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We study entropy production in the early stage of high-energy heavy-ion collisions due to shear viscosity.
We employ the second-order theory of Israel-Stewart with two different stress relaxation times, as appropriate
for strong coupling or for a Boltzmann gas, respectively, and compare the hydrodynamic evolution. Based on
the present knowledge of initial particle production, we argue that entropy production is tightly constrained. We
derive new limits on the shear viscosity to entropy density ratio η/s, independent from elliptic flow effects, and
determine the corresponding Reynolds number. Furthermore, we show that for a given entropy production bound,
the initial time τ0 for hydrodynamics is correlated to the viscosity. The conjectured lower bound for η/s provides
a lower limit for τ0.
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I. INTRODUCTION

Experiments conducted with colliding beams of gold ions
at the BNL Relativistic Heavy-Ion Collider (RHIC) have
confirmed that dense QCD matter exhibits hydrodynamic
flow effects [1]. Their magnitude matches approximately
predictions based on ideal Euler (inviscid) hydrodynamics1

[2]. More precisely, the transverse momentum and centrality
dependence of the azimuthally asymmetric flow, v2, requires
a shear viscosity to entropy density ratio as low as η/s � 0.2
[4–7]; this is much lower than perturbative extrapolations to
temperatures T � 200 MeV [8]. However, it is comparable to
recent results for SU(3) pure gauge theory from the lattice [9]
and to the conjectured lower bound for strongly coupled
systems η/s � 1/(4π ) [10]. Similar constraints on η/s have
been derived from transverse momentum correlations [11] and
from energy loss and flow of heavy quarks at RHIC [12].

The purpose of this paper is to obtain an independent upper
bound on η/s by analyzing entropy production in the early
stages of the hydrodynamic evolution (the plasma phase),
where the expansion rate and hence the entropy production
rate is largest. Entropy production in heavy-ion collisions due
to viscous effects has been studied before [13,14]. The new
idea pursued here is that recent progress in our understanding
of gluon production in the initial state constrains the amount
of additional entropy produced via final-state interactions,
and hence the viscosity and the thermalization time. The
second-order formalism for viscous hydrodynamics of Israel
and Stewart [15], and its application to one-dimensional
boost-invariant Bjorken expansion [16], are briefly reviewed
in Sec. II.

The initial condition for hydrodynamics, in particular
the initial parton or entropy density in the central rapidity

1Numerical solutions of Euler hydrodynamics on finite grids always
involve some amount of numerical viscosity for stability. Reliable
algorithms such as flux-corrected transport keep this numerical
viscosity and the associated entropy production at a minimum [3].

region, plays a crucial role. If it is close to the measured
final-state multiplicity, this provides a stringent bound on
viscous effects. The initial parton multiplicity in heavy-ion
collisions cannot, of course, be measured directly. Our analysis
therefore necessarily relies on a calculation of the initial
conditions (presented in Sec. III). Specifically, we employ
here a k⊥-factorized form of the color glass condensate (CGC)
approach which includes perturbative gluon saturation at small
light-cone momentum fractions x [17]. However, different
approaches for initial particle production, such as the HIJING
model which relies on collinear factorization supplemented
with an additional model for the soft regime, also predicts
multiplicities close to experiment [18]. The same is true
when the heavy-ion collision is modeled as a collision of two
classical Yang-Mills fields [19]. It is important to test these
models for small systems, such as peripheral A + A (or even
p + p) collisions, in order to constrain the entropy increase
via final-state effects (thermalization and viscosity).

Section IV contains our main results. We show how the
entropy production bound correlates η/s to the initial time
for hydrodynamic evolution, τ0. The entropy production rate
grows with the expansion rate (i.e., how rapidly the flow lines
diverge from each other), and the total amount of produced
entropy is therefore rather sensitive to the early stages of
the expansion. The bound on the viscosity depends also on
the initial condition for the stress, which in the second-order
theory is an independent variable and is not fixed by the
viscosity and the shear [unless the stress relaxation time is
extremely short, as predicted recently from the anti-de-Sitter
space/conformal field theory (AdS/CFT) correspondence at
strong coupling [20]].

In a recent paper, Lublinsky and Shuryak point out that
if the initial time τ0 is assumed to be very small, then
a resummation of the viscous corrections to all orders in
gradients of the velocity field is required [21]. Here, we explore
only the regime where τ0 is several times larger than the
sound attenuation length �s , and so the standard approach
to viscous hydrodynamics should apply. Quantitatively, we
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find that an entropy bound of �10% restricts η/s to be at
most a few times the lower bound [η/s = 1/(4π )] conjectured
from the correspondence [10]. On the other hand, somewhat
surprisingly, we find that even η/s = 1/(4π ) is large enough to
give noticeable entropy production for thermalization times τ0

well below 1 fm/c (but still larger than �s). Present constraints
from initial and final multiplicities are not easily reconciled
with such extremely short initial times [22].

