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Fully nonlinear excitations of non-Abelian plasmas
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We investigate fully nonlinear, non-Abelian excitations of quark-antiquark plasma using relativistic fluid
theory in cold plasma approximation. There are mainly three important nonlinearities, coming from various
sources such as non-Abelian interactions of Yang-Mills (YM) fields, Wong’s color dynamics, and plasma
nonlinearity, in our model. By neglecting nonlinearities due to plasma and color dynamics we obtain the
earlier results of J. P. Blaizot and E. Iancu [Phys. Rev. Lett. 72, 3317 (1994)]. Similarly, by neglecting
YM field nonlinearity and plasma nonlinearity, the model reduces to the model of S. S. Gupta, P. K.
Kaw, and J. C. Parikh [Phys. Lett. B498, 223 (2005)]. Thus we have the most general non-Abelian mode
of quark-gluon plasma. Further, our model resembles the model of laser propagation through relativistic
plasma [P. K. Paw, A. Sen, and E. J. Valeo, Physica 9D, 96 (1983)] in the absence of all non-Abelian
interactions.
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I. INTRODUCTION

Quark-gluon plasma (QGP) is a quasi-color-neutral gas
of quarks and gluons that exhibits collective behavior. It
is expected to be formed in relativistic heavy ion collision
(RHICs) experiments, deep inside the neutron star and might
have formed in early universe. A study of collective excitations
of QGP is important to diagnose various parameters and
signatures of QGP. It is also proposed that the chaotic collective
modes of QGP give an estimate of thermalization of QGP
in RHICs [1]. From the extensive study of electrodynamics
plasma, we know that there exist various linear and nonlinear
excitations in it, governed by electrodynamic interactions,
which is an Abelian gauge theory. Here, in QGP, we also
expect similar linear and nonlinear modes, but modified
by the non-Abelian interaction, which itself is nonlinear.
Therefore, in QGP, there are two types of nonlinear effects,
one coming from usual plasma nonlinearity and another from
non-Abelian effects. Nonlinear solutions of non-Abelian or
Yang-Mills (YM) theory are studied extensively by Matinyan,
Savvidy, and Ter-Arutyunyan-Savvidy [2] without plasma, but
with Higgs order phase. Later, these studies were extended
to QGP by Blaizot and Iancu [3] and various periodic,
quasi-periodic, chaotic nonlinear modes, and transition from
order to chaos by plasma collective effects were studied. A
study of stabilization of QCD vacuum instability by plasma
collective modes was examined earlier in Ref. [4]. There is
another group of work along these lines by Gupta, Kaw, and
Parikh [5] where nonlinear or non-Abelian modes, coming
from the Wong’s color dynamics [6], were studied, but
without the nonlinearity of YM fields and plasma nonlinearity.
In Ref. [3], the role of Wong’s color dynamics is not
explicit because it is based on quantum kinetic theory [7],
whereas in classical theories of [5,8,9] and in our model
color dynamics is explicit. Here, we present fully nonlinear,
non-Abelian excitations, including all nonlinearities: plasma
nonlinearity, YM field nonlinearity, and color dynamics
nonlinearity.

II. RELATIVISTIC FLUID THEORY OF QGP

The relativistic fluid set of equations, in cold plasma limit,
is given by [8]

m
duµ

dτ
= gIaG

µν
a uν, (1)

the equation of motion, where m is the mass, τ the proper time,
g the coupling constant, a the color index, uν the 4-velocity,
which is also the fluid velocity in cold plasma limit, and G

µν
a

the field tensor, defined as

Gµν
a = ∂µAν

a − ∂νAµ
a + gεabcA

µ

b Aν
c , (2)

in terms of four-vector potentials A
µ
a and where εabc is the

Levi-Civita tensor, the structure constant of our SU (2) YM
system. Ia are the dynamical color charges that obey Wong’s
equation,

dIa

dτ
= −gεabcu

µAµbIc. (3)

The vector potentials are obtained from the Yang-Mills field
equation,

∂µGµν
a + gεabcAµbG

µν
c = J ν

a , (4)

where J ν
a is the four-vector color current produced by

various species in plasma with color charges, such as quarks,
antiquarks, and gluons. For simplicity, here in our analysis,
we consider quark-antiquark plasma and the current density is
given by

J ν
a = g

∑
species

nIau
ν, (5)

where n is the density of each species, determined by the
continuity equation,

∂µ(nuµ) = 0. (6)

