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Transport rates and momentum isotropization of gluon matter in
ultrarelativistic heavy-ion collisions
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To describe momentum isotropization of gluon matter produced in ultrarelativistic heavy-ion collisions, the
transport rate of gluon drift and the transport collision rates of elastic (gg ↔ gg) as well as inelastic (gg ↔ ggg)
perturbative quantum chromodynamics- (pQCD) scattering processes are introduced and calculated within the
kinetic parton cascade Boltzmann approach of multiparton scatterings (BAMPS), which simulates the space-time
evolution of partons. We define isotropization as the development of an anisotropic system as it reaches isotropy.
The inverse of the introduced total transport rate gives the correct time scale of the momentum isotropization.
The contributions of the various scattering processes to the momentum isotropization can be separated into the
transport collision rates. In contrast to the transport cross section, the transport collision rate has an indirect
but correctly implemented relationship with the collision-angle distribution. Based on the calculated transport
collision rates from BAMPS for central Au+Au collisions at Relativistic Heavy Ion Collider energies, we show
that pQCD gg ↔ ggg bremsstrahlung processes isotropize the momentum five times more efficiently than elastic
scatterings. The large efficiency of the bremsstrahlung stems mainly from its large momentum deflection. Due to
kinematics, 2 → N (N > 2) production processes allow more particles to become isotropic in momentum space
and thus kinetically equilibrate more quickly than their back reactions or elastic scatterings. We also show that
the relaxation time in the relaxation time approximation, which is often used, is strongly momentum dependent
and thus cannot serve as a global quantity that describes kinetic equilibration.
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I. INTRODUCTION

It is speculated that the quark gluon plasma (QGP) created
in Au+Au collisions at the Relativistic Heavy Ion Collider
(RHIC) is a strongly coupled liquid [1]. Because of strong
coupling or rather strong interactions, the QGP fluid has a
very small viscosity. However, questions regarding the source
of the strong coupling and its needed strength to generate a
quasi-ideal fluid remain unanswered. The necessary condition
for the onset of perfect hydrodynamical expansion is the
achievement of local kinetic equilibrium. Although the quarks
and gluons produced at RHIC are far from thermal equilibrium,
kinetic equilibration should occur on a short time scale so that
the elliptic flow, v2, increases substantially [2–4]. In this article
we assume that the strong coupling and thermalization are a
consequence of frequent collisions among gluons on a semi-
classical level. We recently developed a new on-shell parton
cascade code, BAMPS (Boltzmann approach of multiparton
scatterings) [5], which is a microscopical relativistic transport
model that solves the Boltzmann equation for partons that are
produced in ultrarelativistic heavy-ion collisions. The included
interactions can be elastic gg ↔ gg processes or inelastic
gg ↔ ggg pQCD bremsstrahlung processes. Although the
total perturbative quantum chromodynamics- (pQCD) scat-
tering cross section is only a few mb, it is enough to drive the
system toward full thermal equilibrium [5] and also to generate
sufficiently large elliptic flow v2 [6]. Our goal is to understand
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the theoretical mechanism for the fast equilibration of gluons,
which are observed numerically.

In kinetic theory there are two competing processes that
affect kinetic equilibration. The first is when particles stream
freely between two subsequent collisions. In an expanding
system free streaming drives the system out of equilibrium.
This is the case in a one-dimensional Bjorken expansion,
which most likely occurs early on in ultrarelativistic heavy-ion
collisions. The second one involves collisions that make the
particle momentum kinetically isotropic and thermal. Here
one has to take into account the distribution of collision
angle because large-angle collisions should contribute more
to momentum isotropization. We define isotropization as the
development of an anisotropic system as it reaches isotropy.
A transport cross section [7,8] was introduced, either in the
form

σ tr =
∫

dθ
dσ

dθ
sin2 θ (1)

or

σ tr =
∫

dθ
dσ

dθ
(1 − cos θ ), (2)

where θ denotes the collision angle as a pertinent quantity
that measures the contributions of various collision processes
to kinetic equilibration. Although kinetic equilibration is
observed locally in the comoving frame of the expanding
system, the transport cross section is usually calculated
in the center-of-mass (c.m.) frame of individual colliding
particles. The changes in momenta after the collision appears
different in each respective frame. Therefore, the transport
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cross section may not be fully appropriate for characterizing
kinetic equilibration.

A widely used, yet simpler, method to characterize kinetic
equilibration is to calculate or estimate the relaxation time
τrel [9–15]. In the relaxation time approximation the collision
term is expressed by (feq − f )/τrel, where τrel is assumed to
be momentum independent and is then a global quantity that
characterizes the kinetic equilibration time scale. However, the
validity of the approximation must be verified.

In this article we derive a mathematical method of quanti-
fying the contributions of various processes to the momentum
isotropization. For this we define the transport rate, which
is the momentum average of the particle density f (x, p).
The particle density is found within the parton cascade as
a solution of the Boltzmann equation. Moreover, it will be
shown that the inverse of the total transport rate gives the
global time scale of momentum isotropization. In Sec. II
we mention the operation of the employed parton cascade
BAMPS and improvements made in it. The initial condition
of gluons, as an input for the parton cascade, is discussed
in Sec. III. We show results on thermal equilibration and
momentum isotropization of gluons in Sec. IV for a central
Au+Au collision at RHIC (

√
s = 200 GeV). The inclusion

of quarks into the parton cascade is straightforward and the
results will be presented in another article. In Sec. V we
define the transport rates, which determine contributions of
various processes to the momentum isotropization and derive
their relations to the transport cross sections. We present in
Sec. VI the numerical results on the transport rates. The trans-
port rate of gluon drift is computed and compared with the one
when obtained assuming Bjorken boost invariance. To show
the importance of the bremsstrahlung processes in thermal
equilibration, we carry out simulations with and without these
processes for comparison. The quantitative difference in the
momentum isotropization for both simulations is manifested
by the ratio of the total transport rates. The ratio, which turns
out to be approximately 6, is used to perform a third type
of simulation in which only elastic scatterings with artificially
enlarged cross sections are included. Although such large cross
sections are not physical, they verify our main finding: the
total transport collision rate is the key quantity determining
momentum isotropization. Despite the process type as long as
the total transport collision rate is the same, the momentum
isotropization is also the same. At the end of Sec. VI we
demonstrate that the relaxation time approximation is not
suitable for the quantification of the time scale for kinetic
equilibration. A summary of our findings is given in Sec. VII.
Detailed expressions for calculating the transport rates are
derived in Appendix A.

II. BAMPS AND SETUP

The structure of the parton cascade BAMPS is based on the
stochastic interpretation of the transition rate [5,16–18]. This
interpretation ensures that detailed balance is not violated,
which is nontrivial when the geometrical concept of cross
section is used [19], especially for multiple scatterings like
ggg ↔ gg. BAMPS subdivides space into small cell units.

In each of which we separately evaluate the transition
probabilities of all possible gluon pairs and triplets to see
if a particular scattering (or transition) occurs. The smaller
the cells the more local transitions can be realized. However,
the smaller cells contain fewer particles and thus have larger
statistical fluctuations in their calculated transition rates. To
achieve a high-enough number of pairs and triplets of gluons
in a cell, we adopt a test particle technique, which amplifies
the (pseudo)gluon density by a factor of Ntest. Accordingly,
the cross sections have to be reduced by the same factor to
obtain the same physical mean free path [5]. In this article
the transverse length of a cell is a constant of �x = �y =
0.25 fm and the longitudinal length �z is half of that in Ref. [5],
so for a cell of the center of the collision �z ≈ 0.1t , where t is
the running time of the evolution of gluon matter. Ntest is set to
280, which ensures that there are on average 15 test particles
per cell.

The differential cross section for the elastic pQCD scatter-
ings of gluons is given by

dσgg→gg

dq2
⊥

= 9πα2
s(

q2
⊥ + m2

D

)2 . (3)

Three-body gluonic interactions are described by the effective
matrix element [13,20,21]

|Mgg→ggg|2 = 9g4

2

s2(
q2

⊥ + m2
D

)2

12g2q2
⊥

k2
⊥
[(

k⊥ − q⊥
)2 + m2

D

]
�(k⊥�g − cosh y) (4)

where g2 = 4παs . αs is set to 0.3 in contrast to the running
coupling used in Ref. [5]. q⊥ and k⊥ denote the perpendicular
component of the momentum transfer and of the radiated
gluon momentum in the center-of-mass frame of the collision,
respectively. y is the momentum rapidity of the radiated gluon
in the center-of-mass frame, and �g is the mean free path of a
gluon.

We regularize the infrared divergences by introducing the
Debye screening mass mD

m2
D = 16παsNc

∫
d3p

(2π )3

1

p
fg (5)

(Nc = 3), which is calculated locally using the current gluon
density obtained from BAMPS. In general, the Debye screen-
ing mass should depend on the direction of the gluon propa-
gator [22]. If the gluon distribution fg significantly deviates
from its isotropic shape, the Debye screening mass may even
become negative, which leads to instabilities in certain modes
of the soft gauge field [23–28]. These instabilities and their
proper inclusion are beyond the scope of the present article.
We have simplified the problem by removing the directional
dependence of the Debye screening mass.

The suppression of the radiation of soft gluons due to
the Landau-Pomeranchuk-Migdal (LPM) effect [5,13,21] is
included using the step function in Eq. (4). There the time of the
emission, ∼ 1

k⊥
cosh y, should be smaller than the time interval

between two scatterings or equivalently the gluon mean free
path �g . This leads to a lower cutoff for k⊥ and a decrease in
the total cross section or the transition probability.
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Compared to the default setup in Ref. [5], further improve-
ments have been made. To calculate the Debye screening mass
mD in a local region more accurately, we make use of the
polar symmetry in central collisions and divide the transverse
plane in each �z-bin into rings: the first ring has a radial
size of 0 < xT < 1.5 fm (xT being the transverse radius), and
the following rings have transverse radial widths of 1 fm.
The rings are regarded as local regions in which the Debye
screening mass is evaluated.

The local collision rates of all interaction channels, the sum
of which is the inverse of the mean free path that models the
LPM effect, were evaluated in Ref. [5] in individual cells.
This leads to large fluctuations in the mean free path in cells
with few (test) particles. To reduce these fluctuations we take
the averaged value of the collision rates over all the cells
within individual rings. In addition, transverse velocities of
rings are taken into account to calculate the collision rates in
the comoving frames.

Moreover, we assume that if the energy density, which
is calculated locally in the comoving frame, sinks below
1 GeV/fm3, particles in that region no longer interact, so
they propagate freely. At this stage a hadronization procedure
should be applied, which is planned as a future project.

