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Subtleties of Lorentz invariance and shapes of the nucleon
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We study the effects of Lorentz invariance on relativistic constituent quark model wave functions. The model
nucleon wave function of Gross et al. (nucl-th/0606029) is constructed such that there is no orbital angular
momentum and that the spin-dependent density is spherical. This model wave function is claimed to be manifestly
covariant. We consider two possible interpretations of the nucleon wave function in an arbitrary reference frame.
In the first, the seeming covariance of the matrix elements of the electromagnetic current arises from using
the Breit frame. Matrix elements have a different appearance in any other frame. In the second interpretation, the
electromagnetic current is covariant yet it is not consistent with the general structure required by QFT (e.g., the
wave function of the incoming nucleon depends on the momentum of the outgoing nucleon and vice versa).
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I. INTRODUCTION

Recent Jefferson Laboratory data on electromagnetic (em)
form factors of the nucleon have created much theoretical
interest. The key finding is that the ratio of the proton’s
GE/GM falls rapidly with increasing Q2 [1,2]. But new results
for the neutron electric and magnetic form factors have been
or are about to be obtained; see the reviews [3–5].

It was argued [6] that reproducing the measured ratio
GE/GM ratio requires a relativistic treatment that includes
the effects of the quark’s nonzero orbital angular momen-
tum. Miller [7] introduced the idea of using the rest-frame
to rest-frame matrix elements of a spin-dependent charge
density operator to exhibit the influence of the orbital angular
momentum. In particular, (for a model without explicit gluons)
the probability for a quark to have a given momentum K and
a given direction of spin, n is given by [7,8]

ρ̂O(K, n) =
∫

d3r

(2π )3
eiK·rψ̄(r)O1

2
(γ 0 + γ · nγ5)ψ(0), (1)

where O is Q̂/e, the quark charge operator in units of the
proton charge for the spin-dependent charge density or O = 1
for the spin-dependent matter density. The matrix element
of the operator ρ̂O(K, n) gives the spin-dependent matter
densities. The quark field operators ψ̄(r), ψ̄(0) are evaluated
at equal time. The rest-frame matrix element of this density
operator in a nucleon state of definite total angular momentum
defined by the unit vector s, |�s〉 is

ρO(K, n, s) ≡ 〈�s|ρ̂O(K, n)|�s〉, (2)

where the subscript O = Q or O = 1 specifies the operator
used in Eq. (1). The most general shape of the proton, obtained
if parity and rotational invariance are upheld, can be written as

ρO(K, n, s) = AO(K2) + BO(K2)n · s

+CO(K2)
(
n · K s · K − 1

3 n · K K2
)
, (3)

with the last term generating the nonspherical shape. The
effects of nonvanishing orbital angular momentum cause the

matrix elements of the spin-dependent density operator, Eq. (2)
to be nonspherical and yield a nonzero value of the coefficient
CO(K2). Although no experiment has been constructed to
measure the spin-dependent density, this quantity can be
evaluated by using the techniques of lattice QCD and has
been measured in condensed matter physics [9].

Gross and Agbakpe [10] constructed a relativistic con-
stituent quark model that was claimed to have a spherical
shape. However, these authors did not consider the spin-
dependent density operator. When we [8] used the wave
function of Ref. [10] to evaluate the matrix element of the spin-
dependent charge and matter density operators, a nonspherical
nucleon shape was obtained. More recently, Gross et al. [11]
claimed to find a covariant constituent quark-diquark model
that describes all the available em form factors, but has no
orbital angular momentum. In this case, the shape of the
proton as determined by the rest-frame matrix element of
the spin-dependent density matrix is indeed spherical. The
question of whether or not it is possible to find a covariant
model that is a pure S wave is an interesting one that we
examine here.