Because our main goal here is to look for non-Abelian features
in QGP, we have neglected thermal effects by taking the cold
plasma limit, for simplicity. On the other hand, one must
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include pressure tensor terms, which involves new features
like pressure gradients, and viscosity terms in the equation of
motion and an additional equation, the equation of state. Of
course, if one proceeds with kinetic theory, [9], then all these
thermal effects are included, which is a separate problem, and
we know from the study of plasma physics [10] that major
properties of plasma may be explained by the study of fluid
theory. We also know that by taking different moments, with
respect to particle momentum, pµ, color charge, Qa , etc., we
may derive the set of fluid equations as shown in the Appendix.
The lowest order two moments of the distribution function with
respect to pµ leads to density and fluid momentum. Further
moments of the distribution function with respect to pµ and
Qa may be used to define the fluid dynamical color charge,
which rightly reproduces the Wong’s equation for color charge
(3). With these defined fluid variables one gets the expression
for J ν

a , Eq. (5), as shown in the Appendix.
In general, Eqs. (1) to (6) are a set of very complicated,

coupled, nonlinear equations to be solved and hence one
goes for approximations, such as moving frame ansatz [11],
space-homogeneous solutions, and so on, to look for special
solutions. Following Blaizot and Iancu [3], let us consider the
homogeneous solutions of our set of equations, a few of them
may be easily solved. The continuity equation for each species
may be integrated and we get

n(t)u0(t) = constant = n0u
0
0, (7)

where n0 and u0
0 are the density and zero-component of fluid

velocity at equilibrium. We also chose a gauge A0
a = 0 and the

spatial part of the equation of motion may be easily integrated
to get

uj = −gIaA
j
a

m
, (8)

with the assumption that, at equilibrium, the plasma is at rest.
The zero-component fluid velocity is given by

u0 =
√

1 + u2
j , (9)

and hence u0
0 = 1. Similarly, the spatial part of the field

equations gives

Äi
a + g2

[(
A

j

bA
j

b

)
Ai

a −
(
A

j

bA
j
a

)
Ai

b

]
= g

∑
n0Ia

ui

u0
,

(10)

and the temporal component gives∑
n0Ia = εabcA

i
bȦ

i
c, (11)

where the dot means differentiation with respect to time.
Finally, the color dynamics equation reduces to

İa = gεabc

ui

u0
Ai

bIc. (12)

For further simplification, let us use hedgehog ansatz where
the color directions are taken to be along the spatial direction
and redefine variables as

X ≡ gI0Ax1

m
; Y ≡ gI0Ay2

m
; Z ≡ gI0Az3

m
; (13)

and rescaling time and color charges as

t → m

I0
t and Ia → Ia

I0
, (14)

where I0 is introduced to normalize IaIa = 1, which is one of
the constants of motion as can be seen from the equation for
color dynamics. Further, from Eq. (11), Ia of second species
(antiquarks) is opposite to that of first species (quarks) and
hence I2a = −I1a ≡ −Ia . In terms of redefined variables, our
simplified set of equations becomes

Ẍ + (Y 2 + Z2)X = −εI 2
x

X√
1 + (IxX)2 + (IyY )2 + (IzZ)2

(15)

and

İx = − IyIz(Y 2 − Z2)√
1 + (IxX)2 + (IyY )2 + (IzZ)2

, (16)

and similar equations for y and z components that may be
obtained by cyclic change among x, y, and z. The parameter

ε ≡ 2ω2
pI 2

0

m2 , where the plasma frequency ω2
p ≡ n0g

2I 2
0

m
. The

above set of equations has two immediate constants of motion,
namely, IaIa = 1 and

(Ẋ2 + Ẏ 2 + Ż2)/2 + (X2Y 2 + Y 2Z2 + Z2X2)/2

+ ε

√
1 + (IxX)2 + (IyY )2 + (IzZ)2 = E, (17)

the energy. This approximate set of equations retains all the
important aspects of QGP such as YM nonlinearity, plasma
nonlinearity, and color dynamics nonlinearity. In the earlier
calculations of Blaizot and Iancu [3], the plasma nonlinearity
is neglected and in Ref. [5] the YM nonlinearity is dropped
out.