We concentrate on the central region of the full reaction,
which is defined as a cylinder with 0 < xT < 1.5 fm and
−0.2 < η < 0.2 where η denotes the space-time rapidity
η = 1

2 ln[(t + z)/(t − z)]. The longitudinal extension of the
cylinder is, thus, �z = 2t tanh(0.2) ≈ 0.4t . The parameters
for bounding the cylinder are found by balancing between
having a small, local region and avoiding high statistical
fluctuations. Results in this region are obtained by averaging
over the various ensembles.

III. INITIAL CONDITIONS

Initial gluons are taken as an ensemble of minijets with
transverse momentum greater than 1.4 GeV, which are pro-
duced via semihard nucleon-nucleon collisions [29]. Details
of the distribution of the initial gluons in space and time can
be found in Ref. [5]. Using Glauber geometry and assuming
independent binary nucleon-nucleon collisions, the gluon
number is initially about 700 per momentum rapidity. These
gluons take about 60% of the total given energy entered in
a central Au+Au collision. The lower momentum cutoff is
taken as a parameter to fit the experimentally measured final
transverse energy at midrapidity (see Fig. 9).

For simplicity’s sake one may assume that the two gold
nuclei are extremely Lorentz contracted with zero width.
Assuming that on-shell gluons are immediately formed (i.e.,
without any formation time) at the same time when the
corresponding nucleon-nucleon collision occurs, all initial
gluons are positioned at z = 0 fm at t = 0 fm/c. Subsequent
free streaming would immediately order the gluons with the
momentum rapidity y to a spatial slice with the space-time
rapidity η being equal to y. In the comoving frame of each
spatial slice gluon momentum has only a transverse component
and it has a highly anisotropic distribution.

At RHIC energy each of the colliding gold nuclei has
a small but nonvanishing longitudinal extension of about

FIG. 1. Transverse and longitudinal gluonic momenta spectra
during initial free streaming. The thick histogram is the distribution
of |px | at a time of 0.1 fm/c, whereas the thin histograms are
the distributions of |pz| at times of 0.1, 0.2, 0.22, and 0.24 fm/c,
respectively, from top to bottom. The results are obtained from the
central region.

0.2 fm. Therefore, gluons are primarily produced at z = 0 fm
(or η = 0) at t � 0.1 fm/c when the two nuclei overlap fully.
Note that t = 0 fm/c is when two nuclei are just touching. In
contrast to the simplified case mentioned above in reality there
is a significant smearing in the gluonic η − y correlation for
times t ≤ 0.2 fm/c. For instance, gluons with y 	= 0 will also
appear in the central slice with η = 0 for a while. The rate of
smearing disappearance is shown in Fig. 1, where the spectra of
transverse and longitudinal gluon momenta are depicted during
initial free streaming in absence of secondary collisions.

The spectra are obtained in the central region (0 < xT <

1.5 fm and −0.2 < η < 0.2). We see that the |pz| spectrum
changes quite drastically after 0.2 fm/c, the same point when
two gold nuclei cease to overlap and the production of minijets
is completed. The free streaming of high |pz| gluons away from
the central region leads to strong, continuous suppression in the
|pz| spectrum. Corresponding to this suppression, the changes
in the |px | spectrum at low transverse momentum are, however,
tiny compared with their absolute values at low |px |. At high
|px | the change in time is negligable because there is no initial
transverse expansion for large nuclei. Therefore, in Fig. 1 the
|px | spectrum is depicted only at t = 0.1 fm/c. We note that
at large |pz| the suppression stops completely when all the
particles with high pz (or with high y > ηb = 0.2) have left
the small, but finite, rapidity window [−ηb : ηb]. Then, only
particles with lower rapidity y remain in the central region.
The time a gluon needs to leave the central region is, for
instance, �t = t0 tanh ηb/(tanh y − tanh ηb) when the gluon
is produced at z0 = 0 fm at t0. We see that the larger the
momentum rapidity y, the smaller �t . For a gluon with y = 1
and t0 = 0.1 fm/c it takes �t = 0.035 fm/c to leave the central
region.

Comparing the particle spectrum of |pz| with that of |px |,
the momentum distribution is, strictly speaking, at no time
isotropic during the initial free streaming. The characteristic
hump in the |px | spectrum at 1.4 GeV arises from the
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requirement that the transverse momentum of the original
minijets should be greater than 1.4 GeV. Choosing other initial
conditions like in HIJING [30,31] or the color glass conden-
sate [32] would change the shape of the initial momentum
distribution. However, even though the momentum distribution
might be isotropic during the continuing suppression of high
|pz| gluons, the further suppression leads to a deviation in
the momentum distribution away from isotropy within a very
short time of ∼0.1 fm/c. Therefore, we can conclude that
free streaming leads to η ≈ y regardless of the initial η − y

correlation. The gluon momentum distribution after short-time
free streaming is, in general, neither thermal nor isotropic.

In this article we introduce an additional formation time [5]
for every minijet, �tf = cosh y�τf ≈ cosh y · 1/pT , which
models the prior off-shell propagation of the gluons to be
freed in individual nucleon-nucleon collisions, where cosh y

denotes the Lorentz factor. Within �tf we assume that the
virtual gluon does not interact and, therefore, moves freely at
the speed of light. Gluons with large |pz| have in turn a large
Lorentz factor and, thus, a large formation time. Although most
of these gluons are produced in the central region, they are
far from the central region when they materialize as on-shell
partons because of the assumed off-shell propagation. Because
we count particles only if they are on-shell, i.e., interactive,
the initial gluon momentum distribution at 0.2 fm/c differs
from that shown in Fig. 1. However, it is practically identical
to that at 0.24 fm/c, which is not isotropic. When the initial
conditions are chosen accordingly and a simulation including
the pQCD bremsstrahlung processes is performed, we obtain
dET /dy ≈ 640 GeV at midrapidity with a final time of 5 fm/c,
at which the energy density of gluons decreases to the critical
value of 1 GeV/fm3. Our dET /dy at y = 0 from the simulation
is comparable with that found in experimental measurements
at RHIC [33] (see Fig. 9).

IV. MOMENTUM ISOTROPIZATION AND
KINETIC EQUILIBRATION

Kinetic equilibration is a process in which the particle
momentum becomes isotropic and thermal, which has an expo-
nential distribution. Momentum isotropization is part of kinetic
equilibration and is reached before full kinetic equilibrium
[25–27]. (Strictly speaking, full kinetic equilibrium can be
achieved only for a static, nonexpanding system.) In this article
we concentrate on the contribution of collision processes to
momentum isotropization and kinetic equilibration of gluon
matter in ultrarelativistic heavy-ion collisions.

As demonstrated in Sec. III, the initial free streaming (or the
off-shell propagation) of gluons with high momentum rapidity
y makes the momentum distribution anisotropic, even if it
appears momentarily isotropic. Initially in the central region
most gluons move in the transverse direction. Secondary
collision processes gradually force them into the longitudinal
direction, which gives a positive contribution to momentum
isotropization. However, whenever a gluon switches to the
longitudinal direction, its momentum rapidity grows and the
gluon tends to drift out of the central region. This gives a
negative contribution to momentum isotropization in the local

region. Although gluons with the same (regardless of ± sign)
momentum rapidity drift from their neighboring slices into
the central slice, this cannot completely compensate for the
loss in the central region. The reason is that thermalization
occurs earlier in the central slice than in the outwards regions
corresponding to Bjorken’s picture of boost-invariance in
the space-time evolution of the parton system [34]. In the
transverse direction, however, there is no transverse flow at the
beginning of the expansion. Therefore, no net drift of gluons
occurs in the transverse direction. The difference in the gluon
drift in the longitudinal and transverse directions leads to a
situation in which the net effect of the drift has a negative
contribution to momentum isotropization and the stronger the
momentum isotropization, the larger the negative contribution
of the particle drift. At later times, when three-dimensional
expansion takes place, there is also a net particle drift in
the transverse direction and the negative contribution of the
particle drift to momentum isotropization decreases.

In this section we first demonstrate momentum isotropiza-
tion and kinetic equilibration of gluons in central Au+Au
collisions at RHIC energy. The various contributions of
collisions and drift to momentum isotropization will be
analyzed in detail in the next section. Figure 2 depicts the
transverse and longitudinal gluon momenta distributions in the
central region at four different times throughout the evolution
of gluon matter. The results are obtained when both elastic
and inelastic pQCD-based scattering processes are included.
We first see that the momentum distribution continuously
isotropizes and thermalizes over time. Due to the expansion
full thermal equilibrium cannot be achieved if the collision
rate is finite. A certain mismatch in pz and px must exist due
to the counteraction between the expansion and the collisions.

Second, Fig. 2 shows that there is an exponential dis-
tribution before the system becomes isotropic. It is almost
impossible to distinguish the gluon momentum isotropy time
scale from the thermal time scale. It seems that when collisions
drive the particle momentum close to isotropy, the momentum
distribution is already practically thermalized. In general,

FIG. 2. Transverse (thick histograms) and longitudinal (thin
histograms) gluon momentum spectra in the central region at various
times throughout the evolution of gluon matter. Results are obtained
from the simulation when both elastic and inelastic pQCD-scattering
processes are included.

024911-4



TRANSPORT RATES AND MOMENTUM ISOTROPIZATION . . . PHYSICAL REVIEW C 76, 024911 (2007)

momentum isotropization happens on a shorter time scale
than kinetic equilibration. The difference in the time scales
of both dynamical processes depends on the initial condition
for gluons.

Kinetic equilibration for the softer gluons is completed
earlier than that for the harder gluons. This is obvious for
elastic gg ↔ gg scattering processes because the momentum
transfer in collisions is typically the Debye screening mass.
Therefore, the hard gluons cannot be deflected as strongly as
the soft gluons. However, in the inelastic pQCD gg ↔ ggg

collisions, which we will prove are the dominant processes
in kinetic equilibration, the difference in the momentum
degradation for soft and hard gluons is miniscule due to the
production or absorbtion of an additional gluon. Averaging
the various kinetic equilibrium times for soft and hard gluons
the momentum distribution becomes isotropic and thermal at
1-2 fm/c. Furthermore, we clearly see that the distributions
become steeper with time, which indicates the ongoing cooling
of the system related to quasihydrodynamical behavior due to
the subsequent work done by the expanding system.

To understand the role of the inelastic pQCD gg ↔ ggg

processes in kinetic equilibration, we also carry out calcu-
lations in which gluons interact only via elastic scatterings.
The initial conditions are the same as those when inelastic
collisions are included. The results are shown in Fig. 3, which
has the same structure as Fig. 2. The difference in the results
depicted in both figures can be immediately seen. The spectra
in Fig. 3 only show a small change throughout the entire
evolution of the system and are still highly anisotropic and
are not thermalized as late as 4 fm/c. The evolution resembles
that of free streaming.