We next describe the wave function of Ref. [11], using
the notation of that reference. The nucleon wave function
�N (P, k), of total four-momentum P and diquark four-
momentum k, is given by the expression

�N (P, k) = 1√
2
ψ0(P, k)φ0

I u(P, s)

− 1√
6
ψ1(P, k)φ1

I γ5 �ε∗
P u(P, s), (4)

which is a sum of contributions from a spin-isospin (0,0)
diquark and a spin-isospin (1,1) diquark and ψ0,1 are Lorentz
scalar functions. The polarization vectors εP are given by the
expression

εP = OP εk, (5)
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where εk is a genuine relativistic polarization vector of a vector
particle (diquark in the present case) εk · k = 0. This quantity
is denoted by η = εk in Ref. [11]. The operatorOP is a Lorentz
transformation, with

OP = BP B−1
k R−1

k̂
. (6)

The operator R−1
k̂

rotates k from a generic (θ, ϕ) direction

to the positive z direction. B−1
k boosts the four-momentum

state (Es, 0, 0, k) to the diquark rest frame (ms, 0, 0, 0), and
finally BP boosts the vector (M, 0, 0, 0) to the moving frame
(EP , 0, 0, P ). The wave function �N satisfies the Dirac
equation because �P commutes with γ5�ε∗

P . As stressed in
Ref. [11], the essential difference between this model and the
one introduced in Ref. [10] is that in the nucleon rest frame, the
wave function (4) contains absolutely no angular dependence
of any kind.

We discuss the general requirements for covariance and a
proper treatment of a relativistic constituent (quark-diquark)
model. We study two interpretations of Ref. [11] based on two
different generalizations of the boost BP in Eq. (4) to the case
of the arbitrary P and find that, using the first (conventional)
interpretation, the model wave function of Ref. [11] does not
satisfy these requirements because it is not covariant, and as
a result it produces an em form factor that is not Lorentz
invariant. Using the second (unconventional) interpretation
leads indeed to a Lorentz-invariant em form factor. However,
the use of the second interpretation does not yield a model
that satisfies the basic requirements (that any composite quark
model must satisfy) discussed in Sec. IV. We summarize in
Sec. V.

II. COVARIANT VECTOR DIQUARK WAVE FUNCTION

Let us denote the vector diquark wave function as
�P,s(k, ε), defined as

�̄P,s(k, ε) = 〈P, s|q̄(0)|k, ε〉, (7)

where 〈P, s| and |k, ε〉 are nucleon and diquark eigenstates
and q̄(0) represents a quantized quark field operator. Note that
the dependence on the polarization vector ε and nucleon spin
is made explicit. Lorentz invariance requires that

�̄P,s(k, ε) ∼ Ū (P, s)�µ(P, k)εµ

k , (8)

where �µ(P, k) is a covariant vector given by

�µ(P, k) = Aγ5γµ + Bγ5kµ + Cγ5Pµ + · · · , (9)

where A,B, and C are Lorentz scalar functions built from the
four-vectors P and k. The forms [Eqs. (8) and (9)] have been
known for a long time [12] and have been applied recently
[13,14].

To see how this Lorentz invariance of Eq. (8) works in
practice, consider the relevant particular example of the matrix
element of the em current [15]:

〈P+, s ′|J α(0)|P−, s〉 = Mα

=
∫

d4k
∑

ε

�̄P+,s ′ (k, ε)γ α�P−,s(k, ε)

∼
∫

d4k · · ·
∑

ε

Ū (P+, s ′)�µ(P+, k)

× ε
µ

k γ αεν
k �ν(P−, k)U (P−, s), (10)

where initial and final nucleon four-momentum are denoted as
P− and P+. In Ref. [11] their Eq. (11)] P± are explicitly chosen
in the Breit frame. Here the only restriction is that P+ = P− +
q and P 2

± = M2, where q is the four-momentum of the virtual
photon and M is the nucleon mass. The quantity Mα should
be explicitly Lorentz invariant. The sum over polarizations is
performed as ∑

ε

ε
µ

k εν
k = kµkν

m2
− gµν, (11)

where m is the diquark mass. Thus one finds

Mα ∼
∫

d4k · · · Ū (P+, s ′)�µ(P+, k)γ α

(
kµkν

m2
− gµν

)
×�ν(P−, k)U (P−, s). (12)

The result Eq. (12) has a manifestly covariant form as a Lorentz
four-vector that results from the use of Eq. (11).