We restrict ourselves here to the 1+1D Bjorken expansion.
Given its (numerical) simplicity and the fact that the entropy
production rate is largest at early times, this should provide a
reasonable starting point. Estimates for the initial time τ0, for
the parton density and the stress at τ0, and for the viscosity
to entropy density ratio η/s are in fact most welcome for
large-scale numerical studies of relativistic (second-order)
dissipative fluid dynamics. Without guidance on the initial
conditions, the hydrodynamic theory can at best provide
qualitative results for heavy-ion collisions.

We neglect any other possible source of entropy but shear
viscosity at early times.2 Even within this simplified setting,
there could be additional entropy production due to a viscous
“hadronic corona” surrounding the fireball [23], which we
do not account for. Clearly, any additional contribution would
further tighten the (upper) bound on η/s and the (lower) bound
on τ0. We also assume that η/s is constant. This does not hold
over a very broad range of temperature [8] but should be a
reasonable first approximation for T � 200–400 MeV.

We employ natural units throughout the paper: h̄ = c =
kB = 1.

II. DISSIPATIVE FLUID DYNAMICS

A. Second-order formalism

In this section we briefly review some general expressions
for viscous hydrodynamics which will be useful in the
following discussion. More extensive discussions are given
in Refs. [14,24–30], for example.

A single-component fluid is generally characterized by a
conserved current (possibly more) Nµ, the energy-momentum
tensor T µν, and the entropy current Sµ. The conserved
quantities satisfy the continuity equations

∂µNµ = 0, ∂µT µν = 0. (1)

In addition, the divergence of the entropy current has to be
positive by the second law of thermodynamics, that is,

∂µSµ � 0. (2)

For a perfect fluid, a well-defined initial-value problem
requires the knowledge of T µν and Nµ on a spacelike surface in
3+1D Minkowski space time. This is equivalent to specifying
the initial flow field uµ, proper charge density n ≡ uµNµ,
and proper energy density e ≡ uµuνT

µν ; the pressure is
determined via an algebraic relation to e and n, the equation
of state (EOS).

2This contribution is expected to vanish once transverse expansion
is fully developed, see Sec. II B.

In dissipative fluids, irreversible viscous and heat con-
duction processes occur. These quantities can be expressed
explicitly if the charge and entropy currents and the energy-
momentum tensor are decomposed (projected) into their
components parallel and perpendicular to the flow of mat-
ter [31]; the latter describe the dissipative currents. The
transverse projector is given by �µν = gµν − uµuν , with
gµν = diag(1,−1,−1,−1) the metric of flat space time. In the
following, we focus on locally charge-neutral systems where
all conserved currents vanish identically.

The energy-momentum tensor can be decomposed in the
following way:

T µν = euµuν − (p + �)�µν + Wµuν + Wνuµ + πµν. (3)

Here, Wµ = qµ + hV µ = uνT
να�µ

α is the energy flow, with
h = (e + p)/n the enthalpy per particle, qµ is the heat
flow, and V µ = �µνNν is the charge flow; we shall define
the local rest-frame via Wµ = 0 (the Landau frame). Fur-
thermore, � denotes the bulk pressure such that p + � =
− 1

3�µνT
µν , while the symmetric and traceless part of the

energy-momentum tensor defines the stress tensor, πµν =
[ 1

2 (�µ
α�ν

β + �ν
α�

µ
β ) − 1

3�µν�αβ]T αβ .
The entropy current is decomposed as

Sµ = suµ + �µ. (4)

In the standard first-order theory due to Eckart [31] and
Landau and Lifshitz [32], only linear corrections are taken into
account, i.e., �µ = qµ/T . On the other hand, the second-order
theory of relativistic dissipative fluid dynamics includes terms
to second order in the irreversible flows and in the stress
tensor [15], that is,

Sµ = suµ + qµ

T
− (β0�

2 − β1qνq
ν + β2πναπνα)

uµ

2T

− α0�qµ

T
+ α1π

µνqν

T
, (5)

where the coefficients β0, β1, β2 and α0, α1 represent thermo-
dynamic integrals which (near equilibrium) are related to the
relaxation times of the dissipative corrections. Furthermore,
from Eq. (2), one can find linear relationships between the
thermodynamic forces and fluxes, leading to the transport
equations describing the evolution of dissipative flows [15].

In what follows, we will focus on shear effects and neglect
heat flow and bulk viscosity; hence, Eq. (3) simplifies to

T µν = euµuν − p�µν + πµν. (6)

The stress tensor satisfies the relaxation equation

τπuλ∂λπ
µν + πµν = 2ησµν, (7)

where η denotes the shear viscosity, and the shear tensor σµν

is a purely “geometrical” quantity determined by the flow field
as

σµν = 1
2 (∇µuν + ∇νuµ) − 1

3�µν∇λu
λ, (8)

with ∇µ = �µν∂ν . The relaxation time τπ determines how
rapidly the stress tensor πµν relaxes to the shear tensor σµν ;
in particular, in the limit τπ → 0,

πµν = 2ησµν (9)
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satisfies the same algebraic relation as in the first-order theory.
The limit τπ → 0 is formal, however, since the deviation of
the stress πµν from 2ησµν at any given time, as obtained by
solving Eq. (7), depends also on its initial value. If Eq. (9)
is approximately valid at the initial time, then the first-order
theory may provide a reasonable approximation for the entire
evolution (see below).