The kinetic equilibration time strongly depends on whether
the pQCD bremsstrahlung processes and their back reactions
are taken into account. The pQCD bremsstrahlung processes
and their back reactions isotropize the momentum more
efficiently than elastic collisions and, thus, play an essential
role in early thermalization of gluons in heavy-ion collisions
at RHIC. As seen in Fig. 4, the pQCD cross section of gg →
ggg processes, including LPM suppression (dashed curve),

FIG. 3. Transverse (thick histograms) and longitudinal (thin
histograms) gluon momentum spectra in the central region at various
times throughout the evolution of gluon matter. Results are obtained
using elastic only pQCD-scattering processes.

is smaller than that of elastic scatterings (solid curve) and
much smaller than the cross section obtained in the simulation
with elastic-only scattering processes (dotted curve). Although
particle production in inelastic processes can enhance the
number of collision centers and, thus, effectively shorten
the mean free path of particles, chemical equilibration will
balance the production by the annihilation of particles to avoid
oversaturation. The fact that the cross section of the pQCD
bremsstrahlung process is small, but its kinetic equilibration
efficiency is large, demonstrates that cross sections or collision
rates are not the correct quantities to describe the contributions
of various processes to kinetic equilibration. The collision-
angle distribution must be at least taken into account. Defining
the correct quantity is one of the main purposes for this article.

In Fig. 4 the large difference in the total cross sections of
elastic scatterings for various simulations is shown. Because

〈σgg→gg〉 ∼ 1

m2
D

〈
1 + 4m2

D

/
s
〉 , (6)

the difference in the cross sections arises from the difference
in the development of the Debye screening mass mD in the
various simulations. mD is calculated dynamically according
to (5) and, thus, is roughly proportional to

√
n/〈p〉 = n/

√
ε,

where n and ε are the number and energy density of gluons,
respectively.

We consider two extreme cases of expansion with initial
conditions that possess the longitudinal boost invariance. One
case is free streaming, for which n as well as ε decrease
as τ−1, where τ = √

t2 − z2 is the proper time. Thus, mD

decreases as τ−1/2. In the other case of a one-dimensional
ideal hydrodynamical expansion, n decreases as τ−1, whereas
ε decreases as τ−4/3. Therefore, mD decreases as τ−1/3. In a
viscous hydrodynamical expansion the decrease of mD over

FIG. 4. Time evolution of pQCD cross sections. The solid and
dashed curve show the pQCD cross section for gg → gg and
gg → ggg collisions, respectively, when both elastic and inelastic
scattering processes are considered. The dotted curve gives the
cross section of gg → gg collisions in the simulation, including
elastic-only pQCD-scattering processes, whereas the dash-dotted
curve indicates the cross section (divided by a factor of 6) of gg → gg

collisions when elastic-only scattering processes with artificially large
cross sections are included.
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FIG. 5. Time evolution of the Debye screening mass. Results are
obtained from the simulation with both pQCD elastic and inelastic
collisions (solid curve), with elastic-only pQCD collisions (dotted
curve), and with elastic-only collisions using large cross sections
(dash-dotted curve).

time falls between the two cases. The time dependence of
the Debye screening mass in a real expansion starting out of
thermal equilibrium and undergoing thermalization is more
complicated. Whereas kinetic equilibration drives the density
distribution of gluons to its thermalized shape, which affects
the calculation of mD (5), chemical equilibration, which is not
taken into account above, will enhance or reduce the gluon
number, which in turn enhances or reduces mD .

Figure 5 shows the time evolution of the Debye screening
mass in various simulations. The results are obtained in the
central region where t ≈ τ . All the curves in Fig. 5 decrease
with time. Similar calculations for the Debye screening mass
have been done in Refs. [35,36] employing the parton cascade
VNI/BMS. From Fig. 5 we see that the evolution depends on
the simulation type: in the simulation including both elastic
and inelastic pQCD scatterings (solid curve) mD decreases
slower than t−1/3 due to gluon production in the course of
chemical equilibration; in the simulation with elastic-only
pQCD collisions the decrease of mD (dotted curve) is slightly
stronger than t−1/2, which indicates again that the expansion
of gluons in this simulation resembles that of free streaming;
the third simulation includes elastic-only scatterings with
artificially large cross sections and shows the same kinetic
equilibration as that in the simulation including both elastic and
inelastic pQCD collisions (see Fig. 6). The Debye screening
mass in this simulation (dash-dotted curve) decreases between
t−1/2 and t−1/3.

Returning to the kinetic equilibration analysis, the gluon
kinetic equilibration time can in principle be determined
quantitatively by studing the entropy production. Because
the entropy can be hardly extracted from any microscopic
cascade, we concentrate on momentum isotropization of
gluons. Choosing minijets production as the initial condition,
momentum isotropization and kinetic equilibration time scales
are almost identical (as seen in Fig. 2).

To quantify momentum isotropization we have to choose an
appropriate momentum-distribution moment Q. For instance,
Q := 〈p2

z /E
2〉 is used to describe momentum isotropization.

FIG. 6. Momentum isotropization. Results are obtained from the
simulation with both elastic and inelastic pQCD-scattering processes
(solid curve), with elastic-only pQCD-scattering processes (dotted
curve) and with elastic-only scattering processes using artificially
large cross sections (dash-dotted curve).

Later we briefly discuss the consequences of Q = 〈|pz|/E〉,
to see how sensitive the results are to different descriptions of
momentum isotropization. In Fig. 6 momentum isotropization
with Q = 〈p2

z/E
2〉 is depicted. The average is taken over all

gluons in the central region. In Fig. 6 we see that Q relaxes
its equilibrium value of 1/3 when the inelastic processes are
included, whereas it still deviates from its equilibrium value
at the time 4.5 fm/c when only elastic pQCD scatterings are
considered. These results agree with the momentum spectra
time evolution shown in Figs. 2 and 3. The dash-dotted curve
in Fig. 6 depicts the momentum isotropization considering
elastic-only collisions with artificially large cross sections and
is almost the same as the solid curve, which implies they have
basically the same kinetic equilibration. The third simulation
is detailed in Sec. VI.

The momentum isotropization fit is found using the relax-
ation formula

F (t) = 1

3
+

[
Q(t0) − 1

3

]
exp

[
− t − t0

θrel(t0)

]
. (7)

F (t) is equal to Q(t) only at t = t0. For every fixed t0 the
relaxation time θrel is constant with respect to t . Using θrel =
0.9 fm/c at t0 = 0.3 fm/c up to 1.0 fm/c and θrel = 2.4 fm/c
at t0 = 1.2 fm/c for the rest, F (t) is a perfect fit for the solid
curve in Fig. 6. An isotropy is achieved at about 1.0 fm/c in
the simulation that includes both elastic and inelastic pQCD-
scattering processes. This time scale is consistent with that
extracted from the momentum distribution (see Fig. 2). Within
our parton cascade description early thermalization occurs at
roughly 1 fm/c for the initially nonequilibrated gluon matter
at RHIC.

The relaxation time θrel is generally time dependent.
Because a local fit requires that the time derivatives of F (t)
and Q(t) are equal at t = t0, which leads to

Q̇(t)
∣∣
t=t0

= Ḟ (t)
∣∣
t=t0

= −(Q(t0) − Qeq)
1

θrel(t0)
, (8)
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where Qeq = 1/3, θrel can be calculated as [changing t0 to t in
Eq. (8)]

Q̇(t)

Qeq − Q(t)
= 1

θrel(t)
. (9)

Equation (9) expresses the relaxation rate of momentum
isotropization 1/θrel as a function of time, which will be
separated analytically into terms corresponding to the particle
drift and the various scattering processes. We will derive the
so-called transport rates, which precisely quantify the contri-
butions of various processes to momentum isotropization.

V. TRANSPORT RATE

To introduce Q at a certain space point �ξ one has to consider
its comoving frame. For the coordinate x and the momentum
four-vector p in the �ξ ’s comoving frame, Q is defined by

Q(t) :=
〈
p2

z

E2

〉∣∣∣∣
�x=0

= 1

n

∫
d3p

(2π )3

p2
z

E2
f (�x, t, p)|�x=0, (10)

where the local number density is

n(t) =
∫

d3p

(2π )3
f (�x, t, p)|�x=0. (11)

In practice Q is evaluated within a volume element, which
is small compared to the volume of the expanding system
but is large enough so that it still contains a large number of
particles. For the calculations shown in Fig. 6 we used the
central region bounded by xT < rb = 1.5 fm and |η| < ηb =
0.2. Correspondingly (10) and (11) must also be adjusted and
detailed expressions are derived explicitly in Appendix A. As
a simplification we now consider the limit rb → 0 and ηb → 0
where definitions (10) and (11) can be used.

Taking the time derivative of Q(t) yields

Q̇(t) = 1

n

∫
d3p

(2π )3

p2
z

E2

∂f

∂t

∣∣∣∣
�x=0

− Q(t)
1

n

∫
d3p

(2π )3

∂f

∂t

∣∣∣∣
�x=0

.

(12)

We replace ∂f/∂t in Eq. (12) by

∂f

∂t
= − �p

E
· �∇f + C22 + C23 + C32 (13)

from the Boltzmann equation, where − �p
E

· �∇f corresponds
to particle drift and C22, C23, and C32 denote the collision
terms corresponding to gg → gg, gg → ggg, and ggg → gg,
respectively. It is obvious that the contribution of the various
processes to Q̇(t) is additive. We rewrite Eq. (12)

Q̇(t) = Wdrift(t) + W22(t) + W23(t) + W32(t), (14)

where Wdrift,W22,W23, and W32 correspond to particle drift,
gg → gg, gg → ggg, and ggg → gg collision processes,
respectively. According to Eq. (9) we obtain

1

θrel(t)
= Rtr

drift(t) + Rtr
22(t) + Rtr

23(t) + Rtr
32(t), (15)

where we define

Rtr
i (t) := Wi(t)

Qeq − Q(t)
(16)

for i = drift, 22, 23, and 32. One sees that the relaxation rate of
momentum isotropization 1/θrel is separated into additive parts
corresponding to the particle drift and the various collision
processes. Rtr

drift is called the transport rate of particle drift,
whereas Rtr

22, R
tr
23, and Rtr

32 stand for the transport collision
rates of their respective interactions. Extending this to more
than three-body processes is straightforward because the
collision term is additive. We note that Rtr

i (shown below)
depends on the definition of Q. When one changes Q from
Q = 〈p2

z/E
2〉 to Q = 〈|pz|/E〉, the form of Rtr

i changes
accordingly.