III. NONCOVARIANT WAVE FUNCTION OF GROSS et al.

We need the nucleon wave function Eq. (4) in an arbitrary
reference frame. For this we use first the straightforward
(conventional) definition of the boost LP , which is explicitly
stated in Ref. [11], between Eqs. (6) and (7): “The spin states
are analogous of (2) and (3), and their form in an arbitrary
frame is obtained by boosting the nucleon to momentum
|P| = P along the z direction and then rotating.” This is
equivalent to the statement that the z direction cannot be
favored among others in Eq. (4). We will show that such a
model corresponding to the “first interpretation” of Ref. [11] is
not consistent with Lorentz invariance. We note in advance that
the essential point will be that different polarization vectors εP+
and εP− enter into the sum over polarization vectors.

Here consider the following (first interpretation) general-
ization of the vector-diquark part of the nucleon wave function
[Eq. (4)] to an arbitrary reference frame:

�̄P (k) ∼ Ū (P, s)γ5γµε
µ

P = Ū (P, s)γ5γµ

(
LPL−1

k εk

)µ
,

L−1
k εk = (0, 	ε) ≡ ε0, (13)

where P and k are the nucleon and diquark on-mass-shell mo-
menta, L−1

k is the boost transformation L−1
k k = (

√
k2, 0), εk

is a genuine relativistic polarization vector of a vector particle
(diquark in the present case), and εk · k = 0, which is denoted
by η = εk in Ref. [11]. Furthermore, ε0 is the diquark
polarization four-vector in the diquark rest frame. Our notation
here differs slightly from that of Ref. [11] because we use the
notation Lk instead of RkBk and because the quantity L−1

k is
not exactly the same as B−1

k R−1
k of Eq. (6): For the sake of

simplicity we not make the effects of the rotation explicit. This
simplification does not affect our conclusions [16].

Let us emphasize that the first interpretation consists in
replacing the boost BP (with z-directed P ) in Eq. (4) by the
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boost LP (with arbitrary P ). As noted in Eq. (9), Lorentz in-
variance requires �µ(P, k) to be a covariant four-vector in any
quark-diquark wave function �̄P (k) ∼ Ū (P, s)�µ(P, k)εµ

k .
The result [Eq. (13)] is not consistent with this requirement
because the quantity γ5γν(LPL−1

k )νµ is not an (axial) four-
vector. In particular, the explicit appearance of the product of
boosts, LP ,L−1

k , breaks covariance. Neither LP nor L−1
k is a

covariant tensor. To see this we derive the boost tensor from
the expression for the boost (Eq. (2.8) of [17], where a sign
misprint in that equation is fixed here):(

L−1
k

)µ

ν
= δµ

ν − 1

(k0 + m)m
kνk

µ − 1

k0 + m
kνδ

µ

0

+ 2k0 + m

(k0 + m)m
δν0k

µ − m

k0 + m
δν0δ

µ

0 . (14)

The result, with the explicit presence of the index 0, makes it
clear that (L−1

k )µν is not a covariant tensor. Similarly,

(LP )µν = δµ
ν − 1

(P 0 + M)M

(
2δ0

νP
0 − Pν

)(
2δ

µ

0 P 0 − P µ
)

− 1

P 0 + M

(
2δ0

νP
0 − Pν

)
δ

µ

0 + 2P 0 + M

(P 0 + M)M

× δν0
(
2δµ0P 0 − P µ

) − M

P 0 + M
δν0δ

µ

0 , (15)

where we have used Pµ = 2δ
µ

0 P 0 − P µ.
Lorentz invariance is lost if one uses the wave function

of Ref. [11], �̄P (k) ∼ Ū (P, s)�µ(P, k)εµ

P , because the sum
over diquark polarization,

∑
ε ε

µ

P+εν
P− , that enters in the matrix

element of the em current is not Lorentz invariant. Let us
calculate the diquark polarization sum Dµν . We find

Dµν =
∑

ε

(εP+)µ(εP−)ν =
∑
αβ

(LP+)αµε0α(LP−)βν ε0β

=
∑

i=1,2,3

(LP+ )iµ(LP− )iν . (16)

Note that here the quantity Dµν(P +, P −) is seen to be a sum
of product functions, with one function depending only on P +
and the other depending only on P −.

We use the expression for the boost [Eq. (15)] to evaluate
Eq. (16), with the result

Dµν = δµ0δν0
M2 − P+ · P−

(P 0+ + M)(P 0− + M)
− gµν + P +

µ P +
ν

(P 0+ + M)M

+ P −
ν P −

µ

(P 0− + M)M
+ P +

µ P −
ν P+ · P−

(P 0+ + M)(P 0− + M)M2

+ δ0
µP +

ν

P 0+ + M
+ P −

µ δ0
ν

P 0− + M

− P +
µ δν0(P+P− + P 0

+M) + δ0
µP −

ν (P+P− + P 0
−M)

(P 0+ + M)(P 0− + M)M
.

