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Covariant calculation of nonstrange decays of strange baryon resonances
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We report on a study of π and η decays of strange baryon resonances within relativistic constituent-quark models
based on one-gluon-exchange and Goldstone-boson-exchange dynamics. The investigations are performed in the
point form of Poincaré-invariant relativistic quantum mechanics with a spectator-model decay operator. The
covariant predictions of the constituent-quark models underestimate the experimental data in most cases. These
findings are congruent with an earlier study of nonstrange baryon decays in the light-flavor sector. We also
consider a nonrelativistic reduction of the point-form spectator model, which leads to the decay operator of the
elementary emission model. For some decays the nonrelativistic results differ substantially from the relativistic
ones and they exhibit no uniform behavior as they scatter above and below the experimental decay widths.
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I. INTRODUCTION

Strong decay processes still present a considerable chal-
lenge within the physics of hadrons. This is unfortunate, not
only in view of the vast amount of experimental data but
also because the decay properties of hadron resonances give
important insights into strong interaction physics (see, for
example, the recent NSTAR workshops [1–3]). Investigations
of strong decay processes date back to the late 1960s [4–8],
and with the refinement of constituent quark models (CQMs)
various aspects of the strong decays have been studied [9–20].
In particular, the decay mechanism and the type of hyperfine
interactions in CQMs have been in the focus of interest. These
investigations have been performed within nonrelativistic
or so-called relativised models, and usually a number of
parameters has been introduced beyond the CQMs employed.
Further complications resulted in the ambiguity of the proper
phase space factor and various forms have been used. As a
consequence the available results are strongly dependent on
the chosen inputs. This makes them hardly comparable to each
other, and from the comparison with experiment the quality of
the CQMs cannot be judged reliably.

In our investigations we are primarily interested in the direct
predictions of decay widths by different types of CQMs. Once
they are established on a consistent basis for all decay modes,
one can go ahead to study particular details of the decay
mechanism as well as baryon wave functions. Recently, we
presented a covariant calculation of π and η decays of N and �

resonances with relativistic CQMs of the one-gluon-exchange
(OGE) and Goldstone-boson-exchange (GBE) types [21]. The
investigations were performed in the framework of Poincaré-
invariant quantum mechanics [22]. In particular, we adhered to
its point-form version [23–25] and applied a spectator-model
decay operator. In this way the transition amplitude could be
calculated in a manifestly covariant manner and ambiguities
regarding the phase-space factor could be avoided.

Here we report on the extension of our study of π and η

decays to strange baryon resonances. Again we work with the
relativistic GBE and OGE CQMs of Refs. [26,27] and [20],
respectively.

While there is a wealth of experimental data on these types
of decays, theoretical investigations are rather scarce in the

literature, at least within modern CQMs; in particular, we are
not aware of any relativistic calculations. There exists an older
study of strange resonance decays [5] but the corresponding
results are mainly of a qualitative nature. More recently, since
the advent of CQMs, there have only been a few investigations
of strong decays in the strange sector [9,18,19,28].

In Sec. II we briefly describe the theoretical framework
of the relativistic calculations with a spectator-model decay
operator in point form. The derivation of its nonrelativistic
limit, which reduces to the elementary emission model, is
delegated to the Appendix. In Secs. IV and V we present the
numerical results for decay widths in the π - and η-channels,
respectively. Finally, in Sec. VI, we summarize our findings
and give a conclusion.

II. THEORY

In the present work we formulate a Poincaré-invariant
description of the decay amplitude. The interactions are
introduced into the (invariant) mass operator following the
Bakamjian-Thomas construction [29]. Hereby the free mass
operator M̂free is replaced by a full mass operator M̂ containing
an interacting term M̂int:

M̂free → M̂ = M̂free + M̂int. (1)

The four-momentum operator is then defined by multiplying
the mass operator M̂ by the four-velocity operator V̂ µ

P̂ µ = M̂V̂ µ. (2)

In the point form, the Lorentz transformations remain indepen-
dent of interactions, as they form the kinematic subgroup. For
a given baryon state of mass M and total angular momentum
J with z-projection � the eigenvalue problem of the mass
operator reads

M̂|V,M, J,�〉 = M|V,M, J,�〉. (3)

Here we have written the eigenstates in obvious notation as
|V,M, J,�〉, where V indicates the four eigenvalues of V µ,
of which only three are independent. Alternatively we can
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express these eigenstates also as

|V,M, J,�〉 ≡ |P, J,�〉, (4)

where P represents the four eigenvalues of P̂ µ, whose square
gives the invariant mass operator.