A. Rtr
drift

Except for static systems the drift term in the Boltzmann
equation (13) generally contributes to Q̇(t). Wdrift is given by

Wdrift(t) = 1

n

∫
d3p

(2π )3

�p
E

· �∇f

[
Q(t) − p2

z

E2

]
. (17)

Assuming Bjorken’s space-time picture of a central ultrarela-
tivistic heavy-ion collision [34], we can use the relation

�p
E

· �∇f ≈ pz

E

∂f

∂z
= −pz

t

∂f

∂pz

(18)

found in Ref. [9]. Inserting Eq. (18) into (17) and performing
partial integrals we obtain

Rtr
drift(t) ≈ −2

[Qeq − Q(t)]t

[
Q(t) −

〈
p4

z

E4

〉
(t)

]
. (19)

Equation (19) shows that Rtr
drift is negative, which agrees

with our conclusion in the previous section. Using the
approximation 〈p4

z/E
4〉 ≈ Q2, we see that the larger the Q,

the larger the −Rtr
drift.

B. Rtr
22

Changing p to p1,W22 becomes

W22(t) = 1

n

∫
d3p1

(2π )3

p2
1z

E2
1

C22, (20)

where C22 does not contribute to the second integral in Eq. (12)
due to particle number conservation in elastic collisions. The
same holds for the sum of C23 and C32 in chemical equilibrium.
Inserting the explicit expression of the collision term

C22 = 1

2E1

∫
d2

1

2!

∫
d

′
1d

′
2f

′
1f

′
2|M1′ 2′ →12|2(2π )4

× δ(4)(p′
1 + p′

2 − p1 − p2) − 1

2E1

×
∫

d2f1f2
1

2!

∫
d

′
1d

′
2|M12→1′ 2′ |2(2π )4

× δ(4)(p1 + p2 − p′
1 − p′

2) (21)
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(di = d3pi/(2π )32Ei for short) into Eq. (20) gives two
terms, which indicate the “gain” and “loss” in momentum
isotropization.

The loss term is

1

n

∫
d1d2f1f2

p2
1z

E2
1

2 sσ22 = n

〈
vrel

p2
1z

E2
1

σ22

〉
2

, (22)

where

σ22 : = 1

2s

1

2!

∫
d

′
1d

′
2|M12→1′ 2′ |2(2π )4

× δ(4)(p1 + p2 − p′
1 − p′

2) (23)

is the total cross section, s is the invariant mass of the colliding
system, vrel = s/2E1E2 is the relative velocity, and 〈 〉2

symbolizes an ensemble average over incoming particle pairs.
In BAMPS f (x, p) = ∑

i δ
(3)[�x − �xi(t)]δ(3)( �p − �pi) and we

evaluate the averages 〈 〉2 in local cells by running over all
particle pairs in the cells. Each cell has a small volume to
ensure local collisions and has a sufficient number of (test)
particles to achieve adequate statistics.

The W22’s gain term is n〈vrel σ̃22〉2, where

σ̃22 : = 1

2s

1

2!

∫
d

′
1d

′
2

p
′2
1z

E
′2
1

|M12→1′ 2′ |2(2π )4

× δ(4)(p1 + p2 − p′
1 − p′

2), (24)

which, like Eq. (23), is an integral over all possible states
of outgoing particles. Equation (24) was obtained by ex-
changing the primed and unprimed variables in Eq. (21).
Except for p

′2
1z/E

′2
1 all variables and functions in Eq. (24)

are Lorentz invariant. Particularly we find d
′
1 = d

′∗
1 =

d3p
′∗
1 /(2π )32E

′∗
1 = d�∗dE

′∗
1 E

′∗
1 /2(2π )3, where p

′∗
1 is the

four-momentum of an outgoing particle in the center-of-mass
frame manifested by p1 and p2 of the incoming particles, and
�∗ denotes the solid angle relative to the collision axis in the
center-of-mass frame. Integrating over d

′
2 = d

′∗
2 using the

four-dimensional δ function gives

σ̃22 =
∫

d�∗ dσ22

d�∗
p

′2
1z

E
′2
1

, (25)

where p′
1z and E

′
1 are the Lorentz transformed quantities

from p
′∗
1 and, thus, functions of �∗, s, and �β. The �β =

( �p1 + �p2)/(E1 + E2) denotes the relative velocity of the
center-of-mass frame of colliding particles to the laboratory
frame where Q is defined.

We finally obtain

Rtr
22 = W22

Qeq − Q(t)
= 1

Qeq − Q(t)

(
n

〈
vrel

∫
d�∗ dσ22

d�∗
p

′2
1z

E
′2
1

〉
2

−n

〈
vrel

p2
1z

E2
1

σ22

〉
2

)
, (26)

where the momentum isotropization gain and loss terms are
clearly seen. The relationship to the collision-angle distribu-
tion is implicitly contained in Rtr

22. When the collision rate is

defined as

R22 = n〈vrel σ22〉2, (27)

then we call Rtr
22 the transport collision rate of elastic

scatterings.
The transport collision rate Rtr

22 in Eq. (26), in general,
differs from n〈vrel σ

tr
22〉2, where σ tr

22 is defined in Eq. (1) or
(2). They match only if the laboratory frame is identical to the
center-of-mass frame of colliding particles. To demonstrate
this we consider the special case in which half of the particles
move along the positive z axis and the other half of the particles
move along the negative z axis and all the particles have the
same energy E such that

f (x, p) ∝ δ(px)δ(py)δ(pz − E) + δ(px)δ(py)δ(pz + E).

(28)

In this case the laboratory frame is the same as the center-of-
mass frame for every colliding pair. Thus p

′2
1z/E

′2
1 = cos2 θ∗

and p2
1z/E

2
1 = 1. We then have

Rtr
22 = 3

2n
〈
vrel σ

tr
22

〉
2 (29)

where σ tr
22 is given in Eq. (1). It is easy to verify that Eq. (29)

does not depend on the direction of the initial momentum. The
only necessary conditions are that all the particles move along
the same (regardless of ± sign) direction and have the same
energy. Also, if Q = 〈|pz|/E〉, Rtr

22 will be changed to

Rtr
22 = 2n

〈
vrel σ

tr
22

〉
2, (30)

where σ tr
22 is given in Eq. (2).

The reason Rtr
22 is called the transport collision rate now

becomes obvious because Eq. (26) is the generalization of the
simplified formula nσ tr, which is referred to in the literature
as the transport collision rate [7,8].

To understand the physical meaning of the transport
collision rate it is reasonable to interpret Rtr

22 as the rate
per particle at which particles experience elastic collisions to
become isotropically distributed in momentum space, because
Rtr

22 contributes to momentum isotropization according to
Eq. (15). For ultrarelativistic particles the inverse of Rtr

22 is
the mean path (or time) that particles should travel to become
isotropic, and R22/R

tr
22 is the average number of collisions,

which each particle needs to drive the particle system into
isotropy in momentum space.

To confirm this interpretation we calculate Rtr
22 assuming

that the collision angle is isotropically distributed. We then
obtain Rtr

22 = R22 via Eq. (29) or (30) for the special case (28).
This indicates that each particle needs only one collision to
drive the particle system into isotropy in momentum space
if the distribution of the collision angle is isotropic. A more
general case occurs during equilibration. The energy spectrum
of particles tends to be a Boltzmann distribution. Rarely found
high-energy particles need on the average more than one
collision to become isotropic, even if the distribution of the
collision angle is isotropic. The reason is that a particle with
high energy always collides with low-energy particles. The
relative velocity of the center-of-mass frame to the laboratory
frame is large and, thus, the Lorentz boost has a strong
effect. In the laboratory frame deflection in the momentum
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of high-energy particles is narrower in the forward direction.
However, low-energy particles move perpendicularly to their
initial direction and, thus, their momentum deflection is large.
The averaged effect of the Lorentz boost on the momentum
isotropization is, however, nontrivial and must be calculated
numerically.

The above hinges on the assumption that the system is static.
Expanding systems are more complicated because particles
flow. Collisions not only deflect the particle momenta but also
force particles to flow. When we include the flow, which is the
particle drift contribution to momentum isotropization [see
Eq. (15)], the momentum degradation of flowing particles
toward isotropy is slower (∼θrel) than the inverse of the
transport collision rate, because the transport rate of particle
drift is negative in an expanding system.

C. Rtr
23 and Rtr

32

Compared with W22 in Eq. (20), W23 has an additional term
due to particle production

W23(t) = 1

n

∫
d3p1

(2π )3

p2
1z

E2
1

C23 − Q(t)
1

n

∫
d3p1

(2π )3
C23. (31)

Inserting the explicit formula

C23 = 1

2E1

1

2!

∫
d2d3

1

2!

∫
d

′
1d

′
2f

′
1f

′
2|M1′ 2′→123|2

×(2π )4δ(4)(p′
1 + p′

2 − p1 − p2 − p3)

− 1

2E1

∫
d2f1f2

1

3!

∫
d

′
1d

′
2d

′
3|M12→1′ 2′ 3′ |2

×(2π )4δ(4)(p1 + p2 − p′
1 − p′

2 − p′
3) (32)

into Eq. (31), we obtain

W23(t) = 3

2
n〈vrel σ̃23〉2−n

〈
vrel

p2
1z

E2
1

σ23

〉
2

−1

2
Q(t)n〈vrel σ23〉2,

(33)

where

σ̃23 : = 1

2s

1

3!

∫
d

′
1d

′
2d

′
3

p
′2
1z

E
′2
1

|M12→1′ 2′ 3′ |2(2π )4

× δ(4)(p1 + p2 − p′
1 − p′

2 − p′
3). (34)

The formula for σ23 is just Eq. (34), excluding p
′2
1z/E

′2
1 .

The first two terms on the right-hand side of Eq. (33), the
sum of which is equal to the first term on the right-hand
side of Eq. (31), have similar forms as those in Eq. (26)
[multiplying Qeq − Q(t)] for W22. The coefficients for the
momentum isotropization gain and loss terms, 3/2 and 1,
indicate that in a 2 → 3 collision the ratio of the gained to
the lost particle number is 3/2. The last term in Eq. (33)
stems from pure particle production. The coefficient for this
term, 1/2, comes from the sum of the gain and loss terms
in the particle production process. For a general M → N

collision the coefficients will be N/M, 1, and (N − M)/M ,

respectively. Assuming that〈
vrel

p2
1z

E2
1

σ23

〉
2

≈
〈

p2
1z

E2
1

〉
〈vrel σ23〉2 = Q(t)〈vrel σ23〉2 (35)

and then comparing W23 in Eq. (33) to W22 in Eq. (26) [mul-
tiplying Qeq − Q(t)], we realize that a gg → ggg collision is
a factor of 3/2 more efficient for momentum isotropization
than a gg → gg collision, when σ22 = σ23 and σ̃22 = σ̃23. The
physical reason is obvious: a 2 → 3 collision brings one more
particle toward isotropy than a 2 → 2 collision.

