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Scaling of v2 in heavy ion collisions
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We interpret the scaling of the corrected elliptic flow parameter with respect to the corrected multiplicity,
observed to hold in heavy ion collisions for a wide variety of energies and system sizes. We use dimensional
analysis and power-counting arguments to place constraints on the changes of initial conditions in systems with
different center of mass energy

√
s. Specifically, we show that a large class of changes in the (initial) equation

of state, mean free path, and longitudinal geometry over the observed
√

s are likely to spoil the scaling in
v2 observed experimentally. We therefore argue that the system produced at most Super Proton Synchrotron
(SPS) and Relativistic Heavy Ion Collider (RHIC) energies is fundamentally the same as far as the soft and
approximately thermalized degrees of freedom are considered. The “sQGP” (Strongly interacting Quark-Gluon
Plasma) phase, if it is there, is therefore not exclusive to RHIC. We suggest, as a goal for further low-energy
heavy ion experiments, to search for a “transition”

√
s where the observed scaling breaks.
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I. INTRODUCTION

The azimuthal anisotropy of mean particle momentum
(parametrized by its second Fourier component v2), thought
of as originating from the azimuthal anisotropy in collective
flow (“elliptic flow”), has long been regarded as an impor-
tant observable in heavy ion collisions. The main reasons
for this is that elliptic flow has long been understood to
be “self-quenching” [1,2]: The azimuthal pressure gradient
extinguishes itself soon after the start of the hydrodynamic
evolution, so the final v2 is insensitive to later stages of the
fireball evolution and therefore allows us to probe the hottest,
best thermalized, and possibly deconfined phase.

In addition, as has been shown in [3], the v2 signature is
highly sensitive to viscosity. The presence of even a small but
non-negligible viscosity, therefore, can in principle be detected
by a careful analysis of v2 data.

Indeed, one of the most widely cited (in both the academic
and popular press) news coming out of the heavy ion com-
munity concerns the discovery, at RHIC, of a “perfect fluid,”
also sometimes referred to as “sQGP” [4–7]. The evidence for
this claim comes from the successful modeling of RHIC v2

by boost-invariant hydrodynamics [13–15]. The scaling of v2

according to the number of constituent quarks further suggests
that the flow we are seeing is partonic, rather than hadronic,
in origin [8,9], especially since the scaling applied to kinetic
energy (rather than transverse momentum) holds for every
known species up to the lowest momentum [10–12].

While hydrodynamics is a fully deterministic theory, it
contains a crucial not very well understood assumption:
initial conditions. While the degree of boost invariance is not
currently well known experimentally, the transverse structure
of the energy density should follow a Glauber model [16],
based on the superposition of the initial nuclear densities. That
allows us to characterize the collision in terms of a number
less than one called the eccentricity ε, related to the impact
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parameter b and the radius R (∼A1/3 fm)

ε =
√

2R + b − √
2R − b√

2R + b
(1)

the total transverse area of the system S depends, similarly, on
R and b

S = 2R2 cos−1

(
b

2R

)
− b

√
R2 − b2

4
. (2)

Since the announcement of the discovery of the perfect fluid, a
considerable amount of high quality experimental data has
been collected. In particular, extension of RHIC beams to
smaller colliding systems such as Cu-Cu have allowed us to
compare systems of similar multiplicity but in very different
energy regimes. The results have been remarkable: It seems
that v2/ε (where ε is the initial eccentricity), plotted against
dN
Sdy

(where S is the area of the collision system and dN
dy

is
the multiplicity rapidity density), fall on a “universal” curve,
which links very different regimes, ranging from Alternating
Gradient Synchrotron (AGS) to RHIC ( [17,18], Fig. 1).

This scaling, albeit with a linear dependence rather than the
slightly curved one observed, has been predicted previously
[19,20] on the basis of a nearly “free streaming” calculation
where the mean free path is comparable to the system size.
Such a limit considerably under-predicts the observed v2/ε,
which is why a nearly-perfect hydrodynamic regime is thought
to apply. As we will show, however, the same scaling in this
regime is far from guaranteed.