To extract the results of Blaizot and Iancu [3], let us assume
that color charge Ia is constant, and then Eq. (15) reduces to

Ẍ + (Y 2 + Z2)X = −ε
1

3

X√
1 + (X2 + Y 2 + Z2)/3

, (18)

where the square root term is the plasma nonlinearity, coming
from the relativistic treatment just like in Ref. [11]. Further,
expanding the plasma nonlinearity term up to 3rd order in
vector potential gives

Ẍ +
(

1 − ε

18

)
(Y 2 + Z2)X − ε

18
X3 + ε

3
X = 0, (19)

which is similar to that of Blaizot and Iancu [3], except with a
few new terms containing a (− ε

18 ). This new terms may lead to
additional new features like chaotic scattering [12]. This model
without these new additional terms was studied extensively by
Matinyan, Savviddy, and Ter-Arutyunyan-Savvidy [2] and by
Blaizot and Iancu [3].

Let us look for some other new solutions of our model
Eq. (18). For example, a special solution with Z = 0 leads to

Ẍ + Y 2X = −ε
1

3

X√
1 + (X2 + Y 2)/3

, (20)

for X and a similar equation for Y with X and Y interchanged.
It differs from similar work by Matinyan, Savvidy, and Ter-
Arutyunyan-Savvidy [2] and Blaizot and Iancu [3] because
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we have kept the plasma nonlinearity also. Our numerical
study shows that the plasma nonlinearity enhances the chaos
and therefore increases the order-to-chaos transition parameter
defined in Ref. [2], which will be discussed later.

Next, let us look at another special solution with X = Y =
Z of our general equation Eq. (15) and we get

Ẍ + 2X3 = −ε
1

3

X√
1 + X2

, (21)

which describes a nonlinear oscillation. It is a more general
nonlinear oscillation, including the plasma nonlinearity, than
the elliptic functions Cn discussed in Refs. [2,3]. It is easy to
see that on neglecting the plasma nonlinearity, we get back Cn

or Sn, depending on the strength of the non-Abelian parameter
compared to the plasma frequency. It is interesting to note that
the above mode is an exact solution of QGP because, for
X = Y = Z, the color dynamics equation shows that the color
charges are constant.

III. RESULTS

The most general set of equations of our model comprises
nonlinear, coupled equations and may not be easy to solve.
So we have made an approximation, known as hedgehog
ansatz, and reduced the number of equations to be solved,
but having all non-Abelian and nonlinear features. From this
simplified set of equations, we may get the results of all other
earlier works in this field. For example, in Fig. 1, we plotted
the Poincare section of our model with the approximation
that the dynamical color charges are constant and Z = 0,
Eq. (18). Figures 1(a) and 1(b) are for the system without
plasma nonlinearity and show that the regular orbits seen in
Fig. 1(a) for ε = 5 disappear at the critical value of ε = 2,
Fig. 1(b), and hence are chaotic. Similar figures with plasma
nonlinearity show changes from ordered orbit islands for
ε = 8.15, Fig. 1(c), into chaotic motion for ε = 6. Therefore,
the critical value of ε for the order-to-chaos transition is

FIG. 1. Poincare sections of our model (with Z = 0 and Ia =
constant) without plasma nonlinearity [(a) ε = 5 and (b) ε = 2)] and
with plasma nonlinearity [(c) ε = 8.15 and (d) ε = 6)].

FIG. 2. Exact numerical solutions of our model, as an example
ux , for different values of ε with the same initial conditions [(a)
ε = 100, (b) ε = 20, (c) ε = 2, and (d) ε = 0)].

higher with plasma nonlinearity. The chaos seen with ε = 6.0
with plasma nonlinearity develops islands of ordered motion
without plasma nonlinearity and we need smaller ε (ε = 2) to
have chaos. Hence the plasma nonlinearity enhances the chaos,
which is an additional new feature compared to the results of
Blaizot and Iancu [3]. Another special solution of our model
with Ia = constant is X = Y = Z, Eq. (21), which is not an
elliptic function as in Ref. [3], but little more general nonlinear
oscillation.