For the special distribution function (28) we find a relation
between the transport collision rate and the transport cross
section (1)

Rtr
23 = 3

2
3
2n

〈
vrel σ

tr
23

〉
2. (36)

For scattering processes with isotropically distributed collision
angles one obtains Rtr

23 = 3
2R23, where

R23 = n〈vrel σ23〉2 (37)

denotes the collision rate for a gluon undergoing gg →
ggg collisions. Bremsstrahlung effectively shortens the mean
transport path of particles that are becoming isotropic in
momentum space. Generally, in a 2 → N process

Rtr
2N = N

2

3

2
n
〈
vrel σ

tr
2N

〉
2 (38)

and the larger the number N , the stronger the effect.
The final expression for W32 (intermediate steps are

analogous to those for W23, and C32 is found in Ref. [5])
is given by

W32(t) = 1

3
n2

〈
Ĩ32

8E1E2E3

〉
3

− 1

2
n2

〈
p2

1z

E2
1

I32

8E1E2E3

〉
3

+1

6
Q(t)n2

〈
I32

8E1E2E3

〉
3

, (39)

where

Ĩ32 : = 1

2!

∫
d

′
1d

′
2

p
′2
1z

E
′2
1

|M123→1′ 2′ |2(2π )4

× δ(4)(p1 + p2 + p3 − p′
1 − p′

2). (40)

I32 is just Eq. (40), excluding p
′2
1z/E

′2
1 . 〈 〉3 denotes an ensemble

average over triplets of incoming particles.
Comparing W23 to W32, we see that the sum of the last

terms in Eqs. (33) and (39) originates from the second term in
Eq. (12) but substituting C23 + C32 in for ∂f/∂t and it should
be zero at chemical equilibrium. We obtain

n〈vrel σ23〉2 = 1

3
n2

〈
I32

8E1E2E3

〉
3

(41)

or, equivalently, R23 = 2
3R32, where

R32 = 1

2
n2

〈
I32

8E1E2E3

〉
3

. (42)

024911-9



ZHE XU AND CARSTEN GREINER PHYSICAL REVIEW C 76, 024911 (2007)

From Eq. (41) we derived the collision rate of a gluon
experiencing ggg → gg collisions. Assuming that〈

p2
1z

E2
1

I32

8E1E2E3

〉
3

≈ Q(t)

〈
I32

8E1E2E3

〉
3

(43)

we finally have

W23(t) ≈ 3

2
(n〈vrel σ̃23〉2 − Q(t)n〈vrel σ23〉2)

W32(t) ≈ 1

3
n2

〈
Ĩ32

8E1E2E3

〉
3

− Q(t)
1

3
n2

〈
I32

8E1E2E3

〉
3

.

The expansion together with Eq. (41) leads to W23 ≈ 3
2W32

and Rtr
23 ≈ 3

2Rtr
32 for chemical equilibrium. Thus, a 2 → 3

process should contribute more to kinetic equilibration than
a 3 → 2 process because it brings one more particle toward
isotropy. If the system is out of chemical equilibrium, one
expects Rtr

23 ≈ 3
2

1
λg

Rtr
32, where the gluon fugacity λg = 1 at

chemical equilibrium. In an undersaturated system (λg < 1),
for instance, particle production dominates and, therefore, Rtr

23
is much larger than Rtr

32.
For the special case (28) there is a direct relation between

the transport collision rate and transport cross section [see
Eqs. (29) and (36)]. The same should be self-evident for Rtr

32
when detailed balance is considered

Rtr
32 ≈ 2

3λgR
tr
23 = 3

2λgn
〈
vrel σ

tr
23

〉
2. (44)

If the distribution of the collision angle is isotropic, Rtr
32 ≈

λgR23 = 2
3R32, where λg = 2R32/3R23 is used. For a N → 2

collision (N > 2)

Rtr
N2 ≈ 2

N
λgR

tr
2N = 3

2
λgn

〈
vrel σ

tr
2N

〉
2, (45)

which is not proportional to N in contrast to Rtr
2N in Eq. (38).

For large N a 2 → N process kinetically equilibrates signifi-
cantly more efficiently.

We summarize the main findings derived in this section:

(i) In Eq. (15) we showed that the relaxation rate of
momentum isotropization is a sum of the transport rate
of particle drift and the transport collision rates of the
various scattering processes.

(ii) The transport rate of particle drift is negative for an
expanding medium, which means that the particle drift
counteracts the momentum isotropization.

(iii) The transport collision rates of the various interactions
found in Eqs. (26), (33), and (39) [over Qeq − Q(t)]
have indirect but correctly implemented relationships
with the collision-angle distributions.

(iv) 2 → N (N > 2) processes isotropize the momentum
more efficiently than elastic collisions or annihilation
processes because the production process brings more
than two particles toward isotropy in momentum space.

(v) The relations between the transport collision rates and
the transport cross sections for the special case in (28)

Rtr
22 = 3

2n
〈
vrel σ

tr
22

〉
2, Rtr

23 = 3
2

3
2n

〈
vrel σ

tr
23

〉
2, (46)

Rtr
32 ≈ 3

2λgn
〈
vrel σ

tr
23

〉
2

are found as long as Q = 〈p2
z/E

2〉 and the transport
cross section is defined by Eq. (1). However, if Q =
〈|pz|/E〉 and the transport cross section is defined by
Eq. (2),

Rtr
22 = 2n

〈
vrel σ

tr
22

〉
2, Rtr

23 = 3
2 2n

〈
vrel σ

tr
23

〉
2, (47)

Rtr
32 ≈ 2λgn

〈
vrel σ

tr
23

〉
2.

For the isotropic distribution of the collision angle we
find

Rtr
22 = R22, Rtr

23 = 3
2R23, Rtr

32 ≈ 2
3R32. (48)

VI. RESULTS FROM THE PARTON CASCADE
CALCULATIONS

In this section we present results on the gluon transport rates
in the central region of the expansion simulated by BAMPS.
We then compare the transport rates with those obtained
from the standard concept of the transport cross sections. The
potential dependence of the relaxation time on momentum is
determined.

A. Transport rate

In Fig. 7 −Rtr
drift is shown. It cannot be computed by

Eq. (17) because of strong numerical uncertainties in calculat-
ing �∇f . Instead, it is obtained by summing ±[Q(t) − p2

z/E
2]

over the particles, which come into (+ sign) as well as leave
(− sign) the central region within a time interval of 0.1 fm/c.
This causes a large statistical fluctuation. Comparing Fig. 6 to
Fig. 7 we realize that the larger the Q = 〈p2

z /E
2〉, the larger

is the (negative) effect of the particle drift on momentum
isotropization. This confirms our qualitative understanding
outlined in Sec. IV. The dotted curves estimate the transport
rate according to Eq. (19) assuming a one-dimensional Bjorken
boost-invariance expansion. Q(t) and 〈p4

z/E
4〉(t) come from

the parton cascade. At intermediate times our estimates

FIG. 7. Particle drift transport rate (multiplied by −1) from both
elastic and inelastic pQCD-scattering processes (solid curve), from
elastic-only pQCD-scattering processes (dashed curve), and from
estimates in Eq. (19) (dotted curves).
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FIG. 8. Transport collision rates (Rtr
22, R

tr
23, and Rtr

32) from both
elastic and inelastic pQCD-scattering processes (thick solid, thick
dashed, and thick dotted curves, respectively), Rtr

22 from elastic-only
pQCD scatterings (thin solid curve) and Rtr

22/6 from elastic-only
processes using artificially large cross sections (thin dash-dotted
curve).

nicely match the numerical results, which indicates that the
expansion follows a Bjorken expansion. Early in the expansion
the particle drift is stronger due to free streaming caused
by the initial conditions. Later on the expansion becomes
three-dimensional and particles begin to flow outward in the
transverse direction. The transverse drift of particles with
large pT is then similar to the longitudinal drift of particles
with large pz ∼ pT . The net effect of the particle drift on
momentum isotropization in a three-dimensional expansion
diminishes in comparison to a purely longitudinal expansion,
as demonstrated in Fig. 7 with the comparison of the numerical
results to the estimations.

The numerical results for the transport collision rates are
calculated using the expressions (26), (33), and (39) {the last
two are divided by [Qeq − Q(t)]} and are shown in Fig. 8. One
realizes the dominance of the inelastic collisions in momentum
isotropization by computing the ratio (Rtr

23 + Rtr
32)/Rtr

22, which
is about 5 throughout the entire evolution of the system.
The ratio of Rtr

23 to Rtr
32 is always larger than 3/2 but nears

3/2 late in the expansion. According to Eq. (44) the system
is undersaturated early on and eventually reaches chemical
equilibrium. When we compare Rtr

22s obtained from the various
simulations, the difference is small, unlike for the cross
sections shown in Fig. 4. The reason lies in the difference
in the evolution of the Debye sceening mass for the various
simulations as shown in Fig. 5. A smaller Debye screening
mass leads to a larger cross section but also a smaller collision
angle. The former causes more frequent collisions and, thus,
speeds up equilibration, whereas the latter causes inefficient
momentum deflection and, thus, slows equilibration. Both
contribute to the transport collision rate so that it is not
particularly sensitive to the Debye screening mass unlike the
total cross section. In Fig. 4 the total cross sections for elastic
collisions differ by a factor of 4 − 6 between elastic-only
scatterings and those that include bremsstrahlung processes,
whereas the corresponding transport collision rates in Fig. 8
are nearly identical.

The ratios of elastic+inelastic scatterings to elastic-only
collisions for the total transport collision rate and the transport
rate of particle drift are almost identical: the ratio increases
from 4 at 0.3 fm/c to 9 at 4.5 fm/c. The inverse of the ratio of the
momentum isotropization time scales in the two simulations
is also the same (see Fig. 11).