We do not possess at present the tools, such as 3D viscous
hydrodynamics, to quantitatively analyze this data. However,
the extent of the scaling suggests that these very different
systems vary somehow only in one scale, and that this scale is
connected to the total entropy produced [21].

In this work, we shall perform a qualitative analysis,
using elementary tools such as Taylor expansion, dimensional
analysis, and power counting. We show that these tools,
together with experimental data, allow us to place stringent

0556-2813/2007/76(2)/024903(8) 024903-1 ©2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.76.024903


GIORGIO TORRIERI PHYSICAL REVIEW C 76, 024903 (2007)

FIG. 1. (Color online) A compendium of evidence for the
universal (for the observed energies) scaling of v2/ε vs 1

S

dN

dy
[18].

Predictions from ideal boost-invariant hydro are also shown (lines,
see references of [18]).

limits on the initial conditions of the system created in heavy
ion collisions, from AGS to RHIC energies.

In particular, we show that the observed scaling places very
strong constraints on initial microscopic properties (entropy
density, mean free path), as well as longitudinal structure.
We argue that statistical and transport properties can not
significantly vary between RHIC and observed lower energies.
We therefore conclude that the “perfect fluid,” if it is there, is
a common characteristic of all experimentally studied systems
so far.

It should be underlined that the “experimental result” on
which we base our conclusions is, itself, somewhat theory-
laden since ε is not an experimentally measured quantity. If the
best physical description of the soft initial dynamics at RHIC is
not the Glauber model but rather, for example, the color glass
condensate [22], the scaling might need to be revisited [23].
Even within the Glauber model calculation, it is only when
eccentricity fluctuations [24] are taken into account that the
universal scaling is observed (one of the reasons why this
scaling was not reported until recently, and missed for example
in [25]). Yet, the fact that an improvement in the computation
of ε results in improvement of the scaling is indicative that
something physical must be behind it.

It should be noted that the result in Fig. 2 is based
on pT integrated v2, and is therefore subject to systematic
uncertainties due to the wide range of acceptance in the
experiments summarized in Fig. 2. Recent investigations
(Figs. 1 of [26,27]), however, seems to show that the scaling
is not dependent on integrating over pT , since a compatible
scaling holds when separate pT bins are considered. The
universal scaling was found to hold in rapidity space also [27].

In the rest of the paper, we will regard the result as
established because we wish to show that its consequences are
profound. Finding simple scaling in a system as complicated as
a heavy ion collisions is encouraging enough that it deserves
exploration even through the scaling observation should be
regarded as preliminary. We hope that the experimental
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FIG. 2. Top panel (a): The range in
√

sA1/3 vs 1/A1/3 for the
available experimental data. Bottom panel (b): The range of S and ε

covered by available data.

community will soon determine how universal this scaling
really is.

II. HOW NATURAL IS THE OBSERVED SCALING
WITHIN HYDRODYNAMICS?

For the system under consideration, three dimensionless
parameters can safely be assumed to be significantly smaller
than unity: The initial spatial eccentricity ε, the initial speed
of sound cs (that encodes information on the equation of
state [28–30]), and the initial mean free path lmfp divided
by the initial size of the system, in general parametrized by
the transverse radius R and the longitudinal size 〈z〉. The latter
refers to the system’s longitudinal size in configuration space,
at midrapidity, at the start of the hydrodynamic evolution,
and is a general definition. It is usually thought that 〈z〉 can
interpolate from a Landau initial condition [31], where 〈z〉 is
related to the nucleon mass mN and the center of mass energy√

s by

〈z〉 ∼ R

√
s

mN

, (3)

024903-2



SCALING OF v2 IN HEAVY ION COLLISIONS PHYSICAL REVIEW C 76, 024903 (2007)

to the Bjorken [32] initial condition, where, for a system with
maximum rapidity yL,

〈z〉 ∼ 2τ0 sinh(yL) , (4)

yL = 1

2
ln




√
s/4 +

√
s/4 − m2

N

√
s/4 −

√
s/4 − m2

N


 , (5)

where τ0 is the thermalization timescale of the system.
Since hydrodynamic evolution is fully determined by the

initial conditions and the equation of state,1 any flow variable
can be thought of as a function of the parameters characterizing
these. If this function is integrable (i.e., if no turbulence
occurs), than it is safe to expand this function around any
dimensionless parameter less than one.