The decay width of a hadron resonance is defined by the
expression

�i→f = |�q|
4M2

1

2J + 1
×

∑
MJ ,MJ ′

1

2T + 1

∑
MT ,MT ′ ,MTm

|Fi→f |2,

(5)

with the transition amplitude Fi→f given by the matrix element
of the four-momentum conserving reduced decay operator D̂m

rd
between incoming and outgoing hadron states

Fi→f = 〈V ′,M ′, J ′,MJ ′ , T ′,MT ′ |
× D̂m

rd|V,M, J,MJ , T ,MT 〉, (6)

where m refers to the particular mesonic decay mode. In our
case, qµ = (q0, �q) denotes the four-momentum of the outgoing
meson in the rest-frame of the decaying baryon resonance. The
latter is expressed by the eigenstate |V,M, J,MJ , T ,MT 〉,
characterized by the eigenvalues of the velocity V , mass M ,
intrinsic spin J with z-component MJ , and isospin T with
z-projection MT ; correspondingly the outgoing baryon state
is denoted by primed eigenvalues. The baryon eigenstates are
obtained by the solution of the eigenvalue problem of the
invariant mass operator M̂ including the interactions. In any
reference frame they are simultaneously eigenstates of the
baryon four-velocity V̂ µ.

Representing the baryon eigenstates with suitable basis
states the matrix element in Eq. (6) can be evaluated by the
following integral:

〈V ′,M ′, J ′,MJ ′ , T ′,MT ′ |D̂m
rd|V,M, J,MJ , T ,MT 〉

= 2

MM ′
∑
σiσ

′
i

∑
µiµ

′
i

∫
d3�k2d

3�k3d
3�k′

2d
3�k′

3

×

√√√√(∑
i ω

′
i

)3

∏
i 2ω′

i

�	
M ′J ′MJ ′ T ′MT ′ (�k′

1,
�k′

2,
�k′

3; µ′
1, µ

′
2, µ

′
3)

×
∏
σ ′

i

D
	 1

2

σ ′
i µ

′
i
{RW [k′

i ; B(V ′)]}

×〈p′
1, p

′
2, p

′
3; σ ′

1, σ
′
2, σ

′
3|D̂m

rd|p1, p2, p3; σ1, σ2, σ3〉

×
∏
σi

D
1
2
σiµi

{RW [ki ; B(V )]}

√√√√(∑
i ωi

)3

∏
i 2ωi

�MJMJ T MT

× (�k1, �k2, �k3; µ1, µ2, µ3), (7)

where all Lorentz transformations on the incoming and
outgoing states are fully taken into account. The Wigner
rotations stem from the boosts of the baryon eigenstates
and the transformation of the individual quark momenta
is given by pi = B(V )ki (similarly for the primed vari-
ables). Due to the velocity-state representation of the

baryon eigenstates, in the integrand of Eq. (7) there re-
main the wave functions �MJMJ T MT

(�k1, �k2, �k3; µ1, µ2, µ3)
and �	

M ′J ′MJ ′ T ′MT ′ (�k′
1,

�k′
2,

�k′
3; µ′

1, µ
′
2, µ

′
3), which constitute the

rest-frame wave functions of the incoming and outgoing
baryons, respectively. The µi refer to the spin projections of
the three quarks i = 1, 2, 3, and their three-momenta �ki sum
up to zero. For more details about the formalism we refer to
our previous papers [21,32].

For the decay operator it is assumed that only one of
the quarks directly couples to the emitted meson, while
the other two act as spectators. This defines the point-form
spectator model (PFSM), whose momentum representation
reads

〈p′
1, p

′
2, p

′
3; σ ′

1, σ
′
2, σ

′
3|D̂m

rd|p1, p2, p3; σ1, σ2, σ3〉
= − 3N igqqm

2m1

1√
2π

ū(p′
1, σ

′
1)γ5γ

µFmu(p1, σ1)qµ

× 2p20δ
3( �p2 − �p′

2)δσ2σ
′
2
2p30δ

3( �p3 − �p′
3)δσ3σ

′
3
. (8)

Here, gqqm is the quark-meson coupling constant, m1 the
mass of the active quark, Fm the flavor-transition operator
specifying the particular decay mode, and u(p1, σ1) the quark
spinor according to the standard notation [30]; details of the
formalism can be found in Ref. [31].