By analyzing the correlation functions of the stress that
lead to the definitions (7) and (9), respectively, of the shear
viscosity, Koide argues that in the second-order theory of Israel
and Stewart, η may represent a different quantity than in the
first-order approach [33]. Nevertheless, here we assume that
the conjectured lower bound for η/s applies even to the causal
(second-order) approach.

B. Dissipative Bjorken scaling fluid dynamics

In this section we recall the 1+1D Bjorken scaling solution
[16] in 3+1D space time including stress [14]. By assumption,
the fluid in the central region of a heavy-ion collision expands
along the longitudinal z direction only, with a flow velocity
v equal to z/t . This is appropriate for times less than the
transverse diameter R of the collision zone divided by the
speed of sound cs = √

∂p/∂e (possibly longer for very viscous
fluids). After that, transverse expansion is fully developed, and
we expect that entropy production due to shear decreases. In
fact, it is straightforward to check that for three-dimensional
scaling flow3 uµ∂νσ

µν = 0; hence, within the first-order theory
at least, the shear viscosity no longer enters into the evolution
equation of the energy density.

Formulations of the Israel-Stewart second-order theory
for Bjorken plus transverse expansion have been published
[24–29] but require large-scale numerical computations. A
relatively straightforward 1+1D analysis is warranted as a
first step to provide an estimate for entropy production.

It is convenient to transform from (t, z) to new (τ, η̃)
coordinates, where τ = √

t2 − z2 denotes proper time and
η̃ = 1

2 log[(t + z)/(t − z)] is the space-time rapidity; for the
Bjorken model, it is equal to the rapidity of the flow, ηfl ≡
1
2 log[(1 + v)/(1 − v)]. In other words, the four-velocity of
the fluid is uµ = (δµ0 + δµ3)xµ/τ .

The longitudinal projection of the continuity equation for
the stress-energy tensor then yields

de

dτ
+ e + p

τ
− �

τ
+ �

τ
= 0 . (10)

Here, e is the energy density of the fluid in the local rest frame,
while p denotes the pressure. These quantities are related
through the EOS. We focus here on entropy production during
the early stages of evolution where the temperature is larger
than the QCD cross-over temperature Tc � 170 MeV, and so
we assume a simple ideal-gas EOS, p = e/3.

In what follows, we will neglect the bulk pressure �

which would otherwise tend to increase entropy production
further. Well above Tc, this contribution is expected to be much

3Replace z → |r| in the definition of proper time τ and space-time
rapidity η̃ below, and take u = r/τ .

smaller than that due to shear [34]. In the transition region, the
bulk viscosity could be significant [35]. Also, for the 1+1D
expansion considered here, the stress � ≡ π00 − πzz acts in
the same way as the bulk pressure �: only the combination
� − � appears in Eq. (10).

The time evolution of the stress is determined by [14]

d�

dτ
+ �

τπ

+ �

2

[
1

τ
+ T

β2

d

dτ

(
β2

T

)]
− 2

3β2τ
= 0. (11)

τπ sets the time scale for relaxation to the first-order theory
where �1st-O = 4η/3τ (not to the ideal-fluid limit � = 0). It
is related to η and β2 via τπ = 2ηβ2. For a classical Boltzmann
gas of massless particles, β2 = 3/(4p) = 3/(T s) and so

τπ = 6

T

η

s
. (12)

At infinite coupling, from the AdS/CFT correspondence,
η/s = 1/(4π ) [10] and τπ = (1 − log 2)/(6πT ) [20]. For
large but finite coupling, we assume that ηβ2 and thus τπ

are proportional to η/s, i.e., that β2 = (3r)/(T s) with r =
(1 − log 2)/9; then

τπ = r
6

T

η

s
. (13)

Note that the numerical prefactor r is about 30 times smaller
than for a Boltzmann gas, implying much faster relaxation of
the dissipative fluxes to the first-order theory.

One can also define a Reynolds number via the ratio of
nondissipative to dissipative quantities [36], R = (e + p)/�.
Equation (10) can then be written as

de

d log τ
= (R−1 − 1)(e + p) , (14)

where we have neglected the bulk pressure. For stability, the
effective enthalpy (e + p)(1 − 1/R) should be positive, i.e.,
R > 1. The energy density then decreases monotonically with
time.

The equations of second-order dissipative fluid dynamics,
Eqs. (10) or (14) and (11), together with Eqs. (12) or (13) and
β2 = τπ/(2η) form a closed set of equations for a fluid with
vanishing currents, if augmented by an EOS. Furthermore,
the initial energy density e0 ≡ e(τ0) and the initial shear
�0 ≡ �(τ0) have to be given. In the second-order theory, one
has to specify the initial condition for the viscous stress �0

independently from the initial energy or particle density. We
are presently unable to compute �0. Below, we shall therefore
present results for various values of �0.