(17)

A brief inspection shows that Dµν , as obtained in a general
reference frame, involves the noncovariant expressions δµ0 as
well as explicit three-vectors and therefore is not a covariant
tensor. This result means that the wave function of Ref. [11] is
not covariant and that the expressions for matrix elements
of the em current that result from using Eq. (17) are not
covariant.

However, one can be fooled by using one particular frame—
the Breit frame. In this case, the four-vectors P

µ
± are given by

P+ = (E, 0, 0,Q/2), P+ = (E, 0, 0,−Q/2). It is also useful
to note that the noncovariant expression δ

µ

0 = (1, 0, 0, 0) can
be written in an apparently covariant form

δ
µ

0 = (P+ + P−)µ√
4M2 − (P+ − P−)2

. (18)

We proceed by evaluating Eq. (17) in the Breit frame. Use
Eq. (18) and P+ = −P− = P, P+ · P− = 2P 2

0 − M2 in
Eq. (17) to obtain

Dµν = (P +
µ + P −

µ )(P +
ν + P −

ν )
2M2 − 2P 2

0

4(P 0 + M)2P 2
0

− gµν + P +
µ P +

ν

(P 0 + M)M
+ P −

ν P −
µ

(P 0 + M)M
+ P +

µ P −
ν

(
M2 − P 2

0

)
(P 0 + M)2M2

+ (P +
µ + P −

µ )P +
ν

2P 0(P 0 + M)

+ P −
µ (P +

ν + P −
ν )

2P 0(P 0 + M)
− [P +

µ (P +
ν + P −

ν ) + (P +
µ + P −

µ )P −
ν ]

[
2P 2

0 − M2 + P 0M = (P 0 + M)(2P 0 − M)
]

2(P 0 + M)2P 0M

= (P +
µ + P −

µ )(P +
ν + P −

ν )
1

2P 2
0

− gµν − P +
µ P −

ν

M2
= (P +

µ + P −
µ )(P +

ν + P −
ν )

1

M2 + P+ · P−
− gµν − P +

µ P −
ν

M2
. (19)

This result, obtained previously in Ref. [11], has a illusory
covariant appearance, resulting from the explicit use of the
Breit frame. Equation (19) would not be correct in any frame
other than the frame where 3D parts of P+ and P− are collinear.
In particular, the factor M2 + P+ · P− that appears in the
denominator of Eq. (19) violates the sum of product functions
form of Eq. (16).

IV. WAVE FUNCTION WITH UNCONVENTIONAL
POLARIZATION VECTORS

We found out in the previous section that the first interpre-
tation wave function of Ref. [11] is not covariant, and as a
result it fails to produce a Lorentz-invariant em form factor.
Then we can ask the following question: What should the
wave function of Ref. [11] be in an arbitrary reference frame
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to produce Lorentz invariant form factors, given that the wave
function of a nucleon moving in the z direction is described
by Eq. (4)? The unambiguous solution to this question is to
use the “unconventional” diquark polarization vectors ξ (P±)1

in the covariant wave function (8) and correspondingly in
Eq. (10) instead of the usual εk:

ξ (P+) = �ε(Z+) = �LZ+ε0, ξT (P−) = εT (Z−)�T

= εT
0 LT

Z−�T , (20)

where � = LP++P− is the boost transformation defined as

�−1(P+ + P−) = (
√

(P+ + P−)2, 0) = Z+ + Z−,
(21)

Z± = �−1P±.

So the four-vectors Z+ and Z− are collinear: 	Z− = − 	Z+.
Indeed Lorentz invariance of the em current implies that it
transforms under the Lorentz transformation L as2

〈P+, s ′|J α(0)|P−, s〉 = Mα = Ū (P+, s ′)
×Mα(P+, P−)U (P−, s), (22)

Mα(LP+, LP−) = Lα
βSLMβ(P+, P−)S+

L ,

where

SLγ αS+
L = (L−1)αβγ β.

