decrease rapidly to zero with increase of T ,
which are compatible with the result (tendency of curve with
respect to T ) from lattice simulations [21]. For large T , the
values of S∗

s are negative, except for occasionally a very small
fraction of positive values. The negative values of S∗

s indicate
an explicit violation of axiom of reflection positivity [22], the
quarks are not physical observable.

The u and d quarks have small current masses, the dressing
or renormalization is large and the curves of the SDFs are steep,
which indicates dynamical chiral symmetry breaking phe-
nomenon. At zero momentum, mu(0) = md (0) = 0.51 GeV,
the Euclidean constituent quark masses are mu(mu) =
md (md ) = 0.42 GeV, which are compatible with the con-
stituent quark masses in literature. From the solutions of BSEs
of the ρ meson as an eigenvalue problem, we obtain the mass

mρ = 770 MeV. (19)

It is obvious

mu(mu) + md (md ) > mρ. (20)

FIG. 1. (Color online) The dom-
inating and subdominating compo-
nents of the BSAs.
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FIG. 2. One of the small components of the BSAs.

The attractive interaction between the quark and antiquark in
the infrared region can result in bound state.

The dominating and subdominating components of the
BSAs are the F 0

0 , F 0
1 , and F 0

4 , the six components F 2
0 , F 1

2 , F 0
3 ,

F 1
5 , F 0

6 , and F 0
7 are very small and of minor importance. From

plotted BSAs (see Figs. 1 and 2 as examples), we can see
that the BSAs of the ρ meson have analogical momentum
dependence, while the quantitative values are different from
each other. Just like the q̄q, q̄Q, and Q̄Q pseudoscalar mesons
[14], the BSAs of the ρ meson center around zero momentum
and extend to the energy scale about q2 = 1 GeV2, which
happens to be the energy scale of chiral symmetry breaking.
The strong interactions in the infrared region result in bound
state. The BSAs of the ρ meson can give satisfactory value for
the decay constant, which is defined by

fρmρεµ = 〈0|q̄γµq|ρ(P )〉,

= Nc

∫
T r[γµχ (k, P )]

d4k

(2π )4
. (21)

Carrying out trace explicitly, we can see that only the
BSAs F 0

0 and F 0
6 are relevant to the decay constant. The

F 0
6 is numerically very small (see Fig. 2), the dominating

contribution comes from the F 0
0 . Finally we obtain the value

of the decay constant

fρ = 223 MeV, (22)

which is in agreement with the experimental data.
In calculation, the input parameters are taken as N =

1.0�,V (0) = −14.0�, η = 5.0�, m̂u = m̂d = 6 MeV, � =
200 MeV, � = 1.3 GeV, and � = 0.39 GeV2.

VI. CONCLUSION

In this article, we study structure of the ρ meson in the
framework of the coupled rainbow SDE and ladder BSE
with the confining effective potential. By solving the coupled
rainbow SDE and ladder BSE as an eigenvalue problem
numerically, we obtain the SDFs, BSAs, mass, and decay
constant of the ρ meson.

The dressing (or renormalization) for the SDFs of the
u and d quarks is large and the curves are steep, which
indicate dynamical chiral symmetry breaking phenomenon.
The mass poles are absent in the timelike region, which
implements confinement naturally. The BSAs of the ρ meson
have analogical momentum dependence, while the quantitative
values are different from each other, where the dominating and
subdominating components are the F 0

0 , F 0
1 , and F 0

4 , other six
components F 2

0 , F 1
2 , F 0

3 , F 1
5 , F 0

6 , F 0
7 are of minor importance.

The BSAs center around zero momentum and extend to the
energy scale about q2 = 1 GeV2, which happens to be the
energy scale of chiral symmetry breaking. Strong interactions
in the infrared region result in bound state.

The numerical results of the mass and decay constant of the
ρ meson are in agreement with the experimental data. Once
satisfactory SDFs and BSAs of the ρ meson are obtained, we
can use them in other phenomenological analysis.
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