Alternatively, a physically motivated initial value �∗
0 for

the stress can be obtained from the condition that dR/dτ = 0
at τ = τ0. This is the “tipping point” between a system that
is already approaching perfect fluidity at τ0 (dR−1/dτ < 0, if
�0 > �∗

0) and one that is unable to compete with the expansion
and is in fact departing from equilibrium (dR−1/dτ > 0, if
�0 < �∗

0) for at least some time after τ0.
For an EOS with constant speed of sound, say p =

e/3, the condition that Ṙ = 0 is equivalent to ė/e = �̇/�.
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Equations (10) and (11) then yield

�∗
0

e0
= 4

3

τ0

τπ

[√
1 + 4

9r

τ 2
π

τ 2
0

− 1

]
(15)

≈ 8

27r

τπ

τ0

(
τπ/τ0 	 √

r
)
, (16)

= 16

9

1

T0τ0

η

s
(first-order theory). (17)

The second line applies in the limit of short relaxation time;
since τπ is proportional to r , this is always satisfied in the
limit r → 0. For typical initial conditions relevant to heavy-
ion collisions, it is a reasonable approximation even in the
Boltzmann limit (r = 1). In Eq. (17) we have indicated that
Eq. (16) is in fact nothing but the stress in the first-order
theory (divided by the initial energy density). While it is clear
that � relaxes to �1st-O over time scales on the order of τπ ,
Eq. (17) is actually a statement about the initial value of �:
in a fluid with reasonably short relaxation time and stationary
initial Reynolds number, Ṙ(τ0) = 0, even the initial value of
the stress is given by the first-order approach.

The condition R(τ0) > 1 for applicability of hydrodynam-
ics together with Eq. (16) then provides the following lower
bound on τ0:

τ0 >
4

3T0

η

s
≡ �s(τ0), (18)

where �s denotes the sound attenuation length; within the
first-order approach, R = τ/�s . The factor of η/s on the
right-hand side illustrates the extended range of applicability
of hydrodynamics as compared to a Boltzmann equation: a
classical Boltzmann description requires that the thermal de
Broglie wave length, ∼1/T , is smaller than the (longitudinal)
size of the system, τ . For very small viscosity, though,
hydrodynamics is applicable (since R � 1) even when �s 	
τ <∼ 1/T . In this point we differ somewhat from Lublinsky and
Shuryak [21], who argue that the theory needs to be resummed
to all orders in the gradients of the velocity field already when
τ ∼ 1/T . From our argument above, this should be necessary
only when τ0 ∼ �s(τ0), which is much smaller than 1/T0 if
η/s 	 1.

The purpose of this paper is to motivate, however, that a
much stronger constraint than τ0 > �s(τ0) may result from
a bound on entropy production (which follows from the
centrality dependence of the multiplicity), cf. Sec. IV.

In the Bjorken model, the entropy per unit rapidity and
transverse area at time τ is given by

1

A⊥

dS(τ )

dη
= τ s̃(τ ), (19)

where A⊥ is the transverse area, while s̃ ≡ Sµuµ denotes the
longitudinal projection of the entropy current. Neglecting heat
flow (qµ = 0) and bulk pressure (� = 0), one obtains from
Eq. (5)

s̃ = s

(
1 − 3

4

β2

T s
�2

)
. (20)

s̃ can be determined, for any τ � τ0, from the solution of
Eqs. (10) and (11). Note that the second term in Eq. (20)

is of order (�/e)2. For nearly perfect fluids with η/s 	 1 and
Ṙ(τ0) = 0, it is rather small.

III. THE CGC INITIAL CONDITION

Before we can present solutions of the hydrodynamic equa-
tions, we need to determine suitable initial conditions. To date,
the most successful description of the centrality dependence
of the multiplicity is provided by the Kharzeev-Levin-Nardi
(KLN) k⊥-factorization approach [17]. The KLN ansatz for
the unintegrated gluon distribution functions (uGDFs) of the
colliding nuclei incorporates perturbative gluon saturation at
high energies and determines the p⊥-integrated multiplicity
from weak-coupling QCD without additional models for soft
particle production.

Specifically, the number of gluons that are released from
the wavefunctions of the colliding nuclei is given by

dNg

d2r⊥dy
= N Nc

N2
c − 1

∫
d2p⊥
p2

⊥

∫ p⊥
d2k⊥ αs(k⊥)

×φA(x1, ( p⊥ + k⊥)2/4; r⊥)

×φB(x2, ( p⊥−k⊥)2/4; r⊥), (21)

where Nc = 3 is the number of colors, and p⊥, y are the
transverse momentum and the rapidity of the produced gluons,
respectively. x1,2 = p⊥ exp(±y)/

√
sNN denote the light-cone

momentum fractions of the colliding gluon ladders, and√
sNN = 200 GeV is the collision energy.
The normalization factor N can be fixed from peripheral

collisions, where final-state interactions should be suppressed.
(Ideally, the normalization could be fixed from p + p col-
lisions; however, this is possible only at sufficiently high
energies, when the proton saturation scale is at least a few
times �QCD.) N also absorbs next-to-leading order (NLO)
corrections; when we compare to measured multiplicities
of charged hadrons, it includes as well a factor for the average
charged hadron multiplicity per gluon, and a Jacobian for the
conversion from rapidity to pseudorapidity.