Therefore the em current can be boosted to the arbitrary frame
as follows:

Mα(P+, P−) = Mα(�Z+,�Z−) = �α
βS�Mβ(Z+, Z−)S+

�,

(23)

where

Mα(Z+, Z−) ∼
∑

i

∫
d4kδ+(k2 − m2)ψ1(Z+, k)εµ

i (Z+)

× εν
i (Z−)γµγ5γ

αγ5γνψ1(Z−, k) (24)

is expressed in terms of the wave functions [Eq. (4)] of
nucleons moving along the z direction. Simple algebra leads
unambiguously to the unconventional polarization vectors of
Eq. (20):

Mα(P+, P−)

∼ �α
β

∑
i

∫
d4kδ+(k2 − m2)ψ1(Z+, k)εµ

i (Z+)εν
i (Z−)

× S�γµγ βγνS
+
�ψ1(Z−, k)

=
∑

i

∫
d4kδ+(k2 − m2)ψ1(P+,�k)[�εi(Z+)]µ

× [�εi(Z−)]νγµγ αγνψ1(P−,�k)

1We understand that these polarization vectors are suggested (and
named “unconventional”) by F. Gross [18] for the construction of the
pure S-wave wave function.

2The same arguments of Lorentz invariance for the quark-diquark
wave function [Eq. (7)] unambiguously lead to the covariant form
[Eq. (8)]. This paper addresses possible violations of general
principles if forms inconsistent with Eq. (8) are used.

=
∑

i

∫
d4kδ+(k2 − m2)ψ1(P+, k)ξµ

i (P+)ξν
i (P−)

× γµγ αγνψ1(P−, k), (25)

where Lorentz invariance for the scalar functions was used
[ψ1(Z±, k) = ψ1(P±,�k)]. Now, by using Eq. (25) in the first
line of Eq. (22), the expression for the em form factor in terms
of the new (unconventional) polarization vectors reads

Mα ∼
∑

i

∫
d4kδ+(k2 − m2)Ū (P+)�̄′

µ(P+, k)ξµ(P+, i)

× ξ̄ ν(P−, i)γ α�′
ν(P−, k)U (P−)

=
∫

d4kδ+(k2 − m2)Ū (P+)�̄′
µ(P+, k)Dµν(P+, P−)

× γ α�′
ν(P−, k)U (P−), (26)

where �′
ν(P−, k) = γ5γνψ1(P−, k) corresponds to the wave

function [Eq. (4)]. In the following the primed �′
ν(P−, k)

denote more general matrices used in Eq. (32) (i.e., in the
wave functions of Ref. [11] corresponding to the round
spin-dependent density). They should not be confused with
the (unprimed) �ν(P−, k) used in the covariant wave functions
[Eq. (8)], which according Eq. (9) are strictly covariant and
do not depend on the momentum of other nucleons to be
consistent with the well-known principles.

To assess Eq. (26) we need to compare it with
Eq. (12), the most general expression for the nucleon current,
〈P+, s ′|J α|P−, s〉, in the relativistic quark-spectator diquark
model (with diquark on mass shell) with the photon interacting
only with the quark (using a point-like photon-quark interac-
tion and ignoring explicit factors of charge), where �̄µ(P+, k)
and �ν(P−, k) are covariant functions of Dirac γ matrices and
the momentum variables. The factor kµkν

m2 − gµν arises from
the axial-vector diquark propagator and must present in all
quark spectator axial-vector diquark models.

We stress that Eq. (12) must hold independently of the
choice of the particular form of the diquark polarization
vectors. A given model is defined only by the choice of a
specific form for �̄µ(P+, k) and �ν(P−, k); the rest is fixed
by Eq. (12), and there is nothing left to choose. The results
of Ref. [11] or any other model must be consistent with
Eq. (12) and should correspond to particular choices of a
covariant �ν(P±, k).