Because the change in particle drift is a consequence
of particle collisions, one may expect that the momentum
isotropization is dependent only on the total transport collision
rate. Gluon kinetic equilibration would always look the same,
if the total transport collision rate in every evolution was
the same at every space-time point. The types of collision
processes are not relevant, although they are interesting in
their own right. We have already shown two examples of
evolution of gluons in a central Au+Au collision at RHIC
energy. The total transport collision rate becomes on average
a factor of 6 larger if pQCD bremsstrahlung processes are
included. For another evolution to have the same total transport
collision rate as that obtained when pQCD bremsstrahlung
processes are included, elastic-only scattering processes with
larger cross sections, namely dσ22/dt̂ = 6dσ

pQCD
22 /dt̂ , were

used. If the elastic pQCD cross sections obtained from the new
simulation were the same as those from elastic-only scatterings
with pQCD cross sections (see the dotted curve in Fig. 4), 6
would be an appropriate prefactor. The dash-dotted curve in
Fig. 4 shows the elastic pQCD cross section calculated from
the new simulation, which is a factor of 2 smaller than the
dotted curve. Recalling that the cross sections are dependent
on the development of the Debye screening mass and that
the gluon evolution resembles free streaming for elastic-only
pQCD scatterings when the Debye screening mass decreases
as ∼t−1/2, artificially large cross sections decrease the Debye
screening mass from t−1/2 to t−1/3 (see the dash-dotted curve
in Fig. 5), which implies that the evolution of gluons for
large cross sections is a hydrodynamical expansion with a
finite viscosity.

Rtr
22/6 for large cross sections is depicted in Fig. 8 and is

nearly the same as the transport collision rate for standard
pQCD cross sections, which proves that the transport collision
rate for elastic pQCD scatterings is not sensitive to the Debye
screening mass. Therefore, the total transport collision rates for
elastic-only collisions with large cross sections and for both
elastic and inelastic pQCD scatterings are nearly the same,
which implies the same momentum isotropization in both
simulations. Comparing the time evolution of the momentum
isotropization (the solid versus the dash-dotted curve in
Fig. 6), we realize that momentum isotropization is indeed
nearly the same. However, the total cross sections are very
different (see Fig. 4). At 4.5 fm/c, for instance, 〈σ22〉2 +
〈σ23〉2 ≈ 4 mb for elastic and inelastic scatterings, whereas
〈σ22〉2 ≈ 45 mb for elastic-only collisions, which is a factor of
12 larger!

Because kinetic equilibration and pressure buildup are
related we also expect that pressure buildup does not depend
on the type of interactions. Figure 9 shows the time evolution
of the transverse energy per unit momentum rapidity at
midrapidity. The decrease in the transverse energy indicates
that mechanical work has been done by pressure gradients,
which are built up during kinetic equilibration. From Fig. 9
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FIG. 9. Time evolution of the transverse energy per unit mo-
mentum rapidity at midrapidity for both elastic and inelastic pQCD
scatterings (solid curve), for elastic-only pQCD scatterings (dotted
curve), for elastic-only scatterings with large cross sections (dash-
dotted curve), and the ideal hydrolimit, dET /dy|y=0 ∼ t−1/3 (thin
solid curve).

one realizes that the time evolution of dET /dy|y=0 obtained
from elastic and inelastic scatterings and from elastic-only
scatterings with large cross sections are almost identical. This
indicates that the ongoing kinetic equilibration and the pressure
gradients buildup are the same not only at the collision center
as already shown in Fig. 6 but also at the central slice of the
expansion. There only the total transport collision rate matters,
not the detail of the interactions.

Whereas the decrease in dET /dy|y=0 for elastic-only
pQCD collisions is very weak, which implies slow momentum
isotropization, the decrease in dET /dy|y=0 in the other two is
close to the ideal hydrodynamic limit at least until 1.5 fm/c.
Later the expansion becomes three-dimensional and gluons in
the outer regions cease to interact when the energy density
decreases under the critical value of 1GeV/fm3. Therefore, the
decrease in the transverse energy slows so that the final value
of dET /dy|y=0 is about 650 GeV, which is comparable with
RHIC data [33].

Although the interaction details do not matter for kinetic
equilibration and pressure buildup, they do for chemical
equilibration. Elastic collisions conserve the absolute particle
number and do not contribute to chemical equilibration,
whereas multiplication and annihilation processes can drive
systems toward chemical equilibrium. For the gluon evolution
in central Au+Au collisions the initial free streaming (or the
off-shell propagation) undersaturates the gluons (see Fig. 15).
For the pQCD bremsstrahlung processes chemical equilibrium
is achieved by producing gluons. This leads to a larger
Debye screening mass than that for elastic-only collisions (see
Fig. 5). Therefore, the elastic pQCD cross section obtained
from the simulation including the pQCD bremsstrahlung
processes is the smallest (see Fig. 4).

B. Mean free path, mean transport path, and relaxation time

Figure 10 shows the mean free path and the mean transport
path of gluons. The mean transport path is defined as the

FIG. 10. Mean free path and mean transport path of gluons for
both elastic and inelastic pQCD scatterings (solid curves), for elastic-
only pQCD scatterings (dashed curves), and for elastic-only collisions
with artificially large cross sections (dotted curves).

inverse of the total transport collision rate and it is the path
needed for gluons to reach isotropy in momentum space in a
static medium. From Fig. 10 we see that the mean paths are
all small early on and increase throughout the course of the
expansion when the system becomes dilute. Comparing the
mean free paths there is little difference for the processes with
and without pQCD bremsstrahlung; however, the mean free
path is much smaller when artificially large cross sections
are considered. We also see that the mean transport path
is larger than the mean free path for elastic-only collisions,
because elastic pQCD collisions have small-angle scatterings
and, therefore, do not isotropize the momentum efficiently.
However, when pQCD bremsstrahlung processes are included
the mean transport path and the mean free path are quite
similar, so their kinetic equilibration is efficient.

The relaxation rate of momentum isotropization 1/θrel(t)
is calculated directly from Fig. 6 using Eq. (9) and is
shown in Fig. 11 in comparison with the total transport rate

FIG. 11. Relaxation rate of momentum isotropization compared
with the total transport rate for both elastic and inelastic pQCD
scatterings (thin and thick solid curves) and for elastic-only pQCD
scatterings (thin and thick dashed curves).

024911-12



TRANSPORT RATES AND MOMENTUM ISOTROPIZATION . . . PHYSICAL REVIEW C 76, 024911 (2007)

FIG. 12. Collision rate, transport collision rate, and n〈vrel σ
tr〉

of the various collision processes. The results are obtained from
the simulation, including both elastic and inelastic pQCD-scattering
processes, and are depicted by the solid, dashed, and dotted curves,
respectively.

Rtr
drift + Rtr

22 + Rtr
23 + Rtr

32. According to Eq. (15) they should
be identical, which is indeed seen within the numerical uncer-
tainty. This indicates that the transport rates were correctly
extracted. For the first 2 fm/c of the gluon evolution for
pQCD bremsstrahlung processes the time scale of momentum
isotropization is 1 − 2 fm/c, which is about a factor of 5 times
larger than the mean free path (see Fig. 10).

C. Collision rate, transport collision rate, and
transport cross section

Here we compare the collision rates, the transport collision
rates and the estimates using the transport cross sections with
each other concentrating on the results from the simulation
with both elastic and inelastic collisions.

Assuming Eq. (28), the transport collision rates are directly
proportional to the transport cross sections [see Eqs. (46), (47),
and (48)], which can be directly linked to the collision-angle
distribution. To see how they differ from the true transport
collision rates we compare the transport collision rates,
n〈vrel σ

tr〉 and the collision rates in Fig. 12. Multiplication
factors according to Eqs. (46) and (48) allow for more
convenient comparisons. If the assumption (28) is realistic,
the curves according to the assumption and those for the
true transport collision rate are identical. If additionally the
collision-angle distribution is isotropic, all the curves in each
case lie on top of each other. The fugacity λg in Eq. (46) is
calculated by λg = n/neq, where neq = 16T 3/π2 is the gluon
density at thermal equilibrium at temperature T ≡ ε/3n. The
gluon density n and energy density ε are extracted from the
parton cascade.

We first examine the rates for the elastic-scattering pro-
cesses shown on the left in Fig. 12, where there is only a
small difference between the true transport collision rate and
the reduced rate related to the transport cross section. The
difference comes from the Lorentz boost from the center-of-
mass frame to the laboratory frame. Furthemore, we see that
the transport collision rate is much smaller than the collision

rate, which is again due to the fact that the pQCD gg → gg

scatterings are small-angle scatterings and are not efficient for
momentum isotropization.

In the middle the rates for the gg → ggg bremsstrahlung
processes are shown where little difference is seen. The
transport collision rate divided by the kinematic factor 3/2
is the largest rate, especially over the collision rate. The
kinematic factor for the assumption (28) is exactly 3/2.
However, in general it is only approximately equal to 3/2,
because the decomposition (35) for Rtr

23 [see W tr
23 in Eq. (33)] is

an approximation. The real kinematic factor defined as A may
be larger than 3/2, which would lower Rtr

23/A below R23. Even
though the difference between 2

3Rtr
23 and R23 is small, which

indicates that the collision-angle distribution in gg → ggg

collisions is nearly isotropic. The same is also seen on the
right in Fig. 12, where the rates for ggg → gg are nearly
identical.

Figure 12 shows that the reduced transport collision rates
related to the transport cross sections do not differ very
much from the derived transport collision rates. Generally, the
Lorentz boost from the individual center-of-mass frame to the
laboratory frame does not lead to a big effect on momentum
isotropization. This is nontrivial. However, it provides a basis
to understand thermalization within multiparticle reactions.
Additionally, the transport collision rates derivation helps to
obtain the kinematic factors in Eq. (46), which are essential
in quantitative analyses but typically ignored in the literature
[7,8].

Bremsstrahlung processes gg ↔ ggg are suppressed by
the LPM effect, which occurs when a parton undergoes
multiple scatters with radiated gluons through a QCD medium
(originally photons in the QED medium). The interference of
radiated gluons leads to suppression of radiation of gluons
with modes (w, �k), where w and �k denote the gluon’s energy
and momentum. Heuristically, there is no suppression for
gluons with a formation time τ = w/k2

T smaller than the mean
free path. This is called the Bethe-Heitler limit, where the
gluon radiation induced at different space-time points in the
course of the propagation of a parton can be considered as
independent events. Events within the Bethe-Heitler regime
are included in BAMPS. Other gluon modes radiation with
coherent suppression completely drops out, which is the reason
for the � function in the matrix element in Eq. (4). Including
these events speeds up thermalization; however, implementing
the coherent effect into a transport model where the Boltzmann
equation is solved remains a challenge.

Without implementing the LPM effect as a strict low
momentum cutoff, the matrix element for gg ↔ ggg in Eq. (4)
is dominated by collinear bremsstrahlung, although it is
suppressed by the Debye screening mass as an infrared cutoff.
Therefore, the larger collision angle from gg ↔ ggg processes
in comparison to elastic scatterings originates from the present
implementation of the LPM effect.