The uGDFs are written as [17,37,38]

φ
(
x, k2

⊥; r⊥
) = 1

αs

(
Q2

s

) Q2
s

max
(
Q2

s , k
2
⊥
)P (r⊥)(1 − x)4. (22)

P (r⊥) denotes the probability of finding at least one nucleon at
r⊥ [37,38]. This factor arises because configurations without
a nucleon at r⊥ do not contribute to particle production. Note
that the perturbative ∼1/k2

⊥ growth of the gluon density toward
small transverse momentum saturates at k⊥ = Qs . Therefore,
the p⊥-integrated gluon multiplicity obtained from Eq. (21) is
finite.

We should emphasize that the ansatz (22) is too simple
for an accurate description of high-p⊥ particle production.
For example, it does not incorporate the so-called “extended
geometric scaling” regime above Qs , which plays an important
role in our understanding of the evolution of high-p⊥ spectra
from mid- to forward rapidity in d+Au collisions [39].
However, high-p⊥ particles contribute little to the total
multiplicity, and more sophisticated models for the uGDF do
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not significantly change the centrality dependence of dN/dy

[37].
Qs(x, r⊥) denotes the saturation momentum at a given

momentum fraction x and transverse coordinate r⊥. It is
parametrized as [37,38]

Q2
s (x, r⊥) = 2 GeV2

(
T (r⊥)/P (r⊥)

1.53

) (
0.01

x

)λ

. (23)

The ∼1/xλ growth at small x is expected from the BFKL
(Balitsky, Fadin, Kuraev, and Lipatov) evolution and has
been verified both in deep inelastic scattering at HERA
[40] and in high-p⊥ particle production from d+Au col-
lisions at RHIC [39]; the growth speed is approximately
λ � 0.28. Note that the saturation momentum, as defined in
Eq. (23), is “universal” in that it does not depend on the
thickness of the collision partner at r⊥ [41].

The centrality dependence of Qs is determined by the thick-
ness function T (r⊥), which is simply the density distribution of
a nucleus, integrated over the longitudinal coordinate z. Note
that the standard Woods-Saxon density distribution is averaged
over all nucleon configurations, including those without any
nucleon at r⊥. For this reason, a factor of 1/P (r⊥) arises in
Q2

s [37,38]. It prevents Qs from dropping to arbitrarily small
values at the surface of a nucleus (since at least one nucleon
must be present at r⊥ or else no gluon is produced at that
point). The fact that Qs is bound from below prevents infrared
sensitive contributions from the surface of the nucleus and
also makes the uGDF (22) less dependent on “freezing” of the
one-loop running coupling.

Figure 1 shows the centrality dependence of the multi-
plicity, as obtained from Eq. (21) via an integration over the
transverse plane. It was noted in Ref. [37] that the multiplicity
in the most central collisions is significantly closer to the
data than the original KLN prediction [17] if the integration
over r⊥ is performed explicitly, rather than employing a
mean-field-like approximation, Q2

s (r⊥) → 〈Q2
s 〉(b). An even

 2.5

 3

 3.5

 4

 0  100  200  300  400

 (
2/

N
pa

rt
) 

dN
/d

η 

 Npart

PHOBOS AuAu

PHOBOS CuCu

fKLN AuAu

fKLN CuCu

FIG. 1. (Color online) Centrality dependence of the charged par-
ticle multiplicity at midrapidity from the k⊥-factorization approach
with perturbative gluon saturation at small-x, for Cu+Cu and Au+Au
collisions at full RHIC energy,

√
sNN = 200 GeV. PHOBOS data

from Ref. [42]; the errors are systematic, not statistical.

better description of the data can be obtained when event-
by-event fluctuations of the positions of the nucleons are
taken into account [38]; they lead to a slightly steeper
centrality dependence of the multiplicity per participant for
very peripheral collisions or small nuclei. However, we focus
here on central Au+Au collisions, and hence we neglect this
effect.

It is clear from the figure that the above CGC-k⊥ factor-
ization approach does not leave much room for an additional
centrality-dependent contribution to the particle multiplicity.
(Centrality independent gluon multiplication processes have
been absorbed into N .) In fact, within the bottom-up thermal-
ization scenario, one does expect, parametrically, that gluon
splittings increase the multiplicity by a factor ∼1/α2/5 [43]
before the system thermalizes at τ0 and the hydrodynamic
evolution begins. If the scale for running of the coupling
is set by Qs , this would lead to a roughly 20% increase
of the multiplicity for the most central Au+Au collisions.
However, such a contribution does not seem to be visible in
the RHIC data, perhaps because the bottom-up scenario, which
considered asymptotic energies, does not apply quantitatively
at RHIC energy. It is also conceivable that the model in
Eqs. (22) and (23) overpredicts somewhat the growth of the
particle multiplicity per participant with centrality.