Both the dimensionless v2 and the dimensionful dN
Sdy

(∼ fm−2) can therefore be Taylor-expanded around these
quantities. For v2, we know that the zeroth term is 0 (perfectly
central collisions have no v2), so

v2 ∼ a100ε + a200ε
2 + ε

(
aR

110
lmfp

R
+ az

110

lmfp

〈z〉 +
)

+ εcs

(
aR

111
lmfp

R
+ az

111

lmfp

〈z〉
)

+ ... , (6)

aijk are in general (probably transcendental) functions of an
arbitrary number of dimensionless quantities constructed out
of 〈z〉, T , µB,R (in general ζ = ∑

mnl ζmnl , where ζmnl =
〈z〉mT nµl

BRl+n−m, all m, n, l). The exact form of aijk can
be obtained integrating the hydrodynamic equation from the
initial time to freeze-out time (through they are expected to
be insensitive to the latter, and equivalently to Tfreeze-out

Tinitial
). Ideal

boost-invariant hydrodynamics, with a bag model or lattice-
inspired equation of state [13–15], predicts that a20j � a10j ,
and hence v2/ε is approximately constant (as the lines in Fig. 1
show).

The experimentally observed rise of v2/ε with multiplicity,
and encounter with the hydrodynamic calculation (see Fig. 1),
can therefore be interpreted as RHIC energy being the only
point where the system reaches the “ideal hydrodynamics
limit”.

It is however unclear to what extent is such a conclu-
sion an artifact of the models being used to perform this
comparison assuming exact [13–15] or approximate [33,34]
boost-invariance as an initial condition at all energies. While
there are good physical arguments for why such an initial
condition is appropriate for heavy ion collisions at midrapidity
[32], the fact that some experimental data are more compatible
with Landau hydrodynamics even at RHIC highest energies
[35] suggests the need to question this assumption, and in
particular to evaluate its effect on our estimate of the transport
properties and their energy dependence. While no viscous
calculation using Landau initial conditions has so far appeared
in the literature, it is reasonable to suppose that the slower

1An additional variable experimental observables can depend on is
a freeze-out criterion, encoded by, for example, Tfreeze-out

Tinitial
. We disregard

this variable in the subsequent discussion as the observables we
discuss should not strongly depend on it.

cooling from a Landau initial condition would leave more
time for v2 to form. Hence, the limits on viscosity/mean free
path/thermalization time inferred from v2 data are strongly
correlated with the degree of assumed boost invariance.

dN
Sdy

contains information about both the longitudinal
structure at freeze-out and the final particle number density
(a function of the initial T and µB). In an ideal (isenthropic)
expansion, the final entropy is equal to the initial entropy
content of the system [∼ the initial particle density n(T ,µB)],
so

1

S

dN

dy
∼ 〈z〉n(T ,µB ) . (7)

Collective evolution, if the system has a non-negligible mean
free path, can however create additional entropy.

The first correction to isenthropic expansion should there-
fore be proportional to the entropy creation due to viscous
processes. This is given by [36]

�S ∼
∫

dtη〈∂µuν〉2 V (t)

T
, (8)

where η is the viscosity, uν the flow field, and V (t) the volume
of the fluid.

Viscosity is in turn proportional to the mean free path,
density n, and mean momentum current 〈p〉 [31]

η ∼ lmfpn(T ,µB )〈p〉(T ,µB ) (9)

since the initial volume is, to zeroth order in eccentricity,
∼〈z〉R2, we get

1

S

dN

dy
∼ 〈z〉n(T ,µB )

(
1 + bR

010
lmfp

R
+ b

〈z〉
010

lmfp

〈z〉
+ ε

(
bR

110
lmfp

R
+ b

〈z〉
110

lmfp

〈z〉
)

+ cs

(
bR

011
lmfp

R
+ b

〈z〉
011

lmfp

〈z〉
)

+ · · ·
)

, (10)

where, once again, the coefficients b are functions of any arbi-
trary sum

∑
m,n,l〈z〉mT nµl

BRn+l−m, that have to be calculated
by integrating the viscous hydrodynamic equations. Since
entropy is predominantly produced in the initial collisions [37],
we can again disregard Tfreeze-out

Tinitial
.