It is useful to discuss the result [Eq. (12)] in the operator
formalism of quantum field theory. We compute the matrix
element 〈P+|q̄γ αq|P−〉 by inserting a sum over a complete set
of states:

Mα = 〈P+, s ′|q̄γ αq|P−, s〉
∼

∑
n

〈P+, s ′|q̄|n〉γ α〈n|q|P−, s〉. (27)

Truncating the sum to the term of the valence quark model,∑ |n〉〈n| → ∫ ∑ |k, i〉〈k, i| (where |k, i〉 are diquark states),
gives

Mα ∼
∫

d4kδ+(k2 − m2)
∑

i

Ū (P+, s ′)�̄µ(P+, k)

× γ αεµ(k, i)ε̄ν(k, i)�ν(P−, k)U (P−, s), (28)
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where the diquark “conventional” polarization vectors,
εµ(k, i), ε̄ν(k, i), are exposed. The integrand of Eq. (28) is
a sum of contributions factorized in the nucleon momenta,
P+, P−; each terms is of the form of a product of scalar func-
tions, F1(P+, k)F2(P−, k). This property—that the integrand
is a sum of products—is a signature property of a valence
quark model (covariant and noncovariant).

Thus the relevant requirements for obtaining a correct
evaluation of a relativistic valence quark spectator axial
diquark model are summarized in Eq. (12) and Eq. (28).

We find that Dµν(P+, P−) in Eq. (26) is indeed the covariant
tensor given in Eq. (28) of Ref. [11]:

Dµν(P+, P−) =
∑

ξ (P+) × ξT (P−) = �ε(Z+) × εT (Z−)�T

= �

{
(Z+

µ + Z−
µ )(Z+

ν + Z−
ν )

1

M2 + Z+ · Z−

− gµν − Z+
µ Z−

ν

M2

}
�T

= (P +
µ + P −

µ )(P +
ν + P −

ν )
1

M2 + P+ · P−

− gµν − P +
µ P −

ν

M2
. (29)

But a brief inspection shows that the result [Eq. (26)] is not
consistent with the general form [Eq. (12)]. The integrand
of the general requirement [Eq. (12)] is the sum of factorized
terms of the form F1(P+, k)F2(P−, k) in the nucleon momenta,
P+, P−; the integrand of Eq. (26) is not factorizable owing to
the presence of the denominator M2 + P·P− in Dµν(P+, P−).
There is no way to derive the integrand of Eq. (26) from
Eq. (12).

We explain this in more detail by explicitly using the model
of Ref. [11] in Eq. (26). This is to illustrate that the Dirac
operators do not yield a factor of M2 + P+ · P− in the
numerator that cancels the one in the denominator. The model
takes the form �′

µ(P−, k) = γuγ
5ψ1(P−, k), with ψ1 a scalar

wave function. Use these �′
µs and Eq. (19) in Eq. (26) to

obtain

Mα =
∫

d4kδ+(k2 − m2)ψ1(P+, k)ψ1(P−, k)Ū (P+, s ′)

× γµDµν(P+, P−)γ αγνU (P−, s)

=
∫

d4kδ+(k2 − m2)ψ1(P+, k)ψ1(P−, k)Ū (P+, s ′)

×
[

4M (P α
+ + P α

−)

M2 + P+ · P−
− γ α

]
U (P−, s). (30)

The explicit appearance of a term inversely proportional to
M2 + P+ · P− shows that the model of Ref. [11] violates
the general requirements expressed in Secs. II and IV. The
use of the covariant expression [Eq. (19)] for Dµν leads to a
contradiction with well-known principles.

It is important to see that the transformation � and vectors
Z+ and Z− depend on both momenta P+ and P− and thereby
so do the unconventional polarization vectors (and hence
the notation ξ (P±) with only one momentum argument is
misleading). This fact is not emphasized in Ref. [11]. It might

be interesting to show that this dependence on two momenta
is completely contained in Wigner rotations, Wi

j (P±, Z±),
usually involved in the Lorentz transformation of polarization
vectors

ξ (P+, i) = �εi(Z+) =
∑

j

εj (�Z+)Wi
j (�Z+, Z+)

=
∑

j

εj (P+)Wi
j (P+, Z+), (31)

where the polarization vector, εj (P+) = LP+ε
j

0 , depends only
on P+ just in the same way as the genuine polarization vector
ε

j

k from Eq. (8) depends on k. The whole dependence on the
two momenta P+ and P− is contained in the Wigner (purely
3D) rotations, Wi

j (P+, Z+), through Z+ = �−1P+.
As a result the wave function of the initial (final) nucleon

in Eq. (26),

�P− ∼ ξ̄ ν(P−, i)γ α�′
ν(P−, k)U (P−),

(32)
�̄P+ ∼ Ū (P+)�̄′

µ(P+, k)ξµ(P+, i),

depends not only on the momentum of the initial P− (final P+)
nucleon but on both P+ and P−, which is beyond the very idea
of quark models. This dependence on both momenta comes
via the “unconventional” diquark polarization vectors.