Because the angle of the radiated gluon relative to the
collision axis θ is related to the momentum rapidity y by
cos θ = tanh y, which leads to cosh y = 1/ sin θ , the effect of
the � function in the matrix element (4), �(k⊥�g − cosh y),
on the angular distribution of the radiated gluon can be
understood. For small transverse momentum k⊥, which the

024911-13



ZHE XU AND CARSTEN GREINER PHYSICAL REVIEW C 76, 024911 (2007)

radiation favors, the rapidity y is small due to the � function
if the mean free path �g is small. This leads to large-angle
radiation. The larger �g , the more small-angle bremsstrahlung
(with large y) occurs.

The � function results in a cutoff in the radiated gluon
phase space. The corresponding total cross section is found by
integrating the matrix element

σgg→ggg ∼
∫ 1/4

0
dq̄2

⊥

∫ 1/4

1/�̄2
g

dk̄2
⊥

∫ ym

−ym

dy

∫ π

0
dφ

1

(q̄2
⊥ + m̄2

D)2

× q̄2
⊥

k̄2
⊥[(k̄⊥ − q̄⊥)2 + m̄2

D]
H (q̄⊥, k̄⊥, y, φ), (49)

where q̄2
⊥ = q2

⊥/s, k̄2
⊥ = k2

⊥/s, �̄g = �g

√
s, m̄2

D = m2
D/s, φ

is the angle between k⊥ and q⊥, and H is a function of
q̄⊥, k̄⊥, y, and φ. H (found in Appendix D of Ref. [5])
appears after the integral over the radiating gluon momentum.
In Eq. (49) the lower cutoff for k⊥ and the upper (lower)
cutoff ±ym for y can be seen, where ym is the minimum
among arcosh(k̄⊥�̄g) and arcosh(1/2k̄⊥) (see Appendix D of
Ref. [5]). To obtain the radiated gluon angular distribution,
which depends on m̄2

D and �̄g , one has to integrate over k̄⊥, φ

and q̄⊥ in Eq. (49). This is already done in Ref. [5]. The
radiated gluon angular distribution and the distributions of
the other two gluons were depicted in Fig. 49 in Ref. [5],
where m̄2

D = 0.05 and �̄g = 4. The distributions are nearly
isotropic. From the present BAMPS calculation m̄2

D ≈ 0.1 and
�̄g ≈ 3 when pQCD bremsstrahlung is included. The value
of m̄2

D is almost identical with the equilibrium value m2
D/〈s〉 =

4αs/3π = 0.13 for αs = 0.3. The smaller m̄2
D found in Ref. [5]

is due to the slower chemical equilibration, because the initial
system (using p0 = 2 GeV) is more dilute than that used in
this article (using p0 = 1.4 GeV). For larger m̄2

D and smaller
�̄g large-angle scatterings for gg → ggg are favored.

Because the radiation is dominated by 1/k̄2
⊥ we simplify

the matrix element (4) by eliminating the collinear term
1/[(k̄⊥ − q̄⊥)2 + m̄2

D] ∼ 1/m̄2
D to see the effect of the LPM

suppression (Bethe-Heitler regime) on the radiated gluon
angular distribution. Then the radiation can be factorized

σgg→ggg ∼
∫ 1/2

1/�̄g

dk̄⊥
∫ ym

−ym

dy
1

k̄⊥

=
∫ arcosh

√
�̄g/2

−arcosh
√

�̄g/2
dy

∫ 1/2 cosh y

cosh y/�̄g

dk̄⊥
1

k̄⊥

=
∫ arcosh

√
�̄g/2

−arcosh
√

�̄g/2
dy ln

�̄g

2 cosh2 y

=
∫ √

1−2/�̄g

−
√

1−2/�̄g

du
ln[�̄g(1 − u2)/2]

1 − u2
, (50)

where u = cos θ . The integrand approximately represents the
radiated gluon angular distribution, which is bounded by
±

√
1 − 2/�̄g . Figure 13 shows the distribution for various

�̄g = �g

√
s ∼ �gT . The distributions are normalized and

symmetric in cos θ . The angular distribution is peaked in the
forward direction only for large �̄g as in elastic scatterings. In
BAMPS we find �̄g ≈ 3. Therefore, the radiated gluon angular

FIG. 13. Radiated gluon angular distribution in the center-of-
mass frame.

distribution according to Eq. (49) is similar to �g

√
s = 3 in

Fig. 13, which indicates that large-angle radiation is favored.

D. Dependence of the transport rate on the definition of Q

We have already mentioned that the transport rates depend
on the definition of the degree of momentum isotropy Q. In
the previous subsections the numerical results for the transport
rates with Q = 〈p2

z/E
2〉 were shown. But the dependence of

the numerical results of the transport rates on Q (specially
when it is set to Q = 〈|pz|/E〉) remains to be calculated.

Reasonable definitions of Q must consider some kind of
average of the momentum spectra shown in Fig. 2; thus,
momentum isotropization time scales obtained from different
prescriptions cannot differ much from each other. Because
the inverse of the total transport rate is the momentum
isotropization time scale, we do not expect any significant
dependence of the transport rate on the definition of Q.

Here we first compare the transport collision rates in the
reduced formulas (46) for Q = 〈p2

z/E
2〉 with those in Eq. (47)

for Q = 〈|pz|/E〉, where transport cross sections are defined
by (1) and (2), respectively. We have already shown that if
the collsion angle is isotropically distributed, the transport
collision rates of a certain type of scattering processes are
the same, regardless of the definition of Q. For small-angle
scatterings one has sin2 θ ≈ θ2 and 1 − cos θ ≈ θ2/2, and
the transport collision rates for Q = 〈p2

z/E
2〉 are a factor

of 1.5 larger than those when Q = 〈|pz|/E〉. For large-
angle scatterings sin2 θ ≈ 1 − cos θ and then the transport
collision rates for Q = 〈p2

z /E
2〉 are in turn a factor of 3/4

smaller than those when Q = 〈|pz|/E〉. The maximal relative
difference amounts to 50%. Because pQCD bremsstrahlung is
the dominant process in kinetic equilibration and the collision
angle for that process is roughly isotropic due to the LPM
cutoff, the difference in the transport collision rates due to
different Qs should be minimal.

Figure 14 shows the numerical results for the transport rates
with the Qs defined above. The differences are only small,
which means that the transport rates are not dependent on our
choice in Q.
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FIG. 14. Transport rates calculated with Q = 〈|pz|/E〉 (solid
curves) and Q = 〈p2

z /E
2〉 (dotted curves).

E. Relaxation time τrel in the relaxation time approximation

The collision term of the Boltzmann equation (13) can be
written as

C(x, p) = feq(x, p) − f (x, p)

τrel(x, p)
, (51)

which describes the relaxation of the particle-density function
f (x, p) by using a space-time and momentum-dependent
relaxation time τrel(x, p), where τrel(x, p) is a functional
of f (x, p). The underlying approximation in the so-called
relaxation time ansatz is the ignorance of the momenum
dependence of the relaxation time, i.e., τrel(x, p) ≈ τrel(x).
Thus, τrel(x) gives the time scale of the overall equilibration in
absence of particle drift, which was used in [9–15] to calculate
the time scale of thermalization within various dynamical
scenarios of the expansion. It is crucial to see whether τrel

in the relaxation time approximation is equivalent to the mean
transport path, because the latter determines the momentum
isotropization time scale in a static system.

For kinetic equilibration we insert (51) into the time
derivative of the momentum isotropization (12) and obtain
[by dividing (Qeq − Q)]

Rtr
22 + Rtr

23 + Rtr
32

= 1

Qeq − Q

(
1

n

∫
d3p

(2π )3

p2
z

E2

feq − f

τrel

−Q(t)
1

n

∫
d3p

(2π )3

feq − f

τrel

)

= 1

Qeq − Q

(
neqQeq − nQ

n〈τrel〉k − Q
neq − n

n〈τrel〉c

)
, (52)

where 〈τrel〉k and 〈τrel〉c are defined as averaged quantities over
the momentum, and the index k denotes kinetic equilibration
due to the convolution of angles (p2

z /E
2) in the first integration,

whereas c denotes chemical equilibration.

〈τrel〉c can also be calculated by integrating the collision
term of the Boltzmann equation over the momentum∫

d3p

(2π )3
(C22 + C23 + C32) =

∫
d3p

(2π )3

feq − f

τrel

= neq − n

〈τrel〉c , (53)

which is a simple ansatz for the relaxation time [13]. The
left-hand side of Eq. (53) is equal to n(R23/2 − R32/3) if the
explicit formulas of the collision terms and the definition of
the collision rates are applied. We then obtain

〈τrel〉c = 1/λg − 1

R23/2 − R32/3
, (54)

where the gluon fugacity is λg = n/neq.
Assuming that the relaxation time is independent of the

momentum, 〈τrel〉k and 〈τrel〉c become equal and one gets from
Eq. (52)

〈τrel〉k = 1

λg

1

Rtr
22 + Rtr

23 + Rtr
32

. (55)

In chemical equilibrium (λg = 1) the relaxation time is equal
to the inverse of the total transport collision rate or the mean
transport path. According to the relaxation time approximation
the right-hand sides of Eqs. (54) and (55) should be equal.
However, it is not clear.

Without assuming the relaxation time ansatz we can also
calculate the 〈τrel〉c and 〈τrel〉k using Eqs. (54) and (52), because
all the collision rates and the transport collision rates are
known from numerical simulations. If the two “relaxation
times” differ much, one can conclude that τrel(x, p) is strongly
momentum dependent and cannot serve as a global quantity
to determine the overall gluon thermalization time scale in
ultrarelativistic heavy-ion collisions.

Before we calculate 〈τrel〉c and 〈τrel〉k , we need the equilib-
rium particle-density function feq(x, p). Because we neglect
quantum effects like gluon enhancement, feq(x, p) = νe−E/T

at the center of the collision, where ν = 16 is the degeneracy
of gluons. The temperature T can be found using εeq = ε,
which stems from energy conservation in sudden thermal-
ization [9]. However, the current particle density function
could have an exponential shape, f = λgfeq, if the kinetic
equilibration progressed quicker than chemical equilibration.
In this case one obtains n = λgneq as well as ε = λgεeq and the
temperature is then T = εeq/3neq = ε/3n. This temperature is
larger (or smaller) than the previously defined temperature, if
λg is smaller (or larger) than 1. The difference in these two
local temperatures leads to the difference in εeq, neq, and λg .
Letting S denote sudden thermalization and E thermalization
that follows an exponential behavior, it is easy to verify that

λE
g = (

λS
g

)4 = 27π2

16

n4

ε3
, (56)

where they differ by a power of 4. The time evolution of the
gluon fugacities λS

g and λE
g obtained from BAMPS, including

pQCD bremsstrahlung processes is shown in Fig. 15. Although
the system of minijets is initially slightly oversaturated, it
becomes undersaturated due to a short period of (quasi-)free
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FIG. 15. Gluon fugacity. The solid, dashed, and dotted curve
depict, respectively, λE

g , λS
g , and 2R32/3R23 obtained from the

simulation, including elastic and inelastic pQCD bremsstrahlung
processes.

streaming. The reason is obvious from Eq. (56), when n as
well as ε decreases as 1/t in free streaming. The decrease
of λE

g is roughly a factor of 4 stronger than that of λS
g .