It is immediately clear that several of the parameters used in
the previous expansions (in particular the cs, lmfp, 〈z〉) cannot,
by causality, depend on the transverse system size A, and
have to depend only on the local energy density only. If soft
observables scale with the number of participants, therefore,
these parameter’s dependence on energy and system size can
only be a function of σ , where

σ = f (
√

s)A1/3 ∼ √
sA1/3 . (11)

Not all parameters, however, have this dependence: The initial
transverse system size R and eccentricity ε exhibit no energy
dependence. Rapidity [27] provides a further independent
direction.

Presently available heavy ion experiments have explored a
significant range in ε, σ and R, shown in Fig. 2. Had v2/ε

scaled in a different way from 1
S

dN
dy

with respect to these
variables, the currently available experimental data should
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FIG. 3. (Color online) The expected dependence, with energy of
the initial 〈z〉, cs , and lmfp . These quantities, by definition, will be
independent of system size.

have signaled it by the appearance of “branches”, systems
with same 1

S
dN
dy

but different v2/ε (or vice versa). Hence, the
absence of such branches is a probe capable of constraining
the nature of the system created in heavy ion collisions. In the
rest of the paper, we will use this probe, as well as Eqs. (6)
and (10), to constrain the system as much as possible.

Figure 3 sketches the dependence of cs, lmfp, and 〈z〉 as
conventionally thought. As the energy increases, cs rapidly
dips in the “mixed phase”2 and than increases as the system
moves from a hadron gas to a quark gluon plasma. An increase
in cs , if other variables were fixed, would increase the v2/ε

(since there is more pressure buildup) and, since it is an
equilibrium process, either maintain dN

Sdy
constant or decrease

it (if longitudinal flow is significant).
lmfp is sensitive to the phase structure in a somewhat

different manner: the system should first enter the strongly
coupled low viscosity sQGP regime, and then, when σ is
very high (

√
s ∼ TeV), the higher viscosity high-temperature

regime where the QGP becomes asymptotically free. A higher
viscosity means a lower v2 [3], but a higher dN

Sdy
, as more

entropy is created in the system and collective energy is
transformed, by microscopic interactions, into thermal energy.

Finally, the stopping power of the system should decrease as
the initial condition goes from Landau [31] to the Bjorken [32]
limit. This decreases the pressure buildup needed to create v2 as
well as 1

S
dN
dy

, since entropy is redistributed in a wider rapidity
space.

The combined effect of these three scalings is difficult
to evaluate without a solver of 3D viscous hydrodynamic
equations. It is however likely to be non-negligible, and depend

2In a first order phase transition, it dips to zero. In a crossover, it
merely decreases [30].

only on σ , not on A or centrality/ε. The total size of the system,
and its lifetime, however, should depends strongly on both σ

and A, as well as the eccentricity.
Hence, terms ∼ lmfp

R,εR,〈z〉 , present in both Eqs. (6) and (10)
should vary in a nontrivial way as energy and system size
are changed. In addition, for systems with a short lifetime,
or a slow formation of v2, terms ∼εi>1 in Eq. (6) should
become non-negligible. Thus, the appearance of a common
scaling between systems with different σ,A, ε, such as the
one observed appears highly unlikely a priori.