The factor N is specific for the PFSM construction [32]
and is taken to be

N =
(

M∑
i ωi

M ′∑
i ω

′
i

) 3
2

. (9)

This form is congruent with the calculations in Ref. [21]
and also consistent with the requirements of baryon charge
normalisation as well as time-reversal invariance of the
electromagnetic form factors [33]. The same normalisation
factor was also used in previous studies of the electroweak
structure of the nucleons and the other light and strange baryon
ground states [34–37].

We should emphasize that the PFSM operator is of an
effective many-body type as it fully takes into account the
recoil of the residual baryon. As a consequence the momentum
transfer to the quark is not the same as the momentum transfer
to the baryon as a whole. For a further characterization of the
PFSM operator construction we refer the reader to [32].

For completeness, we also consider a nonrelativistic re-
duction of the PFSM decay operator. Its derivation is given
in the Appendix. As the result we identify the well-known
elementary emission model (EEM), which represents the
standard nonrelativistic impulse approximation:

〈p′
1, p

′
2, p

′
3; µ′

1, µ
′
2, µ

′
3|D̂m,NR

rd |p1, p2, p3; µ1, µ2, µ3〉

∝ Fm

2m1

{
�σ1 · �q − ωm

2m1
�σ1 · ( �p1 + �p′

1)

}
2p20δ

3

× ( �p2 − �p′
2)δµ2µ

′
2
2p30δ

3( �p3 − �p′
3)δµ3µ

′
3
. (10)

III. CONSTITUENT-QUARK MODELS

In this paper, we employ two different kinds of
relativistic CQMs. Thereby we can in particular learn
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FIG. 1. (Color online) Energy levels (solid lines) of the lowest �, �, , and � states with intrinsic spin and parity JP for the OGE (left
levels) and GBE (right levels) CQMs as presented in Refs. [20] and [26], respectively. The shadowed boxes represent the experimental values
with their uncertainties [38].

about the importance of distinct hyperfine interactions in
the decay calculations. The CQMs are specified by the
interaction

M̂int =
∑
i<j

V̂ij =
∑
i<j

(
V̂ conf

ij + V̂
hyper
ij

)
(11)

in the mass operator of Eq. (1), where V̂ conf
ij and V̂

hyper
ij repre-

sent the confinement and hyperfine interactions, respectively.
In particular, we consider the GBE CQM that relies on a
flavor-dependent quark-quark interaction as constructed in
Ref. [26] and the flavor-independent OGE CQM in the variant
of the relativistic version of the Bhaduri-Cohler-Nogami
model [39] as parametrized by Theussl et al. [20]. The
invariant mass spectra of both CQMs are calculated using the
stochastic variational method, which provides for an efficient
convergence in the solution of the mass-operator eigenvalue
problem [40]. The corresponding results are shown in Fig. 1
in comparison to experiment as compiled by the Particle Data
Group (PDG) [38].

The spectra of the two CQMs show the typical behavior as
it is well known from the literature [27]. Only the flavor-
dependent hyperfine interaction of the GBE CQM is able
to reproduce at the same time the correct level orderings in
the nucleon and the � excitation spectra [26]. Both types
of CQMs fail in reproducing the �(1405) resonance. Further
shortcomings of the CQMs may also reside in other strange
baryon excitations, for which no experimental data exist at the
moment. Differences between theoretical and experimental
resonance masses, however, can have a strong influence on
the predictions for decay widths. In order to have these mass
effects under control, we calculated the decay widths by using
also experimental masses as input. In this way we can directly
estimate the effects from different quark-model wave functions
too.

IV. DIRECT PREDICTIONS OF π DECAY WIDTHS

In Table I we present the direct predictions of the
π decay widths for strange baryon resonances. The relativistic
results have been obtained with the PFSM decay operator
with pseudovector coupling as specified in Eq. (8). The
nonrelativistic results correspond to the calculation with the
EEM transition operator as given in Eq. (10). For both cases
theoretical masses (as predicted by the particular CQMs) and
experimental masses (as quoted by the PDG [38]) have been
employed.