Whereas λE
g increases and relaxes to 1 later on, which indicates

the ongoing chemical equilibration, λS
g ≈ 1 throughout the

entire expansion, which implies that the system is in chemical
equilibrium. The difference between λS

g and λE
g can be

understood according to Eq. (56), so (λE
g − 1) ≈ 4(λS

g − 1)
for |λS

g − 1| � 1.
Physically, fugacity is a quantity that balances particle

production and annihilation. Therefore, the ratio of the
annihilation rate R32 to the production rate R23 can serve as
a quantitative measure of fugacity, so 2R32/3R23 is shown in
Fig. 15. 2R32/3R23 agrees well with λE

g , which implies that
λE

g is an appropriate choice for the fugacity in this example.
The exact momentum averaged “relaxation times” 〈τrel〉k

and 〈τrel〉c according to Eqs. (52) and (54) are shown in Fig. 16
by various gluon fugacities. The mean transport path 1/(Rtr

22 +
Rtr

23 + Rtr
32) is also depicted for comparison. Except for 〈τrel〉k

with λS
g all “relaxation times” are considerably larger than the

mean transport path. When comparing 〈τrel〉k to 〈τrel〉c with
the same fugacities, one finds large differences, especially for
λE

g , where both “relaxation times” deviate by a factor of 4 to
6. This implies that the relaxation time τrel(x, p) in Eq. (51)
indeed has a strong dependence on the momentum. Therefore,
the applicability of the τrel(x, p) ≈ τrel(x) in studying gluon
thermalization in heavy-ion collisions is questionable.

VII. SUMMARY

Employing our recently developed parton cascade BAMPS
and including inelastic pQCD bremsstrahlung processes we
have introduced and calculated the transport rate of gluon
drift and the transport collision rates of various scattering
processes within relativistic kinetic theory. We try to explain
the observed fast equilibration of gluons within BAMPS in
theoretical terms.

FIG. 16. Relaxation time. The thick (thin) solid curve depicts
the momentum averaged “relaxation time” 〈τrel〉k (〈τrel〉c) using the
fugacity λE

g . The thick (thin) dashed curve depicts 〈τrel〉k (〈τrel〉c) using
the fugacity λS

g . The dotted curve shows again the mean transport path
(see Fig. 10). Results are obtained from the simulation, including both
elastic and inelastic pQCD-scattering processes.

We have shown that the derived transport rate of a
certain process, Rtr

drift, R
tr
22, R

tr
23, or Rtr

32, determines exactly
the contribution of the process to the defined momentum
isotropization with Q = 〈p2

z/E
2〉 (or Q = 〈|pz|/E〉). The

total transport collision rate, Rtr
22 + Rtr

23 + Rtr
32, definitively

describes momentum isotropization, whereas the change of
gluon drift is a consequence of collision processes and Rtr

drift
is negative in an expanding system. The inverse of the total
transport rate, 1/(Rtr

drift + Rtr
22 + Rtr

23 + Rtr
32), gives the exact

time scale of momentum isotropization θrel, and is about 1
fm/c from BAMPS for the gluon matter produced at RHIC. It
is also shown that the calculated transport rates are independent
on the definition of the degree of momentum isotropy Q.

The inclusion of quarks into BAMPS is straightforward, but
it is not yet completed. In the presence of quarks the Debye
screening mass will be slightly larger, which leads to a decrease
in the cross sections for gg → gg and gg → ggg scatter-
ings. This slightly slows thermalization. However, further
kinetic processes like q + g ↔ q + g, q + g ↔ q + g + g,
and q + q ↔ q + q + g will speed up gluon thermalization.
In addition, the effect may be small, because the initial quark
density is tiny (30%) in comparison to the gluon density.
Therefore, quark thermalization may be quite slow, but the
study of it is still in progress.

We also derived the reduced transport collision rates related
to the transport cross sections. They are only exact for the
special case when the center-of-mass frame of individual
collisions coincides with the laboratory frame where the
medium is observed. The deviations from the exact transport
collision rates stem from the effects of Lorentz boosts from the
center-of-mass frame to the laboratory frame. The numerical
results show that the reduced rates differ little from the exact
ones for the evolution of gluons in relativistic heavy-ion
collisions. Lorentz boosts do not seem to have a major effect on
momentum isotropization. Nevertheless, the derivation of the
transport collision rate helps to obtain the correct kinematical
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factors in the reduced rates summarized in Eqs. (46) and
(47), which have been typically ignored in the literature.
For instance, our analyses showed that a 2 → N (N > 2)
production process is about a factor of (N − 2)/2 more
efficient for momentum isotropization than its back-reaction
or an elastic-scattering process.

Using the numerical results of the transport collision rates
for the various scattering processes we have investigated the
importance of including the pQCD bremsstrahlung processes
in thermalization. The inclusion of the pQCD bremsstrahlung
processes and their back reactions, as implemented in BAMPS,
increases the efficiency for thermalization by a factor of 5.
Overall kinetic equilibration and pressure buildup have a time
scale of about 1 fm/c. The large efficiency stems partly from
the increase in the particle number for the final state of gg →
ggg collisions but mainly from the almost isotropic angular
distribution in the bremsstrahlung process due to the effective
implementation of LPM suppression, which still needs to be
further developed.

Additionally, we have calculated the momentum averaged
“relaxation times” with various gluon fugacities and they
differ significantly from each other. This indicates a strong
momentum dependence of the gluon relaxation time τrel

in heavy-ion collisions. Thus, using the standard relaxation
time approximation of full kinetic Boltzmann processes is
questionable.
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APPENDIX A: DEGREE OF MOMENTUM ISOTROPY IN
THE CENTRAL REGION

The central region is described by a cylinder with a
radius of rb = 1.5 fm and a longitudinal extension of 2Zb.
The longitudinal boundary Zb = (tanh ηb)t with ηb = 0.2
increases linearly with time. Within the central region the
degree of momentum isotropy is defined by

Q(t) : = 1

n

∫
d3p

(2π )3

p2
z

E2

1

V

∫ rb

0
dr r

∫ 2π

0
dφ

∫ Zb

−Zb

dz f (�x, t, p)

= 1

n

∫
d3p

(2π )3

p2
z

E2

2

V

∫ rb

0
dr r

∫ 2π

0
dφ

∫ Zb

0
dz f (�x, t, p),

(A1)

where

n(t) =
∫

d3p

(2π )3

2

V

∫ rb

0
dr r

∫ 2π

0
dφ

∫ Zb

0
dz f (�x, t, p). (A2)

V = 2πr2
bZb is the volume of the central region. The second

equation in Eq. (A1) arises because of the symmetry of
f (�x, t, p) under the �x → −�x exchange. In the limit rb → 0
and ηb → 0 one has

1

V

∫ rb

0
dr r

∫ 2π

0
dφ

∫ Zb

−Zb

dz f (�x, t, p) → f (�x, t, p)|�x=0, (A3)

which is the definition of the degree of the local momentum
isotropy in this limit [see Eq. (10) in Sec. V]. The transport
rates in this limit were already given in Sec. V.

Taking the time derivative of Q(t) yields

Q̇(t) = 1

n

∫
d3p

(2π )3

p2
z

E2

2

V

∫ rb

0
dr r

∫ 2π

0
dφ

×
[∫ Zb

0
dz

∂f

∂t
+ tanh ηbf (�x⊥, Zb, t, p)

]

−Q(t)
1

n

∫
d3p

(2π )3

2

V

∫ rb

0
dr r

∫ 2π

0
dφ

×
[∫ Zb

0
dz

∂f

∂t
+ tanh ηbf (�x⊥, Zb, t, p)

]
. (A4)

The second term in the brackets comes from the time derivative
of the boundary Zb and can be rewritten as

tanh ηbf (�x⊥, Zb, t, p) =
∫ Zb

0
dz

tanh ηb

Zb

f (�x⊥, Zb, t, p)

=
∫ Zb

0
dz

1

t
f (�x⊥, Zb, t, p). (A5)

The Taylor expansion of f (�x⊥, Zb, t, p) at �x to the first order
yields

f (�x⊥, Zb, t, p) � f (�x, t, p) + ∂f (�x, t, p)

∂z
(Zb − z) (A6)

and we then obtain

Q̇(t) � 1

n

∫
d3p

(2π )3

p2
z

E2

2

V

∫ rb

0
dr r

∫ 2π

0
dφ

∫ Zb

0
dz

×
[
∂f

∂t
+ (Zb − z)

t

∂f

∂z

]
− Q(t)

1

n

∫
d3p

(2π )3

2

V

×
∫ rb

0
dr r

∫ 2π

0
dφ

∫ Zb

0
dz

[
∂f

∂t
+ (Zb − z)

t

∂f

∂z

]
.

(A7)

The 0th-order contributions in Eq. (A4) cancel due to the
definition of Q(t). (Zb − z)/t expresses the relative velocity
of the boundary slice at Zb to the slice at z where particles are
sitting. The second term in the brackets in Eq. (A7) appears due
to the increasing longitudinal boundary of the central region,
and it becomes smaller when Zb → 0 (or ηb → 0). According
to the Boltzmann equation (13) the expression in the brackets
can be written as

∂f

∂t
+ (Zb − z)

t

∂f

∂z

= −px

E

∂f

∂x
− py

E

∂f

∂y
−

(
pz

E
− Zb − z

t

)
∂f

∂z

+C22 + C23 + C32. (A8)

024911-17



ZHE XU AND CARSTEN GREINER PHYSICAL REVIEW C 76, 024911 (2007)

The term pz/E − (Zb − z)/t implies that only particles with
longitudinal velocity pz/E larger than the relative velocity
of the boundary slice (Zb − z)/t can drift out of the central
region. This will be taken into account when calculating
the transport rate of particle drift within the central region.
The evaluations of the transport collision rates Rtr

22, R
tr
23, and

Rtr
32 are more straightforward. One only needs to replace the

expressions derived in the limit rb → 0 and ηb → 0, which
are already given in Sec. V, by

Rtr
i → 1

V

∫ rb

0
dr r

∫ 2π

0
dφ

∫ Zb

−Zb

dz Rtr
i , (A9)

where i = 22, 23, or 32.
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