We shall further explore the naturalness of the observed
scaling using natural values of aijk, bijk , together with
parametrizations of cs and lmfp

ρ = ρHG

2
(1 + tanh(Tc − T ))

+ ρQGP

2
(1 + tanh(T − Tc)) , (12)

cs = 0.1

2
(1 + 0.9 tanh(Tc − T ))

+ cideal
s

2
(1 + tanh(T − Tc)) , (13)

lmfp

f m
= 5

2
(1 + tanh(Tc − T ))

+ 0.1

2
(1 + tanh(T − Tc))∗ log

(
1 + T

Tc

)
. (14)

We then use the Bjorken formula to get the initial longitudinal
and energy density distribution

1

S

dN

dy
∼ 1

πA2

dN

dy
= τ0ρ(T ,µB ), (15)

where dN
dy

can be obtained from experiment by a phenomeno-
logical formula [38].

dN

dy
= Nparticipants

1.48
ln

( √
s

1.48 GeV

)
. (16)

The temperature is found by solving the resulting conservation
of energy equations, using the equation of state given in
Eq. (12). The resulting temperature is then plugged into
Eqs. (14) and (13) to calculate cs and lmfp. These, together
with “typical” coefficients aijk, bijk and R ∼ A1/3, 〈z〉 ∼
τ0 sinh(yL) are then used to investigate how v2/ε and 1

S
dN
dy

depend on each other.
Since all “small” dimensionless parameters are encoded

in cs, ε,
lmfp

R,〈z〉 , all coefficients aijk ∼ v2|exp, bijk ∼ 1. Figure 4
shows what kind of scaling is to be expected from Eqs. (5)
and (9) if the approximate equalities hold exactly. The branch
structure is clearly seen across the experimentally studied
system sizes. It is of course possible to eliminate and produce
universal scaling, but, in the absence of a deeper principle
why that should be so, the coefficients a, b would need to be
carefully fine-tuned.

Thus, the experimentally observed scaling of Fig. 1 places
very profound constraints on how the microscopic properties,
and the global longitudinal structure, can vary between AGS
and RHIC energies.
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FIG. 4. (Color online) Scaling expected with for “typical” values
of aijk, bijk and the formula in [38] for multiplicity. The bands, lower
to upper, correspond to different classes in centrality Eq. (10) and
different system sizes (Pb, Au, Cu, S).

III. WHAT DRIVES THE SCALING?

The point made in the previous section is actually straight-
forward to understand: As illustrated in Fig. 5 a universal
scaling means that the two quantities that scale are functions
of a common variable (that can be, in general, a function of
still further variables).

Thus, the systems from AGS to RHIC appear to be
controlled by a common scale, related to the total multiplicity,
which varies smoothly and drives both v2/ε and 1

S
dN
dy

. This

conclusion is a strong indication that microscopic properties
of the system (equation of state and mean free path) are un-
changed, up to a shift related to this scale, in the experimentally
accessed energy range. It also raises the question of the exact
nature of the variable that drives the scaling.

It has been suggested, in [13,39], that the system, even at its
initial stage, is not entirely in the nearly inviscid QGP phase,
but a fraction of it is in a highly viscous hadron gas. In this
case, Eqs. (6) and (10) should be updated with new parameters
cs ⇒ cQGP,HG

s , lmfp ⇒ l
QGP,HG
mfp and an additional parameter

α ∼ (dN/dy)QGP

(dN/dy)total

(17)

should be added.
Could it be that α is what moves from zero to unity in the

curve of Fig. 1? If we assume a Glauber model and a Woods-
Saxon distribution for initial density, and a critical “transition”
energy density ρc (independent of energy and system size), α

becomes

α =
∫

ρ(x, y, z, A,
√

s)�(ρ(x, y, z, A,
√

s) − ρc)d3x∫
ρ(x, y, z, A,

√
s)d3x

,

(18)

ρ ∼
√

sA1/3

〈z〉
[
TA(

√
(x + b)2 + y2) + TB(

√
(x − b)2 + y2)

]
,

(19)

FIG. 5. (Color online) An illustration of the mathematical implications of universal scaling. A possible breaking of the scaling is shown in
the bottom panel.
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and TA,B(r) is the usual transverse participant density of the
target nuclei,

T (x, y) =
∫

dzρN

(√
x2 + y2 + z2

)
. (20)

Such scaling is very nontrivial to model exactly, but it seems
to obey an approximate error function dependence in σ

α ∼ 1

2

(
1 + erf

(
σf (b) − ρc

�σ

))
, (21)

it is difficult to see how such a scaling can be compatible
with the observed universal curve. In particular, there will
be limiting values in

√
s at which α should go at 0 and 1

independently of A and b. above/below these scales, the system
reduces to a one-component system and branches should start
appearing.