In general the present results for the π decay widths
of the strange baryon resonances parallel the ones obtained
earlier in case of the nonstrange resonances [21]: the covariant
predictions usually underestimate the experimental data or
at most reach them from below. Here, there are only a
few notable exceptions, namely the decays of �(1405) and
�(1670) going to �π . In the first case the overshooting
of the experimental value is only present, if the theoretical
resonance masses are used. It disappears when employing
the experimental resonance mass. Therefore we may attribute
the large values for the decay widths essentially to the theo-
retical overpredictions of the �(1405) mass, both by the
GBE and OGE CQMs. The situation is not so clear-cut
with regard to the �(1670). Its resonance mass is more or
less reproduced in accordance with the experimental data, at
least in case of the GBE CQM; still the decay widths are
predicted far too high. There is only a minor mass effect in
these overpredictions, since they are also not reduced when
employing the experimental resonance mass. Therefore we
may suspect the large π decay widths of �(1670) to be caused
by another reason, possibly a coupling of resonance states.

Of particular interest is the decay of the �(1750) 1
2

−

resonance to �π . From the spectrum as presented in Fig. 1 we
observe three theoretical levels for each CQM, and it appears
natural to identify the lowest lying JP = 1

2
−

state with the

025204-3



T. MELDE, W. PLESSAS, AND B. SENGL PHYSICAL REVIEW C 76, 025204 (2007)

TABLE I. Covariant predictions for π decay widths by the GBE CQM [26] and the OGE CQM [20] in comparison to experiment. The first
three columns classify the decaying resonance according to the PDG [38]. The relativistic calculations have been performed along the PFSM,
and the EEM results represent their nonrelativistic limits. We used both theoretical and experimental masses (best estimates of the PDG) as
input. For comparison we present in the last column also the results of a nonrelativistic calculation by Koniuk and Isgur [9].

Decay J P Experiment With Theoretical Masses With Experimental Masses Literature
[MeV] KI