It is noteworthy that from the most peripheral Cu+Cu to the
most central Au+Au bin, (dN/dη)/Npart grows by only �50%
while N

1/3
part increases by a factor of 2.6. Clearly, any particle

production model that includes a substantial contribution from
perturbative QCD processes will cover most of the growth.
This implies that rather little entropy production appears to
occur after the initial radiation field decoheres. If so, this allows
us to correlate the thermalization time τ0 and the viscosity
to entropy density ratio η/s. We shall assume that about
10% entropy production may be allowed for central Au+Au
collisions.

The density of gluons at τs = 1/Qs is given by dN/d2r⊥ dy

from Eq. (21), divided by τs . For a central collision of Au
nuclei at full RHIC energy, the average Qs � 1.4 GeV at
midrapidity; hence τs � 0.14 fm/c. The parton density at this
time is approximately �40 fm−3. If their number is effectively
conserved4 until thermalization at τ0, then

n(τ0) = τs

τ0
n(τs). (24)

The initial energy density e(τ0) can now be obtained from the
density via standard thermodynamic relations. We assume that
the energy density corresponds to 16 gluons and 3 massless
quark flavors in chemical equilibrium, that is,

e(T ) = 47.5

30
π2T 4, n(T ) = 43ζ (3)

π2
T 3. (25)

Figure 2 shows the parton number and energy densities at τ0.

4We repeat that centrality-independent gluon multiplication pro-
cesses and the contribution from quarks are already accounted for via
the normalization factor N .
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FIG. 2. (Color online) Parton number and energy densities (av-
eraged over the transverse plane) for b = 0 Au+Au collisions at√

sNN = 200 GeV as functions of the thermalization time τ0.

IV. RESULTS

A. Evolution of entropy and Reynolds number

We begin by illustrating entropy production due to dissi-
pative effects. Given an initial time τ0 for the hydrodynamic
evolution, we determine �S = dSfin/dy − dSini/dy for τ >

τ0. This quantity increases rather rapidly at first, since the
expansion rate H ≡ ∂µuµ = 1/τ is biggest at small τ . We
chose τfin = 5 fm/c to be on the order of the radius of the
collision zone and fix the final value for �S/Sini to equal 10%.
Having fixed the initial and final entropy as well as the initial
time, we can then determine η/s.

The result of the calculation is shown in Fig. 3. As expected,
if the hydrodynamic expansion starts later (larger τ0), then
less entropy is produced for a given value of η/s; conversely,
for fixed entropy increase, larger values of η/s are possible.
This is due to two reasons: the total time interval for the one-
dimensional hydrodynamic expansion as well as the entropy
production rate decrease. In fact, the figure shows that for
very small initial time, the �S/Sini = 10% bound cannot be
satisfied with η/s � 1/(4π ) � 0.08.
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FIG. 3. (Color online) Entropy production within second-order
dissipative hydrodynamics as a function of (proper) time; the initial
value of the stress is �(τ0) = �∗

0, cf. Eq. (15). Curves for three
different initial times, τ0 = 0.5, 1, and 1.5 fm/c are shown; for each
curve, η/s is chosen such that �S/Sini = 10% at τfin = 5 fm/c.
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FIG. 4. (Color online) Time evolution of the inverse Reynolds
number (using the Boltzmann relaxation time) for different initial
values of the viscous stress �0 and of the viscosity to entropy density
ratio η/s. The initial time is τ0 = 1 fm/c for all curves. The short-
dashed (blue) line corresponds to the initial condition Ṙ(τ0) = 0, cf.
Eq. (15). The long-dashed (green) line corresponds to the first-order
theory.

In Fig. 4, we show the behavior of the inverse Reynolds
number for different initial values of stress. Again, for each
curve, η/s is fixed such that �S/Sini = 10% at τfin = 5 fm/c.
As already indicated above, if �0 < �∗

0 defined in Eq. (15),
the fluid cannot compete with the expansion and departs
from equilibrium. On the other hand, if �0 > �∗

0, there is
already a rapid approach toward the perfect-fluid limit at τ0.
In either case, the interpretation of τ0 as the earliest possible
starting time for hydrodynamic evolution does not appear to
be sensible. The initial condition corresponding to Ṙ(τ0) = 0
in turn corresponds to the situation in which the fluid has just
reached the ability to approach equilibrium. It is clear from
the figure that the evolution is close to that predicted by the
first-order theory.