Similarly, at low energies there will be a regime where
α = 0 below a certain impact parameter, and α > 0 above
this impact parameter. In the first class of centralities, the
large mean free path in the “corona” would introduce a
dependence on A that does not conform to the universal
curve. While RHIC experiments have isolated several low
centrality bins where v2 is significantly below ideal hydro
predictions (the corona dominates), such a critical centrality
has so far not been observed. (although this can be explored
further with collisions of very heavy nuclei, such as uranium
[40,41]).

We conclude that, if the scaling parameter is indeed the
QGP fraction of the system, the energies explored so far are
far from the regime where this fraction is either close to unity
or to zero. While this is possible, given the large variation in
energy within the systems explored so to date, it would be
somewhat surprising.

An alternative ansatz to reproduce the observed scaling is
by postulating a universality in initial conditions, up to a scale
parameter, that also smoothly controls the initial temperature
(and hence cs and lmfp). The basic constraint that the universal
scaling imposes on a set of uniform initial conditions is the
requirement that a single dimensionful scale 〈τ 〉 exists, and
varying either the energy or the system size only shifts the
system up and down the scale 〈τ 〉. Both 〈z〉n(T ,µB ) and v2

are then functions of only 〈τ 〉 as well as constants independent
of energy and system size. A natural interpretation for 〈τ 〉 is
the system’s lifetime in the co-moving frame. In units of the
mean free path, this corresponds to the inverse of the Knudsen
number [42], the number of collisions between the system’s
degrees of freedom.

Because of the leading dependence of 1
S

dN
dy

on 〈z〉n(T ,µB )

(Eq. (10)), it follows that 〈τ 〉 can only scale with A,
√

s, σ in
the same way as 〈z〉n(T ,µB ),

〈τ 〉 = F−1(〈z〉n(T ,µB )) , (22)

where F (〈τ 〉) is the same for all energies. A different
dependence would lead to two different 〈τ 〉s corresponding to
the same 〈z〉n(T ,µB ), which would again break the observed
scaling.

Equations (6) and (10) then simplify to

v2 ∼ ε
(
a100 + a101cs + a102c

2
s + ...

)
+ lmfp

〈τ 〉 ε(a110 + a111cs + ...)

+
(

lmfp

〈τ 〉
)2

ε(a120 + a121cs + ...) + ... , (23)

1

S

dN

dy
∼ F (〈τ 〉)

(
1 + b010

lmfp

〈τ 〉 + b011
cslmfp

〈τ 〉

+ b200

(
lmfp

〈τ 〉
)2

+ ...

)
, (24)

where lmfp, b, a depend only on 〈τ 〉, presumably via a simple
scaling between 〈τ 〉 and initial temperature. This scaling will
most probably be monotonic

〈τ 〉 = F

(
Tf reeze-out

Tinitial

)
∼ σn . (25)

More complicated scalings, with minima and sharp transitions,
will in general lead to a violation of the universal scaling, since
events with similar final multiplicities could in this case have
different v2/ε.

To fully appreciate these constraints, it must be remembered
that the lifetime strongly depends on the system’s longitudinal
initial conditions, and in particular Landau and Bjorken type
initial conditions, with the same equation of state and transport
coefficients, will lead to very different 〈τ 〉s [43].

Thus, the scaling of v2 rules out a transition of the system
from the Landau to the Bjorken limit such as the one seen
in the top panel of Fig. 3, in the considered range of energies
and system sizes: Such a transition would mean that two events
with the same 1

S
dN
dy

, one high-energy noncentral, the other low-
energy central, would correspond to two different lifetimes (the
first close to the Bjorken limit, the second to the Landau limit),
and hence, in general, to two v2/ε.