Relativistic Nonrel. EEM Relativistic Nonrel. EEM

GBE OGE GBE OGE GBE OGE GBE OGE

→ �π

�(1405) 1
2

−
(50 ± 2) 55 78 320 611 15 17 76 112 55

�(1520) 3
2

−
(6.55 ± 0.16)+0.04

−0.04 5 9 5 8 2.8 3.1 2.1 2.3 7.8

�(1600) 1
2

+
(53 ± 38)+60

−10 3 33 2 34 3 17 1.2 15 14

�(1670) 1
2

−
(14.0 ± 5.3)+8.3

−2.5 69 103 620 1272 68 94 572 1071 10

�(1690) 3
2

−
(18 ± 6)+4

−2 19 25 24 28 18 21 23 22 44

�(1800) 1
2

−
seen 68 101 473 1175 70 95 485 1095 121

�(1810) 1
2

+
(38 ± 23)+40

−10 3.8 2.1 55 150 4.1 5.0 55 94 36

�(1830) 5
2

−
(52 ± 19)+11

−12 14 19 16 24 16 20 22 24 59

�(1385) 3
2

+
(4.2 ± 0.5)+0.7

−0.5 3.1 0.5 6.5 1.1 2.0 2.1 4.1 4.8 7.8

�(1660) 1
2

+
seen 10 24 2 15 12 14 2.4 6.9 14

�(1670) 3
2

−
(27 ± 9)+12

−6 15 23 21 32 13 17 17 21 44

�(1750)1 1
2

−
(3.6 ± 3.6)+5.6

−0 58 102 480 1249 63 102 574 1402

�(1750)2 1
2

−
(3.6 ± 3.6)+5.6

−0 32 44 135 312 32 38 136 262

�(1750)3 1
2

−
(3.6 ± 3.6)+5.6

−0 10 1.0 116 34 10 0.9 110 32 0.25

�(1775) 5
2

−
(4.2 ± 1.8)+0.8

−0.3 1.9 3.8 2.9 6.9 2.2 3.2 3.5 5.3 6

�(1940) 3
2

−
seen 2.2 3.7 0.5 1.1 4.9 5.8 1.6 2.4 19

→ �π

�(1385) 3
2

+
(31.3 ± 0.5)+4.4

−4.3 11 11 25 28 14 13 31 32 44

�(1660) 1
2

+
seen 8 5 6 0.02 10 3 8 0.05 8.4

�(1670) 3
2

−
(6 ± 3)+3

−1 2.5 2.0 5.5 5.1 2.7 1.5 6.0 3.2 5.8

�(1750)1 1
2

−
seen 1.6 1.5 43 67 0.8 1.4 49 70

�(1750)2 1
2

−
seen 19 25 160 422 18 25 169 359

�(1750)3 1
2

−
seen 1.0 2.8 18 105 0.9 3 18 97 28

�(1775) 5
2

−
(20 ± 4)+3

−2 6 10 10 21 8 8 15 15 22

�(1940) 3
2

−
seen 0.2 0.4 1.7 3.5 0.5 0.5 5.9 6.1 0.16

→ π

(1530) 3
2

+
(9.9)+1.7

−1.9 2.2 1.3 4.4 3.0 5.5 5.3 11.4 12.5

(1820) 3
2

−
seen 0.4 1.6 0.3 1.4 0.7 1.2 0.6 0.9

�(1750) resonance, which is the only 1
2

−
� excitation with at

least three-star status in the PDG compilation. The predictions
for the π decay widths of this lowest lying state turn out to
be much bigger than the experimental value measured for the
�(1750); the corresponding figures can be found under the
entry of �(1750)1 in Table I. However, we may also consider
the two other theoretical levels in the JP = 1

2
−

excitation
spectrum as candidates for �(1750). Upon calculating their
π decay widths we find the predictions as given under the
entries of �(1750)2 and �(1750)3 in Table I. Surprisingly,
the theoretical results for the last one are pretty consistent
with the magnitude of the experimental value for �(1750). It

is thus suggested to identify the third level �(1750)3 with
the experimentally measured �(1750). The two remaining
eigenstates are then left to be interpreted as the lower lying
resonances �(1620) and maybe �(1560), which are observed
in experiment with only two-star status.1

The influences from different hyperfine interactions in the
CQMs can be estimated by comparing the results obtained

1We note that the eigenstates �(1750)2 and �(1750)3 can be
distinguished by their internal spin structure. It turns out that their
ordering is reversed in the OGE CQM, namely the �(1750)3 falls
below the �(1750)2.
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with the experimental masses in the eighth and ninth columns
of Table I. In general, they are small. Considerable differences
are seen only for the �(1600) and �(1750)3 in the �π channel
as well as for �(1660) and �(1750)3 in the �π channel.

Let us finally have a look at the results from the nonrel-
ativistic reduction of the PFSM, leading to the EEM. One
can hardly find a common trend among the nonrelativistic
EEM predictions. Rather they scatter below and above the
experimental data. Evidently, the nonrelativistic approxima-
tion causes huge enhancements of the decay widths for the
JP = 1

2
−

resonances. They become way too high as compared

to experiment. On the other hand, the JP = 1
2

+
decay widths

are much reduced by the nonrelativistic approximation, with
the exception of the �(1810). For the JP = 3

2
−

resonances
the nonrelativistic results are very similar to the relativistic
ones, with the exception of the �(1940). As we have kept the
phase-space factor fixed, this behavior of the nonrelativistic
approximation is governed solely by the neglect of Lorentz
boosts and the elimination of spin-coupling terms. Contrary
to the full relativistic spin structure in the covariant PFSM
calculation, only the spin-dependent terms in Eq. (10) survive
the nonrelativistic reduction. In the relativistic calculation the
contributions from all of the spin terms usually balance each
other, while (partial) elimination in the nonrelativistic limit can
produce large effects. On the other hand, one may encounter
also big changes due to ignoring boost effects. This can happen
especially in cases of spatial wave functions with a nodal
behavior such as �(1660). The neglect of Lorentz boosts
causes shifts of the zeros in the spatial wave functions what
may produce large cancellation effects of positive and negative
contributions. An apparent example is the �(1660) → �π

decay of the OGE CQM calculated in the EEM, which yields
an almost zero result. As a consequence any nonrelativistic
approximation for calculating decay widths must be taken with
considerable doubt.