Figure 5 shows the Reynolds number for our ansatz (13)
for the relaxation time at strong coupling, which essentially
follows the behavior given by the first-order theory: after a
time ∼τπ has elapsed, the behavior of R is nearly independent
of the initial value of �. The initial condition �0 = �∗

0 again
leads to the most natural behavior of R without a very rapid
initial evolution.
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FIG. 5. (Color online) Same as Fig. 4, but for the generalized
AdS/CFT relaxation time in Eq. (13).
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FIG. 6. (Color online) Bound on η/s as a function of τ0, for
�S/Sini = 10% entropy production, for a Boltzmann gas.

B. η/s versus τ0

From the previous results, it is evident that fixing the amount
of produced entropy, �S/Sini, correlates η/s with τ0. In this
section, we show the upper limit of η/s as a function of τ0.

We begin with the Boltzmann gas with fixed �0 (inde-
pendent of τ0) in Fig. 6. One observes that the maximal
viscosity depends rather strongly on the initial value of the
stress. For any given �0, (η/s)max first grows approximately
linearly with τ0. For large initial time, however, the expansion
and entropy production rates drop so much that the bound on
viscosity eventually disappears. Furthermore, it is interesting
to observe that the conjectured lower bound η/s = 1/(4π )
excludes too rapid thermalization: even if the fluid is initially
perfectly equilibrated (�0 = 0), a thermalization time well
below ∼1 fm/c is possible only if either η/s < 1/(4π ) or
�S/Sini > 10%. With 10% correction to perfect fluidity at τ0,
shown by the long-dashed (green) line in Fig. 6, the minimal
τ0 compatible with both η/s � 1/(4π ) and �S/Sini = 10%
is about 1.2 fm/c. If η/s � 0.1–0.2, as deduced from the
centrality dependence of elliptic flow at RHIC [6], then
τ0 � 1.5 fm/c.

In Fig. 7, we perform a similar analysis for our ansatz (13)
for the strong-coupling case. Because of the much smaller
relaxation time of the viscous stress, we observe that the
viscosity bound is now rather insensitive to the magnitude of
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FIG. 7. (Color online) Same as Fig. 6, but for strong coupling, τπ

from Eq. (13).
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FIG. 8. (Color online) Same as Fig. 6, but for �0 = �∗
0 and

different bounds on entropy production.

the initial correction to equilibrium. We obtain a lower bound
on the thermalization time of τ0 � 1 fm/c for the minimal
viscosity, increasing to about 1.2–2.2 fm/c if η/s � 0.1–0.2.

In Fig. 8, we return to the Boltzmann gas with initial value
for the stress as given in Eq. (15), corresponding to Ṙ(τ0) = 0.
Comparing it to Fig. 6, we observe that the viscosity bound is
affected mostly for large τ0: with this initial condition, a high
viscosity η/s ∼ 1 is excluded even if the initial time is as large
as 2 fm/c. The reason why the upper bound on the viscosity
does not disappear at large τ0 for this initial stress is that �∗

0/e0

grows with η/s, cf. Eq. (15). A lot of entropy would then be
produced, even for large τ0.

Figure 8 also gives an impression of the sensitivity to the
entropy production bound. For η/s = 0.15, for example, τ0

decreases from �1.8 fm/c, if the entropy is allowed to increase
by 10%, to �1.5 fm/c if the bound is relaxed to �S/Sini =
15%.

We performed similar calculations for the strong-coupling
limit as shown in Fig. 9. The curves are rather close to
those for a Boltzmann gas from Fig. 8, which is expected.
With this initial condition, i.e., �0 = �∗

0, the hydrodynamic
evolution is close to the first-order theory for both cases.
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FIG. 9. (Color online) Same as Fig. 8, but for the strong-coupling
limit, i.e., for τπ from Eq. (13).
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Entropy production is sensitive only to τ0 and η/s but is nearly
independent of the stress relaxation time τπ .

Figure 10 shows the ratio of the final to the initial entropy
as a function of τ0 for two different values of η/s, and the
two different relaxation times discussed above in Eqs. (12)
and (13). Here, Sfin has been fixed to the value appropriate for
central Au+Au collisions, while Sini is varied accordingly. For
example, for τ0 = 0.6 fm/c and η/s = 1/(2π ), almost 30%
entropy production occurs. This would account for the entire
growth of (dN/dη)/Npart from Npart � 60 to Npart � 360
observed in Fig. 1. That is, for these parameters, the initial
parton multiplicity per participant would have to be completely
independent of centrality. For the same viscosity, τ0 = 0.3 fm/c
would imply that nearly half of the final-state entropy was
produced during the hydrodynamic stage, i.e., that the initial
multiplicity per participant should actually decrease with
centrality. Such a scenario appears unlikely to us. Note that
even for τ0 = 0.3 fm/c and η/s = 1/(4π ), with T = 400 MeV
one finds that �s(τ0)/τ0 � 0.17 is quite small. Romatschke
obtained similar numbers for the initial to final entropy ratio,
albeit only for τ0 = 1 fm/c, in a computation that included
cylindrically symmetric transverse expansion [28].