Next, in Fig. 2, we plotted the general solutions of our
model, for example, ux [Eq. (8)], with hedgehog ansatz for
different values of ε with the same initial conditions and we
see that as the ε decreases the system becomes more and more
chaotic, which is, qualitatively, similar to the results of Gupta,
Kaw, and Parikh [5]. For a large ε, say, ε = 100 [Fig. 1(a)],
the amplitude of oscillations is small and the YM nonlinearity
and plasma nonlinearity may be negligible and hence it is
just the Abelian oscillations, modulated by color dynamics.
As ε decreases, amplitude increases and all nonlinearities due
to YM fields, color dynamics, and plasma nonlinearity come
into play and drive the system to chaotic motion as can be
seen from Figs. 2(b) and 2(c) with intermittent oscillations.
For ε = 0, Fig. 2(d), the chaotic oscillations are mainly due
to YM nonlinearity. Similar behavior is also seen in the other
components of velocity.

IV. CONCLUSIONS

We have studied fully nonlinear, non-Abelian excitations
of quark-antiquark plasma using relativistic fluid theory. It
exhibits new features like a special nonlinear oscillation,
different from elliptic functions, and enhancement of chaos.
Further, we have found that by neglecting color dynamics
and plasma nonlinearity we get back the results of Blaizot
and Iancu [3] and by neglecting YM field nonlinearity and
plasma nonlinearity, we obtain the results of Gupta, Kaw,
and Parikh [5]. Hence, we have the most general nonlinear,
non-Abelian modes of QGP. In general, all three nonlinearities
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are always there in the system. For small amplitude excitations
(|X|, |Y |, and |Z| are � 1), YM field nonlinearity and plasma
nonlinearity may be negligible like in Ref. [5]. At present,
we don’t know the appropriate limit to get the results of
Ref. [3] where the role of Wong’s color dynamics is not
explicit. It is based on quantum kinetic theory [7] whereas
our model is based on classical fluid theory which may be
derived from classical kinetic theory [9]. By neglecting all
non-Abelian nonlinearities our model resembles the model of
laser propagation through relativistic plasma [11].

APPENDIX

The set of fluid equations, Eqs. (1), (3) and (6) may be also
derived from the kinetic theory [10]. Following Kelly et al. [9],
the Boltzmann equation is

pµ

[
∂

∂xµ
− gQaG

a
µν

∂

∂pν

− gfabcAµbQc

∂

∂Qa

]
f (x, p,Q)

= 0, (A1)

where xµ, pµ are the four-vector coordinates, and momenta
and Qa are the color charges. f (x, p,Q) is the distribution
function and fabc are the structure constants of the group.
On taking the lowest moment of the above equation, i.e.,
just integrate the above equation, Eq. (A1), with respect to
momenta and color charges, we get the continuity equation

∂µ(nP µ) = 0, (A2)

where the fluid density, n, is defined as

n ≡
∫

dp dQf (x, p,Q), (A3)

and the fluid four-momentum, P µ, is defined through the
relation

nP µ ≡
∫

dp dQpµf (x, p,Q), (A4)

where dp and dQ are the volume elements of momentum and
color space, respectively. It reduces to Eq. (6) for P µ = muµ,
where m is the rest mass and uµ is the fluid 4-velocity. Taking
the next moment of the Boltzmann equation with respect to
pσ , we get

nP µ∂µP σ = gGµσ
a Iµa + ∂µT̃ µσ , (A5)

where T̃ µσ is the pressure tensor term. I
µ
a is defined as

Iµ
a ≡

∫
dp dQpµQaf (x, p,Q), (A6)

which may be used to define the fluid dynamical color charge,
through the relation

nP µIa ≡ Iµ
a , (A7)

just like the definition of P µ. In cold plasma limit we neglect
the pressure tensor term and Eq. (A5) reduces to Eq. (1) using
the continuity equation and the relation d

dτ
= uµ∂µ. Next,

taking the moments with respect to Qa , we get

∂µIµ
a = −gfabcA

µ

b Iµc, (A8)

which on using the definition of fluid color charge, Eq. (A7),
we get the Wong’s equation

P µ∂µIa = −gfabcA
µ

b PµIc. (A9)

All fluid variables, n, P µ, and Ia , are functions of xµ, four-
vector coordinates. Thus we get all fluid equations, Eqs. (1),
(3) and (6) from the kinetic theory by taking various moments
and using the definition of n, P µ, and Ia as given by Eqs. (A3),
(A4), and (A7) and using the relation P µ = muµ. The current
density may be defined as

Jµ
a ≡ g

∑
species

∫
dp dQ

pµ

m
Qaf (x, p,Q) = g

∑
species

nuµIa,

(A10)

using the definition of fluid variables, and leads to Eq. (5).
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