In the last column of Table I we also quote the predictions
of Koniuk and Isgur (KI) [9] and we observe a completely dif-
ferent behavior than in any of our calculations. Especially, the
KI results are seen in rather good agreement with experimental
data (except for the case of �(1690), whose decay width comes
out too large). It has to be noted, however, that KI introduced
additional parameters to fit their quark model predictions to
experiment in order to generally investigate the feasibility of
decay calculations within constituent quark models. We, on
the other hand, refrained from applying any parametrization
beyond the direct PFSM predictions quoted in Table I, as we are
interested in the pure nature of the relativistic results and their
dependences on the dynamics of different CQMs. Once this
step is clarified, we can proceed to refine the decay calculations
in order to possibly arrive at a more convincing description of
hadronic decays.2

2E.g., one could simply start with varying the quark-meson coupling
constant in the decay operator of Eq. (8); so far we adhered to an SU(3)
symmetric choice just as it is employed in the GBE CQM [26,27]. Of
course, one should consider also more substantial improvements of
the decay mechanism and in addition of the description of resonance
states.

V. DIRECT PREDICTIONS OF η DECAY WIDTHS

As a second nonstrange decay mode of strange baryon
resonances we consider the η decays of � and �, the results
of which are given in Table II. Regarding the predictions of
the GBE CQM in case of theoretical masses we observe that
the η decays of the 1

2
−
�(1670) and 3

2
−
�(1690) resonances

(which are degenerate in our calculation) are not possible
energetically, since the mass eigenvalue of 1136 MeV for the
� ground state lies slightly too high. On the other hand, the
�(1670) decay width of the OGE CQM obviously results
too big, in accordance with the fact that the �(1670) mass
lies too high. These deficiencies become repaired when the
experimental masses are employed. The η decay widths of the
�(1670) then come out reasonably for both the GBE and OGE
CQMs, and they are found in agreement with the experimental
data as well as the KI results. The η decay width of the �(1690)
is in all instances extremely small.

The biggest η decay width is predicted for the 1
2

−
�(1800)

resonance by both the GBE and OGE CQMs; also the
corresponding KI result is the largest one among all η decays.
Already the π decay width of this state has been found to be
rather large in all cases above (cf., Table I). The PDG does not
present any data for nonstrange partial decay widths. Given
the fact that the total decay width of �(1800) is of the order
of 200–400 MeV [38], the interpretation of the large π and η

decays should not pose any particular problem, however.
The remaining η decays of the �(1810) and �(1830) are

predicted to be rather small by both the GBE and OGE CQMs.
Similar results are reported also from the KI calculation.

Regarding the η decays of the �(1750) resonance we
again quote the widths of all three states that can a-priori
be considered as candidates for this resonance. The relatively
largest decay width is obtained by the GBE CQM for the
�(1750)3 state. It almost reaches the experimental data band
from below. In the previous section this state was interpreted as
the proper candidate for the �(1750) resonance, whereas the
�(1750)1 and the �(1750)2 states should rather be identified
with the �(1560) and �(1620) resonances, respectively. We
now find this interpretation further substantiated by the η

decays.
In summary we note that the only η decays with appreciable

decay widths are the ones of �(1670), �(1800), �(1830), and
�(1750). It is interesting to note that the octet partners of the
former two in the light-flavor sector, namely, the N (1535) and
N (1650) resonances, are just the ones with appreciable sizes
for N → Nη decay widths.

The nonrelativistic reduction again has a considerable effect
on the η decay widths. As observed in case of the � decays,
it enhances in particular the results for the 1

2
−

states. The
corresponding figures appear way too big at least for the
�(1670) and �(1800) resonances. On the other hand, the de-
cay widths of the 3

2
−

are again reduced and practically vanish.

VI. CONCLUSIONS

We have reported relativistic calculations of nonstrange
decays of strange baryon resonances within CQMs. In par-
ticular, we have presented covariant predictions for π and η
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TABLE II. Same as Table I, but for the η-decay channels.

Decay J P Experiment With Theoretical Masses With Experimental Masses Literature
[MeV] KI