The monotonic increase of v2/ε further constrains either
the initial conditions to be far away from the Bjorken limit,
or the mean free path to be negligible, at all energies: As
initially inferred in [1], and explicitly shown in [13–15] v2

is a self-quenching signature, which saturates after a finite
time τv2, with τv2 � 〈τ 〉 in the Bjorken limit [13–15]. The v2

scaling than implies that the system never reaches τv2. If it did,
systems with different 〈τ 〉1,2 > τv2 but the same ε would have
the same v2/ε. It is clear that such systems would, in general,
have very different 1

S
dN
dy

, breaking the scaling.
The universal scaling of v2 in pseudo-rapidity space

observed in [27] adds a further layer of constraints to Eq. (23).
It appears that the σ is also a uniquely determined universal
function of the relative position of the volume element in
rapidity space. This rules out a “Landau”/fire-streak model
where the system is closely localized in rapidity. Instead, the
fireball evolves in a way that is both local in rapidity, and
strongly rapidity-dependent. Perhaps the BGK initial condition
[46], could provide such an ansatz, although it would imply
that such a geometry holds, to a good approximation, up to
AGS energies.
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The picture suggested by the “universal” scaling of v2

is then considerably different from the “RHIC reaches the
perfect fluid” scenario: The “fluid” produced in heavy ion
collisions, at all energies and system sizes where the scaling
holds, should have a comparable lmfp , equation of state (cs) and
longitudinal structure of the initial condition. All that varies
is lifetime 〈τ 〉, which is uniquely determined by the initial
density multiplied by longitudinal size, 〈z〉n(T ,µB ). This uni-
versal structure is robust inasmuch the scaling experimentally
observed.

The alternative is that “we all have got it wrong” and
the picture quantitatively analyzed in [19], of a very weakly
interacting system, is the appropriate one for describing heavy
ion collisions, from AGS to RHIC. But, aside from the
difficulty in modeling such a large v2 in this picture, the
conclusions in the previous paragraph would actually not
be changed: For the scaling shown in [19] to hold, it is
necessary for 〈vij 〉σij , where vij is the relative speed and σij

the cross-sectional area of the system’s microscopic degrees of
freedom, not to change significantly with energy and system
size. This is equivalent to requiring the microscopic properties
of the system, such as viscosity and equation of state, to remain
the same.

Experimentally it will be very interesting to see at what
point, in low energy collisions, is the universal scaling
observed here broken. This point could well be the critical
σ that produces a deconfined system.

Perhaps a greater energy and system size exploration around
the region of the so-called “kink,” “horn,” “step” [44] anomaly
can yield discoveries. As seen in Fig. 5 (lower panel, 1

S
dN
dy

∼
6 fm−2), there might be a hint of splitting in the scaling curve;
While the error bars abundantly drown out any firm evidence
at this point, the approximate coincidence with the features
highlighted in [44], as well as the breaking of HBT radii
scaling with multiplicity and

√
s [45] are suggestive. Likewise,

it will be interesting to see if peripheral LHC collisions,
where the initial temperature should lie in the asymptotic

freedom regime, can be related to central top energy RHIC
collisions.

The observation that the scaling could apply not just with
integrated pT but within pT bins [26,27] also deserves further
exploration. One could object that, since 〈pT 〉 is energy
dependent, a meaningful comparison across different energy
regimes cannot be obtained. However, in the hydrodynamic
picture 〈pT 〉 is also strongly system-size dependent because of
the growth of transverse flow, yet [26,27] finds a pT specific
scaling to hold when Cu-Cu and Au-Au are compared. We
await further, energy dependent results in this direction, but
remark that the breaking of this scaling could signal the energy
scale at which equilibration stops applying.

IV. CONCLUSION

In conclusion, we have shown that the scaling of v2/ε

with 1
S

dN
dy

places tight constraints on the hydrodynamic initial
conditions in heavy ion collisions. It imposes an energy-
independent relationship between initial energy density and
longitudinal size, and makes it likely that longitudinal structure
and microscopic parameters, such as the initial temperature,
equation of state and viscosity are comparable in the consid-
ered range of energies and system sizes. We have suggested
that looking for when the given scaling breaks might yield
information about the critical energy and system size at which
we can speak of a deconfined collective phase.
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