V. SUMMARY, DISCUSSION, AND OUTLOOK

In this paper, we have analyzed entropy production due to
nonzero shear viscosity in central Au+Au collisions at RHIC.
We point out that a good knowledge of the initial conditions,
and of the final state, of course, can provide useful constraints
for hydrodynamics of high-energy collisions, specifically on
transport coefficients, on the equation of state (not discussed
here, cf. Ref. [6]), on the initial/thermalization time and so on.

Our main results are as follows. Assuming that hydrody-
namics applies at τ > �s , then due to the rather restrictive
bound on entropy production, it follows that the shear viscosity
to entropy density ratio of the QCD matter produced at central
rapidity should be small, at most a few times the lower bound
η/s = 1/(4π ) conjectured from the AdS/CFT correspondence
at infinite coupling. This represents a consistency check

with similar numbers (η/s <∼ 0.2) extracted from azimuthally
asymmetric elliptic flow [4–7]. We have neglected several
other possible sources of entropy production, such as bulk
viscosity near the transition region [35] or hadronic corona
effects [23]; such additional contributions might tighten the
constraints even further.

Furthermore, the entropy production bound correlates
the maximal allowed viscosity to the initial time τ0 for
hydrodynamic evolution. This is because the expansion rate
is equal to the inverse of the expansion time, which makes
entropy production from viscous effects rather sensitive to
the value of τ0. We have found that for �S/Sini � 10%,
the initial time for hydrodynamics should be around 1 fm/c,
possibly a little larger. Significantly smaller thermalization
times would either require η/s < 0.15–0.2 [or even smaller
than 1/(4π )]. Alternatively, they would require a particle
production mechanism that yields significantly lower initial
multiplicities than the KLN-CGC approach. Given the very
good description of the centrality dependence of the multi-
plicity, however, it appears reasonable to us to assume that
this approach provides an adequate initial condition in that
the initial parton multiplicity per participant increases with
centrality.

A significant problem with viscous hydrodynamics, in
particular with the Israel-Stewart second-order approach, is
that the number of initial parameters increases. Even within
the most simple framework followed here (1+1D Bjorken
expansion combined with neglect of conserved currents, bulk
viscosity, and heat flow), a unique solution requires us to
specify, in addition to the ideal-fluid parameters, the shear
viscosity and the initial value for the stress. The latter,
in particular, is not a general property of near-equilibrium
QCD but depends on the parton liberation and thermalization
process. We have, however, introduced a physically motivated
initial condition for the stress: if τ0 is defined as the earliest
possible initial time for hydrodynamics, it is plausible that
the initial Reynolds number should be stationary, Ṙ(τ0) = 0.
Otherwise, the fluid either still departs from equilibrium
[Ṙ(τ0) < 0] or is already approaching it [Ṙ(τ0) > 0].

For small relaxation times of the stress, the condition
that Ṙ(τ0) = 0 implies that its initial value is already close
to that given by the first-order theory of Eckart, Landau,
and Lifshitz (the relativistic generalization of Navier-Stokes
hydrodynamics). We therefore expect that in general the two
approaches will provide rather similar results for heavy-ion
collisions. One should keep in mind, however, that in the
second-order theory, the entropy current includes a term
quadratic in the stress, which is of course absent from the first-
order theory and which slightly reduces entropy production.

Perhaps most importantly, with Ṙ(τ0) = 0, the hydrody-
namic evolution is largely independent of the stress relaxation
time τπ , and therefore similar for both a Boltzmann gas at weak
coupling (with low viscosity, however) and a strongly coupled
plasma. The latter relaxes very rapidly to the first-order
theory, regardless of the initial condition. The former, on the
other hand, is forced by the initial condition to start close
to relativistic Navier-Stokes, and the relaxation time is still
sufficiently small to prevent a significant departure from the
first-order theory.
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The initial condition Ṙ(τ0) = 0 also guarantees that
R(τ ) � 1 for all τ � τ0, as long as the initial time is
not extremely short (τ0T0 � η/s). The effective enthalpy
(1 − 1/R)(e + p) is therefore always positive. On the other
hand, our numerical results indicate that the Reynolds number
does not exceed ∼100 during the QGP phase. This is well
below the regime where Navier-Stokes turbulence occurs
in incompressible, nonrelativistic fluids (R >∼ 1000). Indeed,
turbulence during the hydrodynamic stage would probably
cause large fluctuations of the elliptic flow v2 [44], which are
not seen [45].

A quantitative interpretation of hydrodynamic flow effects
in heavy-ion collisions at RHIC and the CERN Large Hadron
Collider (LHC) will of course require 2+1D and 3+1D
solutions [7,24–29]. The results obtained here should prove

useful for constraining the initial conditions (in particular τ0

and �0) for such large-scale numerical efforts. In particular, as
we pointed out here, the entropy production bound correlates
τ0 with η/s. In turn, we expect that elliptic flow will provide
an anticorrelation, since later times and larger shear viscosity
should both reduce its magnitude. The intersection of those
curves could then provide an estimate of the initial time for
hydrodynamics at RHIC.
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