Having shown that the wave function of Ref. [11] cor-
responding to Eq. (4) is not consistent with well-known
principles, here we can discuss restrictions these principles
impose on the general form of �̄′

µ(P+, k) if one is to use the
wave functions of Eq. (32).

The minimal consistency condition is∑
i

Ū (P+, s ′)�̄µ(P+, k)γ αεµ(k, i)ε̄ν(k, i)

×�ν(P−, k)U (P−, s)

=
∑

Ū (P+s ′)�̄′
µ(P+, k)ξµ(P+, i)ξ̄ ν(P−, i)γ α

×�′
ν(P−, k)U (P−s), (33)

which restricts �′
ν because �ν(P−, k) is restricted to being

covariant and independent of P+. This leads to

Ū (P+, s ′)�̄µ(P+, k)γ α

(
kµkν

m2
− gµν

)
�ν(P−, k)U (P−, s)

= Ū (P+s ′)�̄′
µ(P+, k)Dµν(P+, P−)γ α�′

ν(P−, k)U (P−s).

(34)

Although Eq. (34) admits a covariant solution for �′
ν(P−, k)

it requires �′
ν(P−, k) to depend also on P+. A solution to

Eq. (34) is

�′
ν(P−, k) = (

LkRL−1
Z−�−1

)β

ν
�β(P−, k),

(35)
�̄′

µ(P+, k) = �̄α(P+, k)
(
LkRL−1

Z+�−1
)α

µ
,

where R is an arbitrary 3D rotation. The mentioned de-
pendence on the momenta of both nucleons comes from
LkRL−1

Z+�−1. The solution [Eqs. (35)] can be verified by using
the identity

kαkβ

m2
− gαβ = (

LkRL−1
Z+�−1

)α

µ
Dµν(P+, P−)

(
LkRL−1

Z−�−1
)β

ν
.

(36)
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The arbitrariness of R follows from the identity

Rα
µ(δ0µδ0ν − gµν)Rβ

ν = δ0αδ0β − gαβ. (37)

The expressions in Eq. (34) are closely related to the
generalized parton distributions (GPD) corresponding to the
parton (quark) momentum P− − k. We would like to note that
for any given model of the nucleon one can construct such
a GPD-related function [19] that reproduces exactly the em
current of the given model and at the same time corresponds to
the round spin-dependent matter density. The problem is that
in GPD the initial and final nucleon momenta are not factorized
and therefore this GPD cannot be obtained in the framework
of a valence quark model.

V. ASSESSMENT

Using the first of two interpretations discussed here
(conventional polarization vectors), we have shown that the
seemingly covariant appearance of the expressions of Ref. [11]
results from the explicit use of the Breit frame. This failure
to maintain covariance results from using the polarization
vectors εP instead of εk to describe the vector diquark wave
function. However, this is a very important point in the present
context because it is exactly the use of εP that allows the
construction of a model wave function without orbital angular
momentum. As noted in Ref. [11], the result [Eq. (19)] has no
angular dependence, so the evaluation of the matrix element

of the spin-dependent density operator would yield a spherical
shape. However, this roundness is caused solely by the lack
of Lorentz invariance. Using the polarization vector εk would
lead to a model much like that of Ref. [10], which does have a
nonspherical shape, as measured by the spin-dependent matter
density.

Given the importance of Lorentz invariance, we have de-
rived the general form of the wave function that would produce
a Lorentz-invariant em form factor. This derivation led us
unambiguously to the “unconventional” diquark polarization
vectors ξ (P±), suggested in Ref. [18], to interpret the wave
functions used in Ref. [11]. These yield covariant results.
Unfortunately, neither the derived wave functions nor the
expression for the em current satisfy well-known principles
discussed in Sec. IV. For example, the wave function of the
incoming nucleon depends on the momentum of the outgoing
nucleon too and vice versa, so the em current cannot be written
in the traditional form of the convolution of two proper wave
functions.
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