Relativistic Nonrel. EEM Relativistic Nonrel. EEM

GBE OGE GBE OGE GBE OGE GBE OGE

→ �η

�(1670) 1
2

−
(6.1 ± 2.6)+3.8

−2.5 − 19 − 151 4 6 22 44 4.8

�(1690) 3
2

− − 0.2 − 0.08 0.02 0.02 ≈0 ≈0 0.01

�(1800) 1
2

−
43 65 223 624 46 62 264 526 15

�(1810) 1
2

+
0.9 ≈0 2.8 6.3 0.7 0.7 3.9 2.3 1.7

�(1830) 5
2

−
0.6 2.2 0.4 1.6 2.0 1.8 1.6 1.3 5.3

→ �η

�(1750)1 1
2

−
(31.5 ± 18.0)+38.5

−4.5 − − − − 5 11 25 71

�(1750)2 1
2

−
(31.5 ± 18.0)+38.5

−4.5 3.0 3.1 1.5 5.0 0.6 3.8 4.7 1.9

�(1750)3 1
2

−
(31.5 ± 18.0)+38.5

−4.5 6.0 2.1 25 10 3.8 1.4 14 6.3 3

�(1775) 5
2

− ≈0 0.05 ≈0 ≈0 0.02 0.01 ≈0 ≈0

�(1940) 3
2

− ≈0 ≈0 ≈0 ≈0 ≈0 0.02 0.07 0.01

decays of �,�, and  resonances by two types of CQMs, the
ones with GBE and OGE dynamics. The transition elements
have been calculated with a spectator-model decay operator in
point-form relativistic quantum mechanics. The present results
complement the ones obtained earlier for the same mesonic
decay modes of the (nonstrange) N and � resonances [21].

Regarding the π decay widths we have found that
the direct relativistic predictions of the CQMs in general
underestimate the experimental data. In this respect the results
parallel the ones obtained earlier for N and � resonances
along the same approach. Here, only the �(1670) represents
an exception. We argue that a possible mixing effect with the
�(1405) resonance is responsible for this result. Such mixings
of resonance states should certainly be taken into account in a
future more refined calculation.

The systematics of the relativistic results has also led to
a new interpretation of the three lowest 1

2
−
� excitations

produced by the CQMs. In principle, all three can be seen
as candidates for the phenomenological �(1750). However,
most naturally only the third state �(1750)3 is identified with
the experimentally measured �(1750), as it produces the most
adequate π decay width.

For the η decay widths we have found a qualitatively similar
behavior, namely, they are all rather small or at most reach the
(scarce) experimental data from below. Even the largest η

decay width of �(1800) can be characterized in this manner,
since its total decay width is reported to be extremely large.

In the present work we have also shown that the PFSM
decay operator has a sensible nonrelativistic reduction, leading
to the standard elementary-emission model. However, it has
also become evident that the nonrelativistic decay widths
exhibit no consistent pattern, as they vary considerably in
their magnitudes, scattering above and below the experimental
data. The nonrelativistic reduction introduces sizable effects
strongly depending on the JP values of the pertinent reso-
nances.

We have herewith completed the relativistic studies of π

and η decays of light and strange baryon resonances within
CQMs. We have established the direct predictions of two types
of CQMs without introducing any additional parametrizations.
The results show a consistent behavior but they are not able to
explain the experimental data. In any case relativistic effects
are found to be of utmost importance. The present study
provides for a reliable starting point to improve the relativistic
description of mesonic decays.
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APPENDIX: DETAILS OF
THE NONRELATIVISTIC REDUCTION

In the following we specify the nonrelativistic reduction
of the PFSM calculation that leads to the EEM. We leave the
invariant phase-space factor in Eq. (5) untouched and start
with the matrix element of the reduced decay operator in
Eq. (6)

Fi→f = 〈V ′,M ′, J ′,MJ ′ , T ′,MT ′ |D̂m
rd|V,M, J,MJ , T ,MT 〉

= 〈P ′, J ′,MJ ′ , T ′,MT ′ |D̂m
rd|P, J,MJ , T ,MT 〉, (A1)

which is now expressed in terms of momentum eigenstates
|P, J,MJ , T ,MT 〉. In a first step we replace in this matrix
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element the Lorentz boosts by Galilean boosts and use free
three-quark states |�k2, �k3, �P ; µ1, µ2, µ3〉 instead of velocity
states for the representation of the eigenstates of the quark-
model Hamiltonian. This leads to baryon wave functions in
the form

〈�k′
2,

�k′
3,

�P ′; µ′
1, µ

′
2, µ

′
3| �P , J,MJ , T ,MT 〉

= �MJMJ T MT
(�k′

1,
�k′

2,
�k′

3; µ′
1, µ

′
2, µ

′
3)δ3( �P ′ − �P ), (A2)

where the completeness relation of the free three-quark states
reads

1 =
∑

µ1,µ2,µ3

∫
d3k2d

3k3d
3P |�k2, �k3, �P ; µ1, µ2, µ3〉

× 〈�k2, �k3, �P ; µ1, µ2, µ3|. (A3)

Using the latter one obtains for the spectator-model decay
operator of Eq. (8) the following expression:

FNR
i→f = 〈P ′, J ′,MJ ′ , T ′,MT ′ |D̂m,NR

rd |P, J,MJ , T ,MT 〉

=
√

2E
√

2E′
∑
µiµ

′
i

∫
d3k2d

3k3�
	
M ′J ′MJ ′ T ′MT ′

× (�k′
1,

�k′
2,

�k′
3; µ′

1, µ
′
2, µ

′
3)

−3N√
2p10

√
2p′

10

gqqm

2m1

× 1√
2π

ū(p′
1, µ

′
1)γ5γ

µFmu(p1, µ1)qµδµ2µ
′
2
δµ3µ

′
3

×�MJMJ T MT
(�k1, �k2, �k3; µ1, µ2, µ3), (A4)

where E,E′ are the energies of the decaying and final baryons.
Similarly, p10 and p′

10 denote the energies of the active quark
in the incoming and outgoing channels, respectively. The
nonrelativistic baryon momenta satisfy �P = ∑ �pi as well as
�P ′ = ∑ �p′

i . In addition, the energy and the momentum of the
emitted meson are given by ωm = E − E′ = p10 − p′

10 and
�q = �P − �P ′ = �p1 − �p′

1, respectively.
Next we have to express the various variables in Eq.

(A4) in terms of the residual integration variables �k2 and
�k3. The corresponding relations are obtained from a non-
relativistic limit of the original Lorentz boosts. This cal-
culation is conveniently carried out in the rest frame of
the decaying baryon resonance and leads to the following
result:

�p1 = −�k2 − �k3, �p′
1 = −�k2 − �k3 − �q,

�p2 = �p′
2 = �k2, �p3 = �p′

3 = �k3,

�k′
1 = −�k2 − �k3 − m2 + m3

m1 + m2 + m3
�q,

�k′
2 = �k2 + m2

m1 + m2 + m3
�q,

�k′
3 = �k3 + m3

m1 + m2 + m3
�q.

(A5)

Here, one has made the approximations M ≈ ∑
mi as well as

M ′ ≈ ∑
m′

i , i.e. the interacting masses of the baryons become
equal to the free masses in the nonrelativistic limit; for the
decay modes considered in this paper one has furthermore
mi = m′

i . Furthermore, one neglected terms of the orders ( pq

mq
)2

and (ωm

mq
)2, upon the assumption that the quark masses mi are

large as compared to the absolute value of the three-momentum
�pi and the meson energy ωm.

For the practical calculation one transforms to a coor-
dinate system, where the momentum transfer to the final
baryon is into the negative z-direction and obtains for the
relations of the primed and unprimed variables (�k′

2,
�k′

3) and
(�k2, �k3)

k′
ix = kix,

k′
iy = kiy, (A6)

k′
iz = kiz + mi

m′
1 + m2 + m3

Q

for i = 2, 3. Here, Q is the absolute value of the momentum
transfer �q = (0, 0,Q). As a consequence of the reduction
we also find ωi ≈ mi and ω′

i ≈ m′
i , which reduces the

normalization factorN to 1. The final nonrelativistic reduction
for the transition amplitude then reads

FNR
i→f =

√
2E

√
2E′

∑
µiµ

′
i

∫
d3�k2d

3�k3�
	
M ′J ′MJ ′ T ′MT ′

× (�k′
1,

�k′
2,

�k′
3; µ′

1, µ
′
2, µ

′
3)

−3gqqm

2m1

1√
2π

Fm

×
{

�σ1 · �q − ωm

2m1
�σ1 · ( �p1 + �p′

1)

}
δµ2µ

′
2
δµ3µ

′
3

×�MJMJ T MT
(�k1, �k2, �k3; µ1, µ2, µ3). (A7)

This result represents the familiar expression for the transition
amplitude in the EEM, where the terms proportional to
�σ1 · �q and �σ1 · ( �p1 + �p′

1), involving the Pauli spin operator
�σ1 of the active quark, are called direct and recoil terms,
respectively (see, e.g., Refs. [11,41]). The latter is specific
for the pseudovector coupling in the decay operator (8); it
would not be present at the same order of nonrelativistic
approximation in case of pseudoscalar